WIP: Restructuring project

This commit is contained in:
2024-12-10 16:13:14 -05:00
parent e3b3882443
commit 2c51a2f9c8
107 changed files with 417 additions and 4168 deletions

View File

@@ -0,0 +1,143 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "platform.hpp"
# include "macros.hpp"
#endif
#pragma region Basic Types
#define GEN_U8_MIN 0u
#define GEN_U8_MAX 0xffu
#define GEN_I8_MIN ( -0x7f - 1 )
#define GEN_I8_MAX 0x7f
#define GEN_U16_MIN 0u
#define GEN_U16_MAX 0xffffu
#define GEN_I16_MIN ( -0x7fff - 1 )
#define GEN_I16_MAX 0x7fff
#define GEN_U32_MIN 0u
#define GEN_U32_MAX 0xffffffffu
#define GEN_I32_MIN ( -0x7fffffff - 1 )
#define GEN_I32_MAX 0x7fffffff
#define GEN_U64_MIN 0ull
#define GEN_U64_MAX 0xffffffffffffffffull
#define GEN_I64_MIN ( -0x7fffffffffffffffll - 1 )
#define GEN_I64_MAX 0x7fffffffffffffffll
#if defined( GEN_ARCH_32_BIT )
# define GEN_USIZE_MIN GEN_U32_MIN
# define GEN_USIZE_MAX GEN_U32_MAX
# define GEN_ISIZE_MIN GEN_S32_MIN
# define GEN_ISIZE_MAX GEN_S32_MAX
#elif defined( GEN_ARCH_64_BIT )
# define GEN_USIZE_MIN GEN_U64_MIN
# define GEN_USIZE_MAX GEN_U64_MAX
# define GEN_ISIZE_MIN GEN_I64_MIN
# define GEN_ISIZE_MAX GEN_I64_MAX
#else
# error Unknown architecture size. This library only supports 32 bit and 64 bit architectures.
#endif
#define GEN_F32_MIN 1.17549435e-38f
#define GEN_F32_MAX 3.40282347e+38f
#define GEN_F64_MIN 2.2250738585072014e-308
#define GEN_F64_MAX 1.7976931348623157e+308
#if defined( GEN_COMPILER_MSVC )
# if _MSC_VER < 1300
typedef unsigned char u8;
typedef signed char s8;
typedef unsigned short u16;
typedef signed short s16;
typedef unsigned int u32;
typedef signed int s32;
# else
typedef unsigned __int8 u8;
typedef signed __int8 s8;
typedef unsigned __int16 u16;
typedef signed __int16 s16;
typedef unsigned __int32 u32;
typedef signed __int32 s32;
# endif
typedef unsigned __int64 u64;
typedef signed __int64 s64;
#else
# include <stdint.h>
typedef uint8_t u8;
typedef int8_t s8;
typedef uint16_t u16;
typedef int16_t s16;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint64_t u64;
typedef int64_t s64;
#endif
static_assert( sizeof( u8 ) == sizeof( s8 ), "sizeof(u8) != sizeof(s8)" );
static_assert( sizeof( u16 ) == sizeof( s16 ), "sizeof(u16) != sizeof(s16)" );
static_assert( sizeof( u32 ) == sizeof( s32 ), "sizeof(u32) != sizeof(s32)" );
static_assert( sizeof( u64 ) == sizeof( s64 ), "sizeof(u64) != sizeof(s64)" );
static_assert( sizeof( u8 ) == 1, "sizeof(u8) != 1" );
static_assert( sizeof( u16 ) == 2, "sizeof(u16) != 2" );
static_assert( sizeof( u32 ) == 4, "sizeof(u32) != 4" );
static_assert( sizeof( u64 ) == 8, "sizeof(u64) != 8" );
typedef size_t usize;
typedef ptrdiff_t ssize;
static_assert( sizeof( usize ) == sizeof( ssize ), "sizeof(usize) != sizeof(ssize)" );
// NOTE: (u)zpl_intptr is only here for semantic reasons really as this library will only support 32/64 bit OSes.
#if defined( _WIN64 )
typedef signed __int64 sptr;
typedef unsigned __int64 uptr;
#elif defined( _WIN32 )
// NOTE; To mark types changing their size, e.g. zpl_intptr
# ifndef _W64
# if ! defined( __midl ) && ( defined( _X86_ ) || defined( _M_IX86 ) ) && _MSC_VER >= 1300
# define _W64 __w64
# else
# define _W64
# endif
# endif
typedef _W64 signed int sptr;
typedef _W64 unsigned int uptr;
#else
typedef uintptr_t uptr;
typedef intptr_t sptr;
#endif
static_assert( sizeof( uptr ) == sizeof( sptr ), "sizeof(uptr) != sizeof(sptr)" );
typedef float f32;
typedef double f64;
static_assert( sizeof( f32 ) == 4, "sizeof(f32) != 4" );
static_assert( sizeof( f64 ) == 8, "sizeof(f64) != 8" );
typedef s8 b8;
typedef s16 b16;
typedef s32 b32;
typedef void* mem_ptr;
typedef void const* mem_ptr_const ;
#if GEN_COMPILER_CPP
template<typename Type> uptr to_uptr( Type* ptr ) { return (uptr)ptr; }
template<typename Type> sptr to_sptr( Type* ptr ) { return (sptr)ptr; }
template<typename Type> mem_ptr to_mem_ptr ( Type ptr ) { return (mem_ptr) ptr; }
template<typename Type> mem_ptr_const to_mem_ptr_const( Type ptr ) { return (mem_ptr_const)ptr; }
#else
#define to_uptr( ptr ) ((uptr)(ptr))
#define to_sptr( ptr ) ((sptr)(ptr))
#define to_mem_ptr( ptr) ((mem_ptr)ptr)
#define to_mem_ptr_const( ptr) ((mem_ptr)ptr)
#endif
#pragma endregion Basic Types

View File

@@ -0,0 +1,797 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "printing.hpp"
#endif
#pragma region Containers
template<class TType> struct RemoveConst { typedef TType Type; };
template<class TType> struct RemoveConst<const TType> { typedef TType Type; };
template<class TType> struct RemoveConst<const TType[]> { typedef TType Type[]; };
template<class TType, usize Size> struct RemoveConst<const TType[Size]> { typedef TType Type[Size]; };
template<class TType> using TRemoveConst = typename RemoveConst<TType>::Type;
template <class TType> struct RemovePtr { typedef TType Type; };
template <class TType> struct RemovePtr<TType*> { typedef TType Type; };
template <class TType> using TRemovePtr = typename RemovePtr<TType>::Type;
#pragma region Array
#define Array(Type) Array<Type>
// #define array_init(Type, ...) array_init <Type>(__VA_ARGS__)
// #define array_init_reserve(Type, ...) array_init_reserve<Type>(__VA_ARGS__)
struct ArrayHeader;
#if GEN_COMPILER_CPP
template<class Type> struct Array;
# define get_array_underlying_type(array) typename TRemovePtr<typeof(array)>:: DataType
#endif
usize array_grow_formula(ssize value);
template<class Type> Array<Type> array_init (AllocatorInfo allocator);
template<class Type> Array<Type> array_init_reserve (AllocatorInfo allocator, ssize capacity);
template<class Type> bool array_append_array (Array<Type>* array, Array<Type> other);
template<class Type> bool array_append (Array<Type>* array, Type value);
template<class Type> bool array_append_items (Array<Type>* array, Type* items, usize item_num);
template<class Type> bool array_append_at (Array<Type>* array, Type item, usize idx);
template<class Type> bool array_append_items_at(Array<Type>* array, Type* items, usize item_num, usize idx);
template<class Type> Type* array_back (Array<Type> array);
template<class Type> void array_clear (Array<Type> array);
template<class Type> bool array_fill (Array<Type> array, usize begin, usize end, Type value);
template<class Type> void array_free (Array<Type>* array);
template<class Type> bool arary_grow (Array<Type>* array, usize min_capacity);
template<class Type> usize array_num (Array<Type> array);
template<class Type> void arary_pop (Array<Type> array);
template<class Type> void arary_remove_at (Array<Type> array, usize idx);
template<class Type> bool arary_reserve (Array<Type>* array, usize new_capacity);
template<class Type> bool arary_resize (Array<Type>* array, usize num);
template<class Type> bool arary_set_capacity (Array<Type>* array, usize new_capacity);
template<class Type> ArrayHeader* arary_get_header (Array<Type> array);
struct ArrayHeader {
AllocatorInfo Allocator;
usize Capacity;
usize Num;
};
#if GEN_COMPILER_CPP
template<class Type>
struct Array
{
Type* Data;
#pragma region Member Mapping
forceinline static Array init(AllocatorInfo allocator) { return array_init<Type>(allocator); }
forceinline static Array init_reserve(AllocatorInfo allocator, ssize capacity) { return array_init_reserve<Type>(allocator, capacity); }
forceinline static usize grow_formula(ssize value) { return array_grow_formula<Type>(value); }
forceinline bool append(Array other) { return array_append_array<Type>(this, other); }
forceinline bool append(Type value) { return array_append<Type>(this, value); }
forceinline bool append(Type* items, usize item_num) { return array_append_items<Type>(this, items, item_num); }
forceinline bool append_at(Type item, usize idx) { return array_append_at<Type>(this, item, idx); }
forceinline bool append_at(Type* items, usize item_num, usize idx) { return array_append_items_at<Type>(this, items, item_num, idx); }
forceinline Type* back() { return array_back<Type>(* this); }
forceinline void clear() { array_clear<Type>(* this); }
forceinline bool fill(usize begin, usize end, Type value) { return array_fill<Type>(* this, begin, end, value); }
forceinline void free() { array_free<Type>(this); }
forceinline ArrayHeader* get_header() { return array_get_header<Type>(* this); }
forceinline bool grow(usize min_capacity) { return array_grow<Type>(this, min_capacity); }
forceinline usize num() { return array_num<Type>(*this); }
forceinline void pop() { array_pop<Type>(* this); }
forceinline void remove_at(usize idx) { array_remove_at<Type>(* this, idx); }
forceinline bool reserve(usize new_capacity) { return array_reserve<Type>(this, new_capacity); }
forceinline bool resize(usize num) { return array_resize<Type>(this, num); }
forceinline bool set_capacity(usize new_capacity) { return array_set_capacity<Type>(this, new_capacity); }
#pragma endregion Member Mapping
forceinline operator Type*() { return Data; }
forceinline operator Type const*() const { return Data; }
forceinline Type* begin() { return Data; }
forceinline Type* end() { return Data + get_header()->Num; }
forceinline Type& operator[](ssize index) { return Data[index]; }
forceinline Type const& operator[](ssize index) const { return Data[index]; }
using DataType = Type;
};
#endif
#if GEN_COMPILER_CPP && 0
template<class Type> bool append(Array<Type>& array, Array<Type> other) { return append( & array, other ); }
template<class Type> bool append(Array<Type>& array, Type value) { return append( & array, value ); }
template<class Type> bool append(Array<Type>& array, Type* items, usize item_num) { return append( & array, items, item_num ); }
template<class Type> bool append_at(Array<Type>& array, Type item, usize idx) { return append_at( & array, item, idx ); }
template<class Type> bool append_at(Array<Type>& array, Type* items, usize item_num, usize idx) { return append_at( & array, items, item_num, idx ); }
template<class Type> void free(Array<Type>& array) { return free( & array ); }
template<class Type> bool grow(Array<Type>& array, usize min_capacity) { return grow( & array, min_capacity); }
template<class Type> bool reserve(Array<Type>& array, usize new_capacity) { return reserve( & array, new_capacity); }
template<class Type> bool resize(Array<Type>& array, usize num) { return resize( & array, num); }
template<class Type> bool set_capacity(Array<Type>& array, usize new_capacity) { return set_capacity( & array, new_capacity); }
template<class Type> forceinline Type* begin(Array<Type>& array) { return array; }
template<class Type> forceinline Type* end(Array<Type>& array) { return array + array_get_header(array)->Num; }
template<class Type> forceinline Type* next(Array<Type>& array, Type* entry) { return entry + 1; }
#endif
template<class Type> forceinline Type* array_begin(Array<Type> array) { return array; }
template<class Type> forceinline Type* array_end(Array<Type> array) { return array + array_get_header(array)->Num; }
template<class Type> forceinline Type* array_next(Array<Type> array, Type* entry) { return ++ entry; }
template<class Type> inline
Array<Type> array_init(AllocatorInfo allocator) {
return array_init_reserve<Type>(allocator, array_grow_formula(0));
}
template<class Type> inline
Array<Type> array_init_reserve(AllocatorInfo allocator, ssize capacity)
{
GEN_ASSERT(capacity > 0);
ArrayHeader* header = rcast(ArrayHeader*, alloc(allocator, sizeof(ArrayHeader) + sizeof(Type) * capacity));
if (header == nullptr)
return {nullptr};
header->Allocator = allocator;
header->Capacity = capacity;
header->Num = 0;
return {rcast(Type*, header + 1)};
}
usize array_grow_formula(ssize value) {
return 2 * value + 8;
}
template<class Type> inline
bool array_append_array(Array<Type>* array, Array<Type> other) {
return array_append_items(array, (Type*)other, num(other));
}
template<class Type> inline
bool array_append(Array<Type>* array, Type value)
{
GEN_ASSERT( array != nullptr);
GEN_ASSERT(* array != nullptr);
ArrayHeader* header = array_get_header(* array);
if (header->Num == header->Capacity)
{
if ( ! array_grow(array, header->Capacity))
return false;
header = array_get_header(* array);
}
(*array)[ header->Num] = value;
header->Num++;
return true;
}
template<class Type> inline
bool array_append_items(Array<Type>* array, Type* items, usize item_num)
{
GEN_ASSERT( array != nullptr);
GEN_ASSERT(* array != nullptr);
GEN_ASSERT(items != nullptr);
GEN_ASSERT(item_num > 0);
ArrayHeader* header = array_get_header(array);
if (header->Num + item_num > header->Capacity)
{
if ( ! grow(array, header->Capacity + item_num))
return false;
header = array_get_header(array);
}
mem_copy((Type*)array + header->Num, items, item_num * sizeof(Type));
header->Num += item_num;
return true;
}
template<class Type> inline
bool array_append_at(Array<Type>* array, Type item, usize idx)
{
GEN_ASSERT( array != nullptr);
GEN_ASSERT(* array != nullptr);
ArrayHeader* header = array_get_header(* array);
ssize slot = idx;
if (slot >= header->Num)
slot = header->Num - 1;
if (slot < 0)
slot = 0;
if (header->Capacity < header->Num + 1)
{
if ( ! array_grow(array, header->Capacity + 1))
return false;
header = array_get_header(* array);
}
Type* target = &(*array)[slot];
mem_move(target + 1, target, (header->Num - slot) * sizeof(Type));
header->Num++;
return true;
}
template<class Type> inline
bool array_append_items_at(Array<Type>* array, Type* items, usize item_num, usize idx)
{
GEN_ASSERT( array != nullptr);
GEN_ASSERT(* array != nullptr);
ArrayHeader* header = get_header(array);
if (idx >= header->Num)
{
return array_append_items(array, items, item_num);
}
if (item_num > header->Capacity)
{
if (! grow(array, header->Capacity + item_num))
return false;
header = get_header(array);
}
Type* target = array.Data + idx + item_num;
Type* src = array.Data + idx;
mem_move(target, src, (header->Num - idx) * sizeof(Type));
mem_copy(src, items, item_num * sizeof(Type));
header->Num += item_num;
return true;
}
template<class Type> inline
Type* array_back(Array<Type> array)
{
GEN_ASSERT(array != nullptr);
ArrayHeader* header = array_get_header(array);
if (header->Num <= 0)
return nullptr;
return & (array)[header->Num - 1];
}
template<class Type> inline
void array_clear(Array<Type> array) {
GEN_ASSERT(array != nullptr);
ArrayHeader* header = array_get_header(array);
header->Num = 0;
}
template<class Type> inline
bool array_fill(Array<Type> array, usize begin, usize end, Type value)
{
GEN_ASSERT(array != nullptr);
GEN_ASSERT(begin <= end);
ArrayHeader* header = array_get_header(array);
if (begin < 0 || end > header->Num)
return false;
for (ssize idx = ssize(begin); idx < ssize(end); idx++)
{
array[idx] = value;
}
return true;
}
template<class Type> forceinline
void array_free(Array<Type>* array) {
GEN_ASSERT( array != nullptr);
GEN_ASSERT(* array != nullptr);
ArrayHeader* header = array_get_header(* array);
allocator_free(header->Allocator, header);
Type** Data = (Type**)array;
*Data = nullptr;
}
template<class Type> forceinline
ArrayHeader* array_get_header(Array<Type> array) {
GEN_ASSERT(array != nullptr);
Type* Data = array;
using NonConstType = TRemoveConst<Type>;
return rcast(ArrayHeader*, const_cast<NonConstType*>(Data)) - 1;
}
template<class Type> forceinline
bool array_grow(Array<Type>* array, usize min_capacity)
{
GEN_ASSERT( array != nullptr);
GEN_ASSERT(* array != nullptr);
GEN_ASSERT( min_capacity > 0 );
ArrayHeader* header = array_get_header(* array);
usize new_capacity = array_grow_formula(header->Capacity);
if (new_capacity < min_capacity)
new_capacity = min_capacity;
return array_set_capacity(array, new_capacity);
}
template<class Type> forceinline
usize array_num(Array<Type> array) {
GEN_ASSERT(array != nullptr);
return array_get_header(array)->Num;
}
template<class Type> forceinline
void array_pop(Array<Type> array) {
GEN_ASSERT(array != nullptr);
ArrayHeader* header = array_get_header(array);
GEN_ASSERT(header->Num > 0);
header->Num--;
}
template<class Type> inline
void array_remove_at(Array<Type> array, usize idx)
{
GEN_ASSERT(array != nullptr);
ArrayHeader* header = array_get_header(array);
GEN_ASSERT(idx < header->Num);
mem_move(array + idx, array + idx + 1, sizeof(Type) * (header->Num - idx - 1));
header->Num--;
}
template<class Type> inline
bool array_reserve(Array<Type>* array, usize new_capacity)
{
GEN_ASSERT( array != nullptr);
GEN_ASSERT(* array != nullptr);
GEN_ASSERT(num > 0)
ArrayHeader* header = array_get_header(array);
if (header->Capacity < new_capacity)
return set_capacity(array, new_capacity);
return true;
}
template<class Type> inline
bool array_resize(Array<Type>* array, usize num)
{
GEN_ASSERT( array != nullptr);
GEN_ASSERT(* array != nullptr);
ArrayHeader* header = array_get_header(* array);
if (header->Capacity < num) {
if (! array_grow( array, num))
return false;
header = array_get_header(* array);
}
header->Num = num;
return true;
}
template<class Type> inline
bool array_set_capacity(Array<Type>* array, usize new_capacity)
{
GEN_ASSERT( array != nullptr);
GEN_ASSERT(* array != nullptr);
ArrayHeader* header = array_get_header(* array);
if (new_capacity == header->Capacity)
return true;
if (new_capacity < header->Num)
{
header->Num = new_capacity;
return true;
}
ssize size = sizeof(ArrayHeader) + sizeof(Type) * new_capacity;
ArrayHeader* new_header = rcast(ArrayHeader*, alloc(header->Allocator, size));
if (new_header == nullptr)
return false;
mem_move(new_header, header, sizeof(ArrayHeader) + sizeof(Type) * header->Num);
new_header->Capacity = new_capacity;
allocator_free(header->Allocator, header);
Type** Data = (Type**)array;
* Data = rcast(Type*, new_header + 1);
return true;
}
// These are intended for use in the base library of gencpp and the C-variant of the library
// It provides a interoperability between the C++ and C implementation of arrays. (not letting these do any crazy substiution though)
// They are undefined in gen.hpp and gen.cpp at the end of the files.
// We cpp library expects the user to use the regular calls as they can resolve the type fine.
#define array_init(type, allocator) array_init <type> (allocator )
#define array_init_reserve(type, allocator, cap) array_init_reserve <type> (allocator, cap)
#define array_append_array(array, other) array_append_array < get_array_underlying_type(array) > (& array, other )
#define array_append(array, value) array_append < get_array_underlying_type(array) > (& array, value )
#define array_append_items(array, items, item_num) array_append_items < get_array_underlying_type(array) > (& array, items, item_num )
#define array_append_at(array, item, idx ) array_append_at < get_array_underlying_type(array) > (& array, item, idx )
#define array_append_at_items(array, items, item_num, idx) array_append_at_items< get_array_underlying_type(array) > (& items, item_num, idx )
#define array_back(array) array_back < get_array_underlying_type(array) > (array )
#define array_clear(array) array_clear < get_array_underlying_type(array) > (array )
#define array_fill(array, begin, end, value) array_fill < get_array_underlying_type(array) > (array, begin, end, value )
#define array_free(array) array_free < get_array_underlying_type(array) > (& array )
#define arary_grow(array, min_capacity) arary_grow < get_array_underlying_type(array) > (& array, min_capacity)
#define array_num(array) array_num < get_array_underlying_type(array) > (array )
#define arary_pop(array) arary_pop < get_array_underlying_type(array) > (array )
#define arary_remove_at(array, idx) arary_remove_at < get_array_underlying_type(array) > (idx)
#define arary_reserve(array, new_capacity) arary_reserve < get_array_underlying_type(array) > (& array, new_capacity )
#define arary_resize(array, num) arary_resize < get_array_underlying_type(array) > (& array, num)
#define arary_set_capacity(new_capacity) arary_set_capacity < get_array_underlying_type(array) > (& array, new_capacity )
#define arary_get_header(array) arary_get_header < get_array_underlying_type(array) > (array )
#pragma endregion Array
// TODO(Ed) : This thing needs ALOT of work.
#pragma region HashTable
#define HashTable(Type) HashTable<Type>
template<class Type> struct HashTable;
#ifndef get_hashtable_underlying_type
#define get_hashtable_underlying_type(table) typename TRemovePtr<typeof(table)>:: DataType
#endif
struct HashTableFindResult {
ssize HashIndex;
ssize PrevIndex;
ssize EntryIndex;
};
template<class Type>
struct HashTableEntry {
u64 Key;
ssize Next;
Type Value;
};
#define HashTableEntry(Type) HashTableEntry<Type>
template<class Type> HashTable<Type> hashtable_init (AllocatorInfo allocator);
template<class Type> HashTable<Type> hashtable_init_reserve(AllocatorInfo allocator, usize num);
template<class Type> void hashtable_clear (HashTable<Type> table);
template<class Type> void hashtable_destroy (HashTable<Type>* table);
template<class Type> Type* hashtable_get (HashTable<Type> table, u64 key);
template<class Type> void hashtable_grow (HashTable<Type>* table);
template<class Type> void hashtable_rehash (HashTable<Type>* table, ssize new_num);
template<class Type> void hashtable_rehash_fast (HashTable<Type> table);
template<class Type> void hashtable_remove (HashTable<Type> table, u64 key);
template<class Type> void hashtable_remove_entry(HashTable<Type> table, ssize idx);
template<class Type> void hashtable_set (HashTable<Type>* table, u64 key, Type value);
template<class Type> ssize hashtable_slot (HashTable<Type> table, u64 key);
template<class Type> void hashtable_map (HashTable<Type> table, void (*map_proc)(u64 key, Type value));
template<class Type> void hashtable_map_mut (HashTable<Type> table, void (*map_proc)(u64 key, Type* value));
template<class Type> ssize hashtable__add_entry (HashTable<Type>* table, u64 key);
template<class Type> HashTableFindResult hashtable__find (HashTable<Type> table, u64 key);
template<class Type> bool hashtable__full (HashTable<Type> table);
static constexpr f32 HashTable_CriticalLoadScale = 0.7f;
template<typename Type>
struct HashTable
{
Array<ssize> Hashes;
Array<HashTableEntry<Type>> Entries;
#if ! GEN_C_LIKE_CPP
#pragma region Member Mapping
forceinline static HashTable init(AllocatorInfo allocator) { return hashtable_init<Type>(allocator); }
forceinline static HashTable init_reserve(AllocatorInfo allocator, usize num) { return hashtable_init_reserve<Type>(allocator, num); }
forceinline void clear() { clear<Type>(*this); }
forceinline void destroy() { destroy<Type>(*this); }
forceinline Type* get(u64 key) { return get<Type>(*this, key); }
forceinline void grow() { grow<Type>(*this); }
forceinline void rehash(ssize new_num) { rehash<Type>(*this, new_num); }
forceinline void rehash_fast() { rehash_fast<Type>(*this); }
forceinline void remove(u64 key) { remove<Type>(*this, key); }
forceinline void remove_entry(ssize idx) { remove_entry<Type>(*this, idx); }
forceinline void set(u64 key, Type value) { set<Type>(*this, key, value); }
forceinline ssize slot(u64 key) { return slot<Type>(*this, key); }
forceinline void map(void (*proc)(u64, Type)) { map<Type>(*this, proc); }
forceinline void map_mut(void (*proc)(u64, Type*)) { map_mut<Type>(*this, proc); }
#pragma endregion Member Mapping
#endif
using DataType = Type;
};
#if GEN_SUPPORT_CPP_REFERENCES
template<class Type> void destroy (HashTable<Type>& table) { destroy(& table); }
template<class Type> void grow (HashTable<Type>& table) { grow(& table); }
template<class Type> void rehash (HashTable<Type>& table, ssize new_num) { rehash(& table, new_num); }
template<class Type> void set (HashTable<Type>& table, u64 key, Type value) { set(& table, key, value); }
template<class Type> ssize add_entry(HashTable<Type>& table, u64 key) { add_entry(& table, key); }
#endif
template<typename Type> inline
HashTable<Type> hashtable_init(AllocatorInfo allocator) {
HashTable<Type> result = hashtable_init_reserve<Type>(allocator, 8);
return result;
}
template<typename Type> inline
HashTable<Type> hashtable_init_reserve(AllocatorInfo allocator, usize num)
{
HashTable<Type> result = { { nullptr }, { nullptr } };
result.Hashes = array_init_reserve<ssize>(allocator, num);
array_get_header(result.Hashes)->Num = num;
array_resize(& result.Hashes, num);
array_fill(result.Hashes, 0, num, (ssize)-1);
result.Entries = array_init_reserve<HashTableEntry<Type>>(allocator, num);
return result;
}
template<typename Type> forceinline
void hashtable_clear(HashTable<Type> table) {
GEN_ASSERT_NOT_NULL(table.Hashes);
GEN_ASSERT_NOT_NULL(table.Entries);
array_clear(table.Entries);
array_fill(table.Hashes, 0, array_num(table.Hashes), (ssize)-1);
}
template<typename Type> forceinline
void hashtable_destroy(HashTable<Type>* table) {
GEN_ASSERT_NOT_NULL(table->Hashes);
GEN_ASSERT_NOT_NULL(table->Entries);
if (table->Hashes && array_get_header(table->Hashes)->Capacity) {
array_free(table->Hashes);
array_free(table->Entries);
}
}
template<typename Type> forceinline
Type* hashtable_get(HashTable<Type> table, u64 key) {
GEN_ASSERT_NOT_NULL(table.Hashes);
GEN_ASSERT_NOT_NULL(table.Entries);
ssize idx = hashtable__find(table, key).EntryIndex;
if (idx >= 0)
return & table.Entries[idx].Value;
return nullptr;
}
template<typename Type> forceinline
void hashtable_map(HashTable<Type> table, void (*map_proc)(u64 key, Type value)) {
GEN_ASSERT_NOT_NULL(table.Hashes);
GEN_ASSERT_NOT_NULL(table.Entries);
GEN_ASSERT_NOT_NULL(map_proc);
for (ssize idx = 0; idx < ssize(num(table.Entries)); ++idx) {
map_proc(table.Entries[idx].Key, table.Entries[idx].Value);
}
}
template<typename Type> forceinline
void hashtable_map_mut(HashTable<Type> table, void (*map_proc)(u64 key, Type* value)) {
GEN_ASSERT_NOT_NULL(table.Hashes);
GEN_ASSERT_NOT_NULL(table.Entries);
GEN_ASSERT_NOT_NULL(map_proc);
for (ssize idx = 0; idx < ssize(num(table.Entries)); ++idx) {
map_proc(table.Entries[idx].Key, & table.Entries[idx].Value);
}
}
template<typename Type> forceinline
void hashtable_grow(HashTable<Type>* table) {
GEN_ASSERT_NOT_NULL(table);
GEN_ASSERT_NOT_NULL(table->Hashes);
GEN_ASSERT_NOT_NULL(table->Entries);
ssize new_num = array_grow_formula( array_num(table->Entries));
hashtable_rehash(table, new_num);
}
template<typename Type> inline
void hashtable_rehash(HashTable<Type>* table, ssize new_num)
{
GEN_ASSERT_NOT_NULL(table);
GEN_ASSERT_NOT_NULL(table->Hashes);
GEN_ASSERT_NOT_NULL(table->Entries);
ssize last_added_index;
HashTable<Type> new_ht = hashtable_init_reserve<Type>( array_get_header(table->Hashes)->Allocator, new_num);
for (ssize idx = 0; idx < ssize( array_num(table->Entries)); ++idx)
{
HashTableFindResult find_result;
HashTableEntry<Type>& entry = table->Entries[idx];
find_result = hashtable__find(new_ht, entry.Key);
last_added_index = hashtable__add_entry(& new_ht, entry.Key);
if (find_result.PrevIndex < 0)
new_ht.Hashes[find_result.HashIndex] = last_added_index;
else
new_ht.Entries[find_result.PrevIndex].Next = last_added_index;
new_ht.Entries[last_added_index].Next = find_result.EntryIndex;
new_ht.Entries[last_added_index].Value = entry.Value;
}
hashtable_destroy(table);
* table = new_ht;
}
template<typename Type> inline
void hashtable_rehash_fast(HashTable<Type> table)
{
GEN_ASSERT_NOT_NULL(table.Hashes);
GEN_ASSERT_NOT_NULL(table.Entries);
ssize idx;
for (idx = 0; idx < ssize(num(table.Entries)); idx++)
table.Entries[idx].Next = -1;
for (idx = 0; idx < ssize(num(table.Hashes)); idx++)
table.Hashes[idx] = -1;
for (idx = 0; idx < ssize(num(table.Entries)); idx++)
{
HashTableEntry<Type>* entry;
HashTableFindResult find_result;
entry = &table.Entries[idx];
find_result = find(table, entry->Key);
if (find_result.PrevIndex < 0)
table.Hashes[find_result.HashIndex] = idx;
else
table.Entries[find_result.PrevIndex].Next = idx;
}
}
template<typename Type> forceinline
void hashtable_remove(HashTable<Type> table, u64 key) {
GEN_ASSERT_NOT_NULL(table.Hashes);
GEN_ASSERT_NOT_NULL(table.Entries);
HashTableFindResult find_result = find(table, key);
if (find_result.EntryIndex >= 0) {
remove_at(table.Entries, find_result.EntryIndex);
rehash_fast(table);
}
}
template<typename Type> forceinline
void hashtable_remove_entry(HashTable<Type> table, ssize idx) {
GEN_ASSERT_NOT_NULL(table.Hashes);
GEN_ASSERT_NOT_NULL(table.Entries);
remove_at(table.Entries, idx);
}
template<typename Type> inline
void hashtable_set(HashTable<Type>* table, u64 key, Type value)
{
GEN_ASSERT_NOT_NULL(table);
GEN_ASSERT_NOT_NULL(table->Hashes);
GEN_ASSERT_NOT_NULL(table->Entries);
ssize idx;
HashTableFindResult find_result;
if (hashtable_full(* table))
hashtable_grow(table);
find_result = hashtable__find(* table, key);
if (find_result.EntryIndex >= 0) {
idx = find_result.EntryIndex;
}
else
{
idx = hashtable__add_entry(table, key);
if (find_result.PrevIndex >= 0) {
table->Entries[find_result.PrevIndex].Next = idx;
}
else {
table->Hashes[find_result.HashIndex] = idx;
}
}
table->Entries[idx].Value = value;
if (hashtable_full(* table))
hashtable_grow(table);
}
template<typename Type> forceinline
ssize hashtable_slot(HashTable<Type> table, u64 key) {
GEN_ASSERT_NOT_NULL(table.Hashes);
GEN_ASSERT_NOT_NULL(table.Entries);
for (ssize idx = 0; idx < ssize(num(table.Hashes)); ++idx)
if (table.Hashes[idx] == key)
return idx;
return -1;
}
template<typename Type> forceinline
ssize hashtable__add_entry(HashTable<Type>* table, u64 key) {
GEN_ASSERT_NOT_NULL(table);
GEN_ASSERT_NOT_NULL(table->Hashes);
GEN_ASSERT_NOT_NULL(table->Entries);
ssize idx;
HashTableEntry<Type> entry = { key, -1 };
idx = array_num(table->Entries);
array_append( table->Entries, entry);
return idx;
}
template<typename Type> inline
HashTableFindResult hashtable__find(HashTable<Type> table, u64 key)
{
GEN_ASSERT_NOT_NULL(table.Hashes);
GEN_ASSERT_NOT_NULL(table.Entries);
HashTableFindResult result = { -1, -1, -1 };
if (array_num(table.Hashes) > 0)
{
result.HashIndex = key % array_num(table.Hashes);
result.EntryIndex = table.Hashes[result.HashIndex];
while (result.EntryIndex >= 0)
{
if (table.Entries[result.EntryIndex].Key == key)
break;
result.PrevIndex = result.EntryIndex;
result.EntryIndex = table.Entries[result.EntryIndex].Next;
}
}
return result;
}
template<typename Type> forceinline
bool hashtable_full(HashTable<Type> table) {
GEN_ASSERT_NOT_NULL(table.Hashes);
GEN_ASSERT_NOT_NULL(table.Entries);
usize critical_load = usize(HashTable_CriticalLoadScale * f32(array_num(table.Hashes)));
b32 result = array_num(table.Entries) > critical_load;
return result;
}
#define hashtable_init(type, allocator) hashtable_init <type >(allocator)
#define hashtable_init_reserve(type, allocator, num) hashtable_init_reserve<type >(allocator, num)
#define hashtable_clear(table) hashtable_clear < get_hashtable_underlying_type(table) >(table)
#define hashtable_destroy(table) hashtable_destroy < get_hashtable_underlying_type(table) >(& table)
#define hashtable_get(table, key) hashtable_get < get_hashtable_underlying_type(table) >(table, key)
#define hashtable_grow(table) hashtable_grow < get_hashtable_underlying_type(table) >(& table)
#define hashtable_rehash(table, new_num) hashtable_rehash < get_hashtable_underlying_type(table) >(& table, new_num)
#define hashtable_rehash_fast(table) hashtable_rehash_fast < get_hashtable_underlying_type(table) >(table)
#define hashtable_remove(table, key) hashtable_remove < get_hashtable_underlying_type(table) >(table, key)
#define hashtable_remove_entry(table, idx) hashtable_remove_entry< get_hashtable_underlying_type(table) >(table, idx)
#define hashtable_set(table, key, value) hashtable_set < get_hashtable_underlying_type(table) >(& table, key, value)
#define hashtable_slot(table, key) hashtable_slot < get_hashtable_underlying_type(table) >(table, key)
#define hashtable_map(table, map_proc) hashtable_map < get_hashtable_underlying_type(table) >(table, map_proc)
#define hashtable_map_mut(table, map_proc) hashtable_map_mut < get_hashtable_underlying_type(table) >(table, map_proc)
//#define hashtable_add_entry(table, key) hashtable_add_entry < get_hashtable_underlying_type(table) >(& table, key)
//#define hashtable_find(table, key) hashtable_find < get_hashtable_underlying_type(table) >(table, key)
//#define hashtable_full(table) hashtable_full < get_hashtable_underlying_type(table) >(table)
#pragma endregion HashTable
#pragma endregion Containers

View File

@@ -0,0 +1,48 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "debug.hpp"
# include "basic_types.hpp"
# include "src_start.cpp"
#endif
#pragma region Debug
void assert_handler( char const* condition, char const* file, char const* function, s32 line, char const* msg, ... )
{
_printf_err( "%s - %s:(%d): Assert Failure: ", file, function, line );
if ( condition )
_printf_err( "`%s` \n", condition );
if ( msg )
{
va_list va;
va_start( va, msg );
_printf_err_va( msg, va );
va_end( va );
}
_printf_err( "%s", "\n" );
}
s32 assert_crash( char const* condition )
{
GEN_PANIC( condition );
return 0;
}
#if defined( GEN_SYSTEM_WINDOWS )
void process_exit( u32 code )
{
ExitProcess( code );
}
#else
# include <stdlib.h>
void process_exit( u32 code )
{
exit( code );
}
#endif
#pragma endregion Debug

View File

@@ -0,0 +1,63 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "basic_types.hpp"
#endif
#pragma region Debug
#if defined( _MSC_VER )
# if _MSC_VER < 1300
# define GEN_DEBUG_TRAP() __asm int 3 /* Trap to debugger! */
# else
# define GEN_DEBUG_TRAP() __debugbreak()
# endif
#elif defined( GEN_COMPILER_TINYC )
# define GEN_DEBUG_TRAP() process_exit( 1 )
#else
# define GEN_DEBUG_TRAP() __builtin_trap()
#endif
#define GEN_ASSERT( cond ) GEN_ASSERT_MSG( cond, NULL )
#define GEN_ASSERT_MSG( cond, msg, ... ) \
do \
{ \
if ( ! ( cond ) ) \
{ \
assert_handler( #cond, __FILE__, __func__, scast( s64, __LINE__ ), msg, ##__VA_ARGS__ ); \
GEN_DEBUG_TRAP(); \
} \
} while ( 0 )
#define GEN_ASSERT_NOT_NULL( ptr ) GEN_ASSERT_MSG( ( ptr ) != NULL, #ptr " must not be NULL" )
// NOTE: Things that shouldn't happen with a message!
#define GEN_PANIC( msg, ... ) GEN_ASSERT_MSG( 0, msg, ##__VA_ARGS__ )
#if Build_Debug
#define GEN_FATAL( ... ) \
do \
{ \
local_persist thread_local \
char buf[GEN_PRINTF_MAXLEN] = { 0 }; \
\
str_fmt(buf, GEN_PRINTF_MAXLEN, __VA_ARGS__); \
GEN_PANIC(buf); \
} \
while (0)
#else
# define GEN_FATAL( ... ) \
do \
{ \
str_fmt_out_err( __VA_ARGS__ ); \
process_exit(1); \
} \
while (0)
#endif
void assert_handler( char const* condition, char const* file, char const* function, s32 line, char const* msg, ... );
s32 assert_crash( char const* condition );
void process_exit( u32 code );
#pragma endregion Debug

View File

@@ -0,0 +1,659 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "strings.cpp"
#endif
#pragma region File Handling
#if defined( GEN_SYSTEM_WINDOWS ) || defined( GEN_SYSTEM_CYGWIN )
internal
wchar_t* _alloc_utf8_to_ucs2( AllocatorInfo a, char const* text, ssize* w_len_ )
{
wchar_t* w_text = NULL;
ssize len = 0, w_len = 0, w_len1 = 0;
if ( text == NULL )
{
if ( w_len_ )
*w_len_ = w_len;
return NULL;
}
len = str_len( text );
if ( len == 0 )
{
if ( w_len_ )
*w_len_ = w_len;
return NULL;
}
w_len = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, text, scast( int, len), NULL, 0 );
if ( w_len == 0 )
{
if ( w_len_ )
*w_len_ = w_len;
return NULL;
}
w_text = alloc_array( a, wchar_t, w_len + 1 );
w_len1 = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, text, scast( int, len), w_text, scast( int, w_len) );
if ( w_len1 == 0 )
{
allocator_free( a, w_text );
if ( w_len_ )
*w_len_ = 0;
return NULL;
}
w_text[ w_len ] = 0;
if ( w_len_ )
*w_len_ = w_len;
return w_text;
}
internal
GEN_FILE_SEEK_PROC( _win32_file_seek )
{
LARGE_INTEGER li_offset;
li_offset.QuadPart = offset;
if ( ! SetFilePointerEx( fd.p, li_offset, &li_offset, whence ) )
{
return false;
}
if ( new_offset )
*new_offset = li_offset.QuadPart;
return true;
}
internal
GEN_FILE_READ_AT_PROC( _win32_file_read )
{
// unused( stop_at_newline );
b32 result = false;
_win32_file_seek( fd, offset, ESeekWhence_BEGIN, NULL );
DWORD size_ = scast( DWORD, ( size > GEN_I32_MAX ? GEN_I32_MAX : size ));
DWORD bytes_read_;
if ( ReadFile( fd.p, buffer, size_, &bytes_read_, NULL ) )
{
if ( bytes_read )
*bytes_read = bytes_read_;
result = true;
}
return result;
}
internal
GEN_FILE_WRITE_AT_PROC( _win32_file_write )
{
DWORD size_ = scast( DWORD, ( size > GEN_I32_MAX ? GEN_I32_MAX : size ));
DWORD bytes_written_;
_win32_file_seek( fd, offset, ESeekWhence_BEGIN, NULL );
if ( WriteFile( fd.p, buffer, size_, &bytes_written_, NULL ) )
{
if ( bytes_written )
*bytes_written = bytes_written_;
return true;
}
return false;
}
internal
GEN_FILE_CLOSE_PROC( _win32_file_close )
{
CloseHandle( fd.p );
}
FileOperations const default_file_operations = { _win32_file_read, _win32_file_write, _win32_file_seek, _win32_file_close };
neverinline
GEN_FILE_OPEN_PROC( _win32_file_open )
{
DWORD desired_access;
DWORD creation_disposition;
void* handle;
wchar_t* w_text;
switch ( mode & GEN_FILE_MODES )
{
case EFileMode_READ :
desired_access = GENERIC_READ;
creation_disposition = OPEN_EXISTING;
break;
case EFileMode_WRITE :
desired_access = GENERIC_WRITE;
creation_disposition = CREATE_ALWAYS;
break;
case EFileMode_APPEND :
desired_access = GENERIC_WRITE;
creation_disposition = OPEN_ALWAYS;
break;
case EFileMode_READ | EFileMode_RW :
desired_access = GENERIC_READ | GENERIC_WRITE;
creation_disposition = OPEN_EXISTING;
break;
case EFileMode_WRITE | EFileMode_RW :
desired_access = GENERIC_READ | GENERIC_WRITE;
creation_disposition = CREATE_ALWAYS;
break;
case EFileMode_APPEND | EFileMode_RW :
desired_access = GENERIC_READ | GENERIC_WRITE;
creation_disposition = OPEN_ALWAYS;
break;
default :
GEN_PANIC( "Invalid file mode" );
return EFileError_INVALID;
}
w_text = _alloc_utf8_to_ucs2( heap(), filename, NULL );
handle = CreateFileW( w_text, desired_access, FILE_SHARE_READ | FILE_SHARE_DELETE, NULL, creation_disposition, FILE_ATTRIBUTE_NORMAL, NULL );
allocator_free( heap(), w_text );
if ( handle == INVALID_HANDLE_VALUE )
{
DWORD err = GetLastError();
switch ( err )
{
case ERROR_FILE_NOT_FOUND :
return EFileError_NOT_EXISTS;
case ERROR_FILE_EXISTS :
return EFileError_EXISTS;
case ERROR_ALREADY_EXISTS :
return EFileError_EXISTS;
case ERROR_ACCESS_DENIED :
return EFileError_PERMISSION;
}
return EFileError_INVALID;
}
if ( mode & EFileMode_APPEND )
{
LARGE_INTEGER offset = { { 0 } };
if ( ! SetFilePointerEx( handle, offset, NULL, ESeekWhence_END ) )
{
CloseHandle( handle );
return EFileError_INVALID;
}
}
fd->p = handle;
*ops = default_file_operations;
return EFileError_NONE;
}
#else // POSIX
# include <fcntl.h>
internal
GEN_FILE_SEEK_PROC( _posix_file_seek )
{
# if defined( GEN_SYSTEM_OSX )
s64 res = lseek( fd.i, offset, whence );
# else // TODO(ZaKlaus): @fixme lseek64
s64 res = lseek( fd.i, offset, whence );
# endif
if ( res < 0 )
return false;
if ( new_offset )
*new_offset = res;
return true;
}
internal
GEN_FILE_READ_AT_PROC( _posix_file_read )
{
unused( stop_at_newline );
ssize res = pread( fd.i, buffer, size, offset );
if ( res < 0 )
return false;
if ( bytes_read )
*bytes_read = res;
return true;
}
internal
GEN_FILE_WRITE_AT_PROC( _posix_file_write )
{
ssize res;
s64 curr_offset = 0;
_posix_file_seek( fd, 0, ESeekWhence_CURRENT, &curr_offset );
if ( curr_offset == offset )
{
// NOTE: Writing to stdout et al. doesn't like pwrite for numerous reasons
res = write( scast( int, fd.i), buffer, size );
}
else
{
res = pwrite( scast( int, fd.i), buffer, size, offset );
}
if ( res < 0 )
return false;
if ( bytes_written )
*bytes_written = res;
return true;
}
internal
GEN_FILE_CLOSE_PROC( _posix_file_close )
{
close( fd.i );
}
FileOperations const default_file_operations = { _posix_file_read, _posix_file_write, _posix_file_seek, _posix_file_close };
neverinline
GEN_FILE_OPEN_PROC( _posix_file_open )
{
s32 os_mode;
switch ( mode & GEN_FILE_MODES )
{
case EFileMode_READ :
os_mode = O_RDONLY;
break;
case EFileMode_WRITE :
os_mode = O_WRONLY | O_CREAT | O_TRUNC;
break;
case EFileMode_APPEND :
os_mode = O_WRONLY | O_APPEND | O_CREAT;
break;
case EFileMode_READ | EFileMode_RW :
os_mode = O_RDWR;
break;
case EFileMode_WRITE | EFileMode_RW :
os_mode = O_RDWR | O_CREAT | O_TRUNC;
break;
case EFileMode_APPEND | EFileMode_RW :
os_mode = O_RDWR | O_APPEND | O_CREAT;
break;
default :
GEN_PANIC( "Invalid file mode" );
return EFileError_INVALID;
}
fd->i = open( filename, os_mode, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH );
if ( fd->i < 0 )
{
// TODO : More file errors
return EFileError_INVALID;
}
*ops = default_file_operations;
return EFileError_NONE;
}
// POSIX
#endif
internal void _dirinfo_free_entry( DirEntry* entry );
// TODO : Is this a bad idea?
global b32 _std_file_set = false;
global FileInfo _std_files[ EFileStandard_COUNT ] = {
{
{ nullptr, nullptr, nullptr, nullptr },
{ nullptr },
0,
nullptr,
0,
nullptr
} };
#if defined( GEN_SYSTEM_WINDOWS ) || defined( GEN_SYSTEM_CYGWIN )
FileInfo* file_get_standard( FileStandardType std )
{
if ( ! _std_file_set )
{
# define GEN__SET_STD_FILE( type, v ) \
_std_files[ type ].fd.p = v; \
_std_files[ type ].ops = default_file_operations
GEN__SET_STD_FILE( EFileStandard_INPUT, GetStdHandle( STD_INPUT_HANDLE ) );
GEN__SET_STD_FILE( EFileStandard_OUTPUT, GetStdHandle( STD_OUTPUT_HANDLE ) );
GEN__SET_STD_FILE( EFileStandard_ERROR, GetStdHandle( STD_ERROR_HANDLE ) );
# undef GEN__SET_STD_FILE
_std_file_set = true;
}
return &_std_files[ std ];
}
#else // POSIX
FileInfo* file_get_standard( FileStandardType std )
{
if ( ! _std_file_set )
{
# define GEN__SET_STD_FILE( type, v ) \
_std_files[ type ].fd.i = v; \
_std_files[ type ].ops = default_file_operations
GEN__SET_STD_FILE( EFileStandard_INPUT, 0 );
GEN__SET_STD_FILE( EFileStandard_OUTPUT, 1 );
GEN__SET_STD_FILE( EFileStandard_ERROR, 2 );
# undef GEN__SET_STD_FILE
_std_file_set = true;
}
return &_std_files[ std ];
}
#endif
FileError file_close( FileInfo* f )
{
if ( ! f )
return EFileError_INVALID;
if ( f->filename )
allocator_free( heap(), ccast( char*, f->filename ));
#if defined( GEN_SYSTEM_WINDOWS )
if ( f->fd.p == INVALID_HANDLE_VALUE )
return EFileError_INVALID;
#else
if ( f->fd.i < 0 )
return EFileError_INVALID;
#endif
if ( f->is_temp )
{
f->ops.close( f->fd );
return EFileError_NONE;
}
if ( ! f->ops.read_at )
f->ops = default_file_operations;
f->ops.close( f->fd );
#if 0
if ( f->Dir )
{
_dirinfo_free_entry( f->Dir );
mfree( f->Dir );
f->Dir = NULL;
}
#endif
return EFileError_NONE;
}
FileError file_new( FileInfo* f, FileDescriptor fd, FileOperations ops, char const* filename )
{
FileError err = EFileError_NONE;
ssize len = str_len( filename );
f->ops = ops;
f->fd = fd;
f->dir = nullptr;
f->last_write_time = 0;
f->filename = alloc_array( heap(), char, len + 1 );
mem_copy( ccast( char*, f->filename), ccast( char*, filename), len + 1 );
return err;
}
FileError file_open( FileInfo* f, char const* filename )
{
return file_open_mode( f, EFileMode_READ, filename );
}
FileError file_open_mode( FileInfo* f, FileMode mode, char const* filename )
{
FileInfo file_ =
{
{ nullptr, nullptr, nullptr, nullptr },
{ nullptr },
0,
nullptr,
0,
nullptr
};
*f = file_;
FileError err;
#if defined( GEN_SYSTEM_WINDOWS ) || defined( GEN_SYSTEM_CYGWIN )
err = _win32_file_open( &f->fd, &f->ops, mode, filename );
#else
err = _posix_file_open( &f->fd, &f->ops, mode, filename );
#endif
if ( err == EFileError_NONE )
return file_new( f, f->fd, f->ops, filename );
return err;
}
s64 file_size( FileInfo* f )
{
s64 size = 0;
s64 prev_offset = file_tell( f );
file_seek_to_end( f );
size = file_tell( f );
file_seek( f, prev_offset );
return size;
}
FileContents file_read_contents( AllocatorInfo a, b32 zero_terminate, char const* filepath )
{
FileContents result;
FileInfo file ;
result.allocator = a;
if ( file_open( &file, filepath ) == EFileError_NONE )
{
ssize fsize = scast( ssize , file_size( &file ));
if ( fsize > 0 )
{
result.data = alloc( a, zero_terminate ? fsize + 1 : fsize );
result.size = fsize;
file_read_at( &file, result.data, result.size, 0 );
if ( zero_terminate )
{
u8* str = rcast( u8*, result.data);
str[ fsize ] = '\0';
}
}
file_close( &file );
}
return result;
}
typedef struct _memory_fd _memory_fd;
struct _memory_fd
{
u8 magic;
u8* buf; //< zpl_array OR plain buffer if we can't write
ssize cursor;
AllocatorInfo allocator;
FileStreamFlags flags;
ssize cap;
};
#define GEN__FILE_STREAM_FD_MAGIC 37
FileDescriptor _file_stream_fd_make( _memory_fd* d );
_memory_fd* _file_stream_from_fd( FileDescriptor fd );
inline
FileDescriptor _file_stream_fd_make( _memory_fd* d )
{
FileDescriptor fd = { 0 };
fd.p = ( void* )d;
return fd;
}
inline
_memory_fd* _file_stream_from_fd( FileDescriptor fd )
{
_memory_fd* d = ( _memory_fd* )fd.p;
GEN_ASSERT( d->magic == GEN__FILE_STREAM_FD_MAGIC );
return d;
}
b8 file_stream_new( FileInfo* file, AllocatorInfo allocator )
{
GEN_ASSERT_NOT_NULL( file );
_memory_fd* d = ( _memory_fd* )alloc( allocator, size_of( _memory_fd ) );
if ( ! d )
return false;
zero_item( file );
d->magic = GEN__FILE_STREAM_FD_MAGIC;
d->allocator = allocator;
d->flags = EFileStream_CLONE_WRITABLE;
d->cap = 0;
d->buf = array_init( u8, allocator );
if ( ! d->buf )
return false;
file->ops = memory_file_operations;
file->fd = _file_stream_fd_make( d );
file->dir = NULL;
file->last_write_time = 0;
file->filename = NULL;
file->is_temp = true;
return true;
}
b8 file_stream_open( FileInfo* file, AllocatorInfo allocator, u8* buffer, ssize size, FileStreamFlags flags )
{
GEN_ASSERT_NOT_NULL( file );
_memory_fd* d = ( _memory_fd* )alloc( allocator, size_of( _memory_fd ) );
if ( ! d )
return false;
zero_item( file );
d->magic = GEN__FILE_STREAM_FD_MAGIC;
d->allocator = allocator;
d->flags = flags;
if ( d->flags & EFileStream_CLONE_WRITABLE )
{
Array(u8) arr = array_init_reserve(u8, allocator, size );
d->buf = arr;
if ( ! d->buf )
return false;
mem_copy( d->buf, buffer, size );
d->cap = size;
array_get_header(arr)->Num = size;
}
else
{
d->buf = buffer;
d->cap = size;
}
file->ops = memory_file_operations;
file->fd = _file_stream_fd_make( d );
file->dir = NULL;
file->last_write_time = 0;
file->filename = NULL;
file->is_temp = true;
return true;
}
u8* file_stream_buf( FileInfo* file, ssize* size )
{
GEN_ASSERT_NOT_NULL( file );
_memory_fd* d = _file_stream_from_fd( file->fd );
if ( size )
*size = d->cap;
return d->buf;
}
internal
GEN_FILE_SEEK_PROC( _memory_file_seek )
{
_memory_fd* d = _file_stream_from_fd( fd );
ssize buflen = d->cap;
if ( whence == ESeekWhence_BEGIN )
d->cursor = 0;
else if ( whence == ESeekWhence_END )
d->cursor = buflen;
d->cursor = max( 0, clamp( d->cursor + offset, 0, buflen ) );
if ( new_offset )
*new_offset = d->cursor;
return true;
}
internal
GEN_FILE_READ_AT_PROC( _memory_file_read )
{
// unused( stop_at_newline );
_memory_fd* d = _file_stream_from_fd( fd );
mem_copy( buffer, d->buf + offset, size );
if ( bytes_read )
*bytes_read = size;
return true;
}
internal
GEN_FILE_WRITE_AT_PROC( _memory_file_write )
{
_memory_fd* d = _file_stream_from_fd( fd );
if ( ! ( d->flags & ( EFileStream_CLONE_WRITABLE | EFileStream_WRITABLE ) ) )
return false;
ssize buflen = d->cap;
ssize extralen = max( 0, size - ( buflen - offset ) );
ssize rwlen = size - extralen;
ssize new_cap = buflen + extralen;
if ( d->flags & EFileStream_CLONE_WRITABLE )
{
Array(u8) arr = { d->buf };
if ( array_get_header(arr)->Capacity < scast(usize, new_cap) )
{
if ( ! array_grow( & arr, ( s64 )( new_cap ) ) )
return false;
d->buf = arr;
}
}
mem_copy( d->buf + offset, buffer, rwlen );
if ( ( d->flags & EFileStream_CLONE_WRITABLE ) && extralen > 0 )
{
Array(u8) arr = { d->buf };
mem_copy( d->buf + offset + rwlen, pointer_add_const( buffer, rwlen ), extralen );
d->cap = new_cap;
array_get_header(arr)->Capacity = new_cap;
}
else
{
extralen = 0;
}
if ( bytes_written )
*bytes_written = ( rwlen + extralen );
return true;
}
internal
GEN_FILE_CLOSE_PROC( _memory_file_close )
{
_memory_fd* d = _file_stream_from_fd( fd );
AllocatorInfo allocator = d->allocator;
if ( d->flags & EFileStream_CLONE_WRITABLE )
{
Array(u8) arr = { d->buf };
array_free(arr);
}
allocator_free( allocator, d );
}
FileOperations const memory_file_operations = { _memory_file_read, _memory_file_write, _memory_file_seek, _memory_file_close };
#pragma endregion File Handling

View File

@@ -0,0 +1,386 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "strings.hpp"
#endif
#pragma region File Handling
enum FileModeFlag
{
EFileMode_READ = bit( 0 ),
EFileMode_WRITE = bit( 1 ),
EFileMode_APPEND = bit( 2 ),
EFileMode_RW = bit( 3 ),
GEN_FILE_MODES = EFileMode_READ | EFileMode_WRITE | EFileMode_APPEND | EFileMode_RW,
};
// NOTE: Only used internally and for the file operations
enum SeekWhenceType
{
ESeekWhence_BEGIN = 0,
ESeekWhence_CURRENT = 1,
ESeekWhence_END = 2,
};
enum FileError
{
EFileError_NONE,
EFileError_INVALID,
EFileError_INVALID_FILENAME,
EFileError_EXISTS,
EFileError_NOT_EXISTS,
EFileError_PERMISSION,
EFileError_TRUNCATION_FAILURE,
EFileError_NOT_EMPTY,
EFileError_NAME_TOO_LONG,
EFileError_UNKNOWN,
};
union FileDescriptor
{
void* p;
sptr i;
uptr u;
};
typedef u32 FileMode;
typedef struct FileOperations FileOperations;
#define GEN_FILE_OPEN_PROC( name ) FileError name( FileDescriptor* fd, FileOperations* ops, FileMode mode, char const* filename )
#define GEN_FILE_READ_AT_PROC( name ) b32 name( FileDescriptor fd, void* buffer, ssize size, s64 offset, ssize* bytes_read, b32 stop_at_newline )
#define GEN_FILE_WRITE_AT_PROC( name ) b32 name( FileDescriptor fd, mem_ptr_const buffer, ssize size, s64 offset, ssize* bytes_written )
#define GEN_FILE_SEEK_PROC( name ) b32 name( FileDescriptor fd, s64 offset, SeekWhenceType whence, s64* new_offset )
#define GEN_FILE_CLOSE_PROC( name ) void name( FileDescriptor fd )
typedef GEN_FILE_OPEN_PROC( file_open_proc );
typedef GEN_FILE_READ_AT_PROC( FileReadProc );
typedef GEN_FILE_WRITE_AT_PROC( FileWriteProc );
typedef GEN_FILE_SEEK_PROC( FileSeekProc );
typedef GEN_FILE_CLOSE_PROC( FileCloseProc );
struct FileOperations
{
FileReadProc* read_at;
FileWriteProc* write_at;
FileSeekProc* seek;
FileCloseProc* close;
};
extern FileOperations const default_file_operations;
typedef u64 FileTime;
enum DirType
{
GEN_DIR_TYPE_FILE,
GEN_DIR_TYPE_FOLDER,
GEN_DIR_TYPE_UNKNOWN,
};
struct DirInfo;
struct DirEntry
{
char const* filename;
DirInfo* dir_info;
u8 type;
};
struct DirInfo
{
char const* fullpath;
DirEntry* entries; // zpl_array
// Internals
char** filenames; // zpl_array
String buf;
};
struct FileInfo
{
FileOperations ops;
FileDescriptor fd;
b32 is_temp;
char const* filename;
FileTime last_write_time;
DirEntry* dir;
};
enum FileStandardType
{
EFileStandard_INPUT,
EFileStandard_OUTPUT,
EFileStandard_ERROR,
EFileStandard_COUNT,
};
/**
* Get standard file I/O.
* @param std Check zpl_file_standard_type
* @return File handle to standard I/O
*/
FileInfo* file_get_standard( FileStandardType std );
/**
* Closes the file
* @param file
*/
FileError file_close( FileInfo* file );
/**
* Returns the currently opened file's name
* @param file
*/
inline
char const* file_name( FileInfo* file )
{
return file->filename ? file->filename : "";
}
/**
* Opens a file
* @param file
* @param filename
*/
FileError file_open( FileInfo* file, char const* filename );
/**
* Opens a file using a specified mode
* @param file
* @param mode Access mode to use
* @param filename
*/
FileError file_open_mode( FileInfo* file, FileMode mode, char const* filename );
/**
* Reads from a file
* @param file
* @param buffer Buffer to read to
* @param size Size to read
*/
b32 file_read( FileInfo* file, void* buffer, ssize size );
/**
* Reads file at a specific offset
* @param file
* @param buffer Buffer to read to
* @param size Size to read
* @param offset Offset to read from
* @param bytes_read How much data we've actually read
*/
b32 file_read_at( FileInfo* file, void* buffer, ssize size, s64 offset );
/**
* Reads file safely
* @param file
* @param buffer Buffer to read to
* @param size Size to read
* @param offset Offset to read from
* @param bytes_read How much data we've actually read
*/
b32 file_read_at_check( FileInfo* file, void* buffer, ssize size, s64 offset, ssize* bytes_read );
typedef struct FileContents FileContents;
struct FileContents
{
AllocatorInfo allocator;
void* data;
ssize size;
};
constexpr b32 file_zero_terminate = true;
constexpr b32 file_no_zero_terminate = false;
/**
* Reads the whole file contents
* @param a Allocator to use
* @param zero_terminate End the read data with null terminator
* @param filepath Path to the file
* @return File contents data
*/
FileContents file_read_contents( AllocatorInfo a, b32 zero_terminate, char const* filepath );
/**
* Returns a size of the file
* @param file
* @return File size
*/
s64 file_size( FileInfo* file );
/**
* Seeks the file cursor from the beginning of file to a specific position
* @param file
* @param offset Offset to seek to
*/
s64 file_seek( FileInfo* file, s64 offset );
/**
* Seeks the file cursor to the end of the file
* @param file
*/
s64 file_seek_to_end( FileInfo* file );
/**
* Returns the length from the beginning of the file we've read so far
* @param file
* @return Our current position in file
*/
s64 file_tell( FileInfo* file );
/**
* Writes to a file
* @param file
* @param buffer Buffer to read from
* @param size Size to read
*/
b32 file_write( FileInfo* file, void const* buffer, ssize size );
/**
* Writes to file at a specific offset
* @param file
* @param buffer Buffer to read from
* @param size Size to write
* @param offset Offset to write to
* @param bytes_written How much data we've actually written
*/
b32 file_write_at( FileInfo* file, void const* buffer, ssize size, s64 offset );
/**
* Writes to file safely
* @param file
* @param buffer Buffer to read from
* @param size Size to write
* @param offset Offset to write to
* @param bytes_written How much data we've actually written
*/
b32 file_write_at_check( FileInfo* file, void const* buffer, ssize size, s64 offset, ssize* bytes_written );
enum FileStreamFlags : u32
{
/* Allows us to write to the buffer directly. Beware: you can not append a new data! */
EFileStream_WRITABLE = bit( 0 ),
/* Clones the input buffer so you can write (zpl_file_write*) data into it. */
/* Since we work with a clone, the buffer size can dynamically grow as well. */
EFileStream_CLONE_WRITABLE = bit( 1 ),
EFileStream_UNDERLYING = GEN_U32_MAX,
};
/**
* Opens a new memory stream
* @param file
* @param allocator
*/
b8 file_stream_new( FileInfo* file, AllocatorInfo allocator );
/**
* Opens a memory stream over an existing buffer
* @param file
* @param allocator
* @param buffer Memory to create stream from
* @param size Buffer's size
* @param flags
*/
b8 file_stream_open( FileInfo* file, AllocatorInfo allocator, u8* buffer, ssize size, FileStreamFlags flags );
/**
* Retrieves the stream's underlying buffer and buffer size.
* @param file memory stream
* @param size (Optional) buffer size
*/
u8* file_stream_buf( FileInfo* file, ssize* size );
extern FileOperations const memory_file_operations;
inline
s64 file_seek( FileInfo* f, s64 offset )
{
s64 new_offset = 0;
if ( ! f->ops.read_at )
f->ops = default_file_operations;
f->ops.seek( f->fd, offset, ESeekWhence_BEGIN, &new_offset );
return new_offset;
}
inline
s64 file_seek_to_end( FileInfo* f )
{
s64 new_offset = 0;
if ( ! f->ops.read_at )
f->ops = default_file_operations;
f->ops.seek( f->fd, 0, ESeekWhence_END, &new_offset );
return new_offset;
}
inline
s64 file_tell( FileInfo* f )
{
s64 new_offset = 0;
if ( ! f->ops.read_at )
f->ops = default_file_operations;
f->ops.seek( f->fd, 0, ESeekWhence_CURRENT, &new_offset );
return new_offset;
}
inline
b32 file_read( FileInfo* f, void* buffer, ssize size )
{
s64 cur_offset = file_tell( f );
b32 result = file_read_at( f, buffer, size, file_tell( f ) );
file_seek( f, cur_offset + size );
return result;
}
inline
b32 file_read_at( FileInfo* f, void* buffer, ssize size, s64 offset )
{
return file_read_at_check( f, buffer, size, offset, NULL );
}
inline
b32 file_read_at_check( FileInfo* f, void* buffer, ssize size, s64 offset, ssize* bytes_read )
{
if ( ! f->ops.read_at )
f->ops = default_file_operations;
return f->ops.read_at( f->fd, buffer, size, offset, bytes_read, false );
}
inline
b32 file_write( FileInfo* f, void const* buffer, ssize size )
{
s64 cur_offset = file_tell( f );
b32 result = file_write_at( f, buffer, size, file_tell( f ) );
file_seek( f, cur_offset + size );
return result;
}
inline
b32 file_write_at( FileInfo* f, void const* buffer, ssize size, s64 offset )
{
return file_write_at_check( f, buffer, size, offset, NULL );
}
inline
b32 file_write_at_check( FileInfo* f, void const* buffer, ssize size, s64 offset, ssize* bytes_written )
{
if ( ! f->ops.read_at )
f->ops = default_file_operations;
return f->ops.write_at( f->fd, buffer, size, offset, bytes_written );
}
#pragma endregion File Handling

View File

@@ -0,0 +1,90 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "memory.cpp"
#endif
#pragma region Hashing
global u32 const _crc32_table[ 256 ] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd,
0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce,
0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0,
0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703,
0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5,
0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d,
};
u32 crc32( void const* data, ssize len )
{
ssize remaining;
u32 result = ~( scast( u32, 0) );
u8 const* c = rcast( u8 const*, data);
for ( remaining = len; remaining--; c++ )
result = ( result >> 8 ) ^ ( _crc32_table[ ( result ^ *c ) & 0xff ] );
return ~result;
}
global u64 const _crc64_table[ 256 ] = {
0x0000000000000000ull, 0x7ad870c830358979ull, 0xf5b0e190606b12f2ull, 0x8f689158505e9b8bull, 0xc038e5739841b68full, 0xbae095bba8743ff6ull, 0x358804e3f82aa47dull,
0x4f50742bc81f2d04ull, 0xab28ecb46814fe75ull, 0xd1f09c7c5821770cull, 0x5e980d24087fec87ull, 0x24407dec384a65feull, 0x6b1009c7f05548faull, 0x11c8790fc060c183ull,
0x9ea0e857903e5a08ull, 0xe478989fa00bd371ull, 0x7d08ff3b88be6f81ull, 0x07d08ff3b88be6f8ull, 0x88b81eabe8d57d73ull, 0xf2606e63d8e0f40aull, 0xbd301a4810ffd90eull,
0xc7e86a8020ca5077ull, 0x4880fbd87094cbfcull, 0x32588b1040a14285ull, 0xd620138fe0aa91f4ull, 0xacf86347d09f188dull, 0x2390f21f80c18306ull, 0x594882d7b0f40a7full,
0x1618f6fc78eb277bull, 0x6cc0863448deae02ull, 0xe3a8176c18803589ull, 0x997067a428b5bcf0ull, 0xfa11fe77117cdf02ull, 0x80c98ebf2149567bull, 0x0fa11fe77117cdf0ull,
0x75796f2f41224489ull, 0x3a291b04893d698dull, 0x40f16bccb908e0f4ull, 0xcf99fa94e9567b7full, 0xb5418a5cd963f206ull, 0x513912c379682177ull, 0x2be1620b495da80eull,
0xa489f35319033385ull, 0xde51839b2936bafcull, 0x9101f7b0e12997f8ull, 0xebd98778d11c1e81ull, 0x64b116208142850aull, 0x1e6966e8b1770c73ull, 0x8719014c99c2b083ull,
0xfdc17184a9f739faull, 0x72a9e0dcf9a9a271ull, 0x08719014c99c2b08ull, 0x4721e43f0183060cull, 0x3df994f731b68f75ull, 0xb29105af61e814feull, 0xc849756751dd9d87ull,
0x2c31edf8f1d64ef6ull, 0x56e99d30c1e3c78full, 0xd9810c6891bd5c04ull, 0xa3597ca0a188d57dull, 0xec09088b6997f879ull, 0x96d1784359a27100ull, 0x19b9e91b09fcea8bull,
0x636199d339c963f2ull, 0xdf7adabd7a6e2d6full, 0xa5a2aa754a5ba416ull, 0x2aca3b2d1a053f9dull, 0x50124be52a30b6e4ull, 0x1f423fcee22f9be0ull, 0x659a4f06d21a1299ull,
0xeaf2de5e82448912ull, 0x902aae96b271006bull, 0x74523609127ad31aull, 0x0e8a46c1224f5a63ull, 0x81e2d7997211c1e8ull, 0xfb3aa75142244891ull, 0xb46ad37a8a3b6595ull,
0xceb2a3b2ba0eececull, 0x41da32eaea507767ull, 0x3b024222da65fe1eull, 0xa2722586f2d042eeull, 0xd8aa554ec2e5cb97ull, 0x57c2c41692bb501cull, 0x2d1ab4dea28ed965ull,
0x624ac0f56a91f461ull, 0x1892b03d5aa47d18ull, 0x97fa21650afae693ull, 0xed2251ad3acf6feaull, 0x095ac9329ac4bc9bull, 0x7382b9faaaf135e2ull, 0xfcea28a2faafae69ull,
0x8632586aca9a2710ull, 0xc9622c4102850a14ull, 0xb3ba5c8932b0836dull, 0x3cd2cdd162ee18e6ull, 0x460abd1952db919full, 0x256b24ca6b12f26dull, 0x5fb354025b277b14ull,
0xd0dbc55a0b79e09full, 0xaa03b5923b4c69e6ull, 0xe553c1b9f35344e2ull, 0x9f8bb171c366cd9bull, 0x10e3202993385610ull, 0x6a3b50e1a30ddf69ull, 0x8e43c87e03060c18ull,
0xf49bb8b633338561ull, 0x7bf329ee636d1eeaull, 0x012b592653589793ull, 0x4e7b2d0d9b47ba97ull, 0x34a35dc5ab7233eeull, 0xbbcbcc9dfb2ca865ull, 0xc113bc55cb19211cull,
0x5863dbf1e3ac9decull, 0x22bbab39d3991495ull, 0xadd33a6183c78f1eull, 0xd70b4aa9b3f20667ull, 0x985b3e827bed2b63ull, 0xe2834e4a4bd8a21aull, 0x6debdf121b863991ull,
0x1733afda2bb3b0e8ull, 0xf34b37458bb86399ull, 0x8993478dbb8deae0ull, 0x06fbd6d5ebd3716bull, 0x7c23a61ddbe6f812ull, 0x3373d23613f9d516ull, 0x49aba2fe23cc5c6full,
0xc6c333a67392c7e4ull, 0xbc1b436e43a74e9dull, 0x95ac9329ac4bc9b5ull, 0xef74e3e19c7e40ccull, 0x601c72b9cc20db47ull, 0x1ac40271fc15523eull, 0x5594765a340a7f3aull,
0x2f4c0692043ff643ull, 0xa02497ca54616dc8ull, 0xdafce7026454e4b1ull, 0x3e847f9dc45f37c0ull, 0x445c0f55f46abeb9ull, 0xcb349e0da4342532ull, 0xb1eceec59401ac4bull,
0xfebc9aee5c1e814full, 0x8464ea266c2b0836ull, 0x0b0c7b7e3c7593bdull, 0x71d40bb60c401ac4ull, 0xe8a46c1224f5a634ull, 0x927c1cda14c02f4dull, 0x1d148d82449eb4c6ull,
0x67ccfd4a74ab3dbfull, 0x289c8961bcb410bbull, 0x5244f9a98c8199c2ull, 0xdd2c68f1dcdf0249ull, 0xa7f41839ecea8b30ull, 0x438c80a64ce15841ull, 0x3954f06e7cd4d138ull,
0xb63c61362c8a4ab3ull, 0xcce411fe1cbfc3caull, 0x83b465d5d4a0eeceull, 0xf96c151de49567b7ull, 0x76048445b4cbfc3cull, 0x0cdcf48d84fe7545ull, 0x6fbd6d5ebd3716b7ull,
0x15651d968d029fceull, 0x9a0d8ccedd5c0445ull, 0xe0d5fc06ed698d3cull, 0xaf85882d2576a038ull, 0xd55df8e515432941ull, 0x5a3569bd451db2caull, 0x20ed197575283bb3ull,
0xc49581ead523e8c2ull, 0xbe4df122e51661bbull, 0x3125607ab548fa30ull, 0x4bfd10b2857d7349ull, 0x04ad64994d625e4dull, 0x7e7514517d57d734ull, 0xf11d85092d094cbfull,
0x8bc5f5c11d3cc5c6ull, 0x12b5926535897936ull, 0x686de2ad05bcf04full, 0xe70573f555e26bc4ull, 0x9ddd033d65d7e2bdull, 0xd28d7716adc8cfb9ull, 0xa85507de9dfd46c0ull,
0x273d9686cda3dd4bull, 0x5de5e64efd965432ull, 0xb99d7ed15d9d8743ull, 0xc3450e196da80e3aull, 0x4c2d9f413df695b1ull, 0x36f5ef890dc31cc8ull, 0x79a59ba2c5dc31ccull,
0x037deb6af5e9b8b5ull, 0x8c157a32a5b7233eull, 0xf6cd0afa9582aa47ull, 0x4ad64994d625e4daull, 0x300e395ce6106da3ull, 0xbf66a804b64ef628ull, 0xc5bed8cc867b7f51ull,
0x8aeeace74e645255ull, 0xf036dc2f7e51db2cull, 0x7f5e4d772e0f40a7ull, 0x05863dbf1e3ac9deull, 0xe1fea520be311aafull, 0x9b26d5e88e0493d6ull, 0x144e44b0de5a085dull,
0x6e963478ee6f8124ull, 0x21c640532670ac20ull, 0x5b1e309b16452559ull, 0xd476a1c3461bbed2ull, 0xaeaed10b762e37abull, 0x37deb6af5e9b8b5bull, 0x4d06c6676eae0222ull,
0xc26e573f3ef099a9ull, 0xb8b627f70ec510d0ull, 0xf7e653dcc6da3dd4ull, 0x8d3e2314f6efb4adull, 0x0256b24ca6b12f26ull, 0x788ec2849684a65full, 0x9cf65a1b368f752eull,
0xe62e2ad306bafc57ull, 0x6946bb8b56e467dcull, 0x139ecb4366d1eea5ull, 0x5ccebf68aecec3a1ull, 0x2616cfa09efb4ad8ull, 0xa97e5ef8cea5d153ull, 0xd3a62e30fe90582aull,
0xb0c7b7e3c7593bd8ull, 0xca1fc72bf76cb2a1ull, 0x45775673a732292aull, 0x3faf26bb9707a053ull, 0x70ff52905f188d57ull, 0x0a2722586f2d042eull, 0x854fb3003f739fa5ull,
0xff97c3c80f4616dcull, 0x1bef5b57af4dc5adull, 0x61372b9f9f784cd4ull, 0xee5fbac7cf26d75full, 0x9487ca0fff135e26ull, 0xdbd7be24370c7322ull, 0xa10fceec0739fa5bull,
0x2e675fb4576761d0ull, 0x54bf2f7c6752e8a9ull, 0xcdcf48d84fe75459ull, 0xb71738107fd2dd20ull, 0x387fa9482f8c46abull, 0x42a7d9801fb9cfd2ull, 0x0df7adabd7a6e2d6ull,
0x772fdd63e7936bafull, 0xf8474c3bb7cdf024ull, 0x829f3cf387f8795dull, 0x66e7a46c27f3aa2cull, 0x1c3fd4a417c62355ull, 0x935745fc4798b8deull, 0xe98f353477ad31a7ull,
0xa6df411fbfb21ca3ull, 0xdc0731d78f8795daull, 0x536fa08fdfd90e51ull, 0x29b7d047efec8728ull,
};
u64 crc64( void const* data, ssize len )
{
ssize remaining;
u64 result = ( scast( u64, 0) );
u8 const* c = rcast( u8 const*, data);
for ( remaining = len; remaining--; c++ )
result = ( result >> 8 ) ^ ( _crc64_table[ ( result ^ *c ) & 0xff ] );
return result;
}
#pragma endregion Hashing

View File

@@ -0,0 +1,11 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
#pragma once
#include "containers.hpp"
#endif
#pragma region Hashing
u32 crc32( void const* data, ssize len );
u64 crc64( void const* data, ssize len );
#pragma endregion Hashing

View File

@@ -0,0 +1,403 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
#endif
#pragma region Macros
#ifndef global
#define global static // Global variables
#endif
#ifndef internal
#define internal static // Internal linkage
#endif
#ifndef local_persist
#define local_persist static // Local Persisting variables
#endif
#ifndef bit
#define bit( Value ) ( 1 << Value )
#define bitfield_is_equal( Type, Field, Mask ) ( (scast(Type, Mask) & scast(Type, Field)) == scast(Type, Mask) )
#endif
// Mainly intended for forcing the base library to utilize only C-valid constructs or type coercion
#ifndef GEN_C_LIKE_CPP
#define GEN_C_LIKE_CPP 0
#endif
#if GEN_COMPILER_CPP
# ifndef cast
# define cast( type, value ) (tmpl_cast<type>( value ))
# endif
#else
# ifndef cast
# define cast( type, value ) ( (type)(value) )
# endif
#endif
#if GEN_COMPILER_CPP
# ifndef ccast
# define ccast( type, value ) ( const_cast< type >( (value) ) )
# endif
# ifndef pcast
# define pcast( type, value ) ( * reinterpret_cast< type* >( & ( value ) ) )
# endif
# ifndef rcast
# define rcast( type, value ) reinterpret_cast< type >( value )
# endif
# ifndef scast
# define scast( type, value ) static_cast< type >( value )
# endif
#else
# ifndef ccast
# define ccast( type, value ) ( (type)(value) )
# endif
# ifndef pcast
# define pcast( type, value ) ( * (type*)(& value) )
# endif
# ifndef rcast
# define rcast( type, value ) ( (type)(value) )
# endif
# ifndef scast
# define scast( type, value ) ( (type)(value) )
# endif
#endif
#ifndef stringize
#define stringize_va( ... ) #__VA_ARGS__
#define stringize( ... ) stringize_va( __VA_ARGS__ )
#endif
#ifndef do_once
#define do_once( statement ) for ( local_persist b32 once = true; once; once = false, (statement) )
#define do_once_start \
do \
{ \
local_persist \
bool done = false; \
if ( done ) \
break; \
done = true;
#define do_once_end \
} \
while(0);
#endif
#ifndef labeled_scope_start
#define labeled_scope_start if ( false ) {
#define labeled_scope_end }
#endif
#ifndef compiler_decorated_func_name
# ifdef COMPILER_CLANG
# define compiler_decorated_func_name __PRETTY_NAME__
# elif defined(COMPILER_MSVC)
# define compiler_decorated_func_name __FUNCDNAME__
# endif
#endif
#ifndef num_args_impl
// This is essentially an arg couneter version of GEN_SELECT_ARG macros
// See section : _Generic function overloading for that usage (explains this heavier case)
#define num_args_impl( _0, \
_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \
_11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \
_21, _22, _23, _24, _25, _26, _27, _28, _29, _30, \
_31, _32, _33, _34, _35, _36, _37, _38, _39, _40, \
_41, _42, _43, _44, _45, _46, _47, _48, _49, _50, \
_51, _52, _53, _54, _55, _56, _57, _58, _59, _60, \
_61, _62, _63, _64, _65, _66, _67, _68, _69, _70, \
_71, _72, _73, _74, _75, _76, _77, _78, _79, _80, \
_81, _82, _83, _84, _85, _86, _87, _88, _89, _90, \
_91, _92, _93, _94, _95, _96, _97, _98, _99, _100, \
N, ... \
) N
// ## deletes preceding comma if _VA_ARGS__ is empty (GCC, Clang)
#define num_args(...) \
num_args_impl(_, ## __VA_ARGS__, \
100, 99, 98, 97, 96, 95, 94, 93, 92, 91, \
90, 89, 88, 87, 86, 85, 84, 83, 82, 81, \
80, 79, 78, 77, 76, 75, 74, 73, 72, 71, \
70, 69, 68, 67, 66, 65, 64, 63, 62, 61, \
60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \
40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \
30, 29, 28, 27, 26, 25, 24, 23, 22, 21, \
20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, \
0 \
)
#endif
#ifndef clamp
#define clamp( x, lower, upper ) min( max( ( x ), ( lower ) ), ( upper ) )
#endif
#ifndef count_of
#define count_of( x ) ( ( size_of( x ) / size_of( 0 [ x ] ) ) / ( ( ssize )( ! ( size_of( x ) % size_of( 0 [ x ] ) ) ) ) )
#endif
#ifndef is_between
#define is_between( x, lower, upper ) ( ( ( lower ) <= ( x ) ) && ( ( x ) <= ( upper ) ) )
#endif
#ifndef size_of
#define size_of( x ) ( ssize )( sizeof( x ) )
#endif
#ifndef max
#define max( a, b ) ( (a > b) ? (a) : (b) )
#endif
#ifndef min
#define min( a, b ) ( (a < b) ? (a) : (b) )
#endif
#if GEN_COMPILER_MSVC || GEN_COMPILER_TINYC
# define offset_of( Type, element ) ( ( GEN_NS( ssize ) ) & ( ( ( Type* )0 )->element ) )
#else
# define offset_of( Type, element ) __builtin_offsetof( Type, element )
#endif
#ifndef forceinline
# if GEN_COMPILER_MSVC
# define forceinline __forceinline
# define neverinline __declspec( noinline )
# elif GEN_COMPILER_GCC
# define forceinline inline __attribute__((__always_inline__))
# define neverinline __attribute__( ( __noinline__ ) )
# elif GEN_COMPILER_CLANG
# if __has_attribute(__always_inline__)
# define forceinline inline __attribute__((__always_inline__))
# define neverinline __attribute__( ( __noinline__ ) )
# else
# define forceinline
# define neverinline
# endif
# else
# define forceinline
# define neverinline
# endif
#endif
#ifndef neverinline
# if GEN_COMPILER_MSVC
# define neverinline __declspec( noinline )
# elif GEN_COMPILER_GCC
# define neverinline __attribute__( ( __noinline__ ) )
# elif GEN_COMPILER_CLANG
# if __has_attribute(__always_inline__)
# define neverinline __attribute__( ( __noinline__ ) )
# else
# define neverinline
# endif
# else
# define neverinline
# endif
#endif
#if GEN_COMPILER_C
#ifndef static_assert
#undef static_assert
#if GEN_COMPILER_C && __STDC_VERSION__ >= 201112L
#define static_assert(condition, message) _Static_assert(condition, message)
#else
#define static_assert(condition, message) typedef char static_assertion_##__LINE__[(condition)?1:-1]
#endif
#endif
#endif
#if GEN_COMPILER_CPP
// Already Defined
#elif GEN_COMPILER_C && __STDC_VERSION__ >= 201112L
# define thread_local _Thread_local
#elif GEN_COMPILER_MSVC
# define thread_local __declspec(thread)
#elif GEN_COMPILER_CLANG
# define thread_local __thread
#else
# error "No thread local support"
#endif
#if ! defined(typeof) && (!GEN_COMPILER_C || __STDC_VERSION__ < 202311L)
# if ! GEN_COMPILER_C
# define typeof decltype
# elif defined(_MSC_VER)
# define typeof(x) __typeof__(x)
# elif defined(__GNUC__) || defined(__clang__)
# define typeof(x) __typeof__(x)
# else
# error "Compiler not supported"
# endif
#endif
#ifndef GEN_API_C_BEGIN
# if GEN_COMPILER_C
# define GEN_API_C_BEGIN
# define GEN_API_C_END
# else
# define GEN_API_C_BEGIN extern "C" {
# define GEN_API_C_END }
# endif
#endif
#if GEN_COMPILER_C
# if __STDC_VERSION__ >= 202311L
# define enum_underlying(type) : type
# else
# define enum_underlying(type)
# endif
#else
# define enum_underlying(type) : type
#endif
#if GEN_COMPILER_C
# ifndef nullptr
# define nullptr NULL
# endif
# ifndef GEN_REMOVE_PTR
# define GEN_REMOVE_PTR(type) typeof(* ( (type) NULL) )
# endif
#endif
#if ! defined(GEN_PARAM_DEFAULT) && GEN_COMPILER_CPP
# define GEN_PARAM_DEFAULT = {}
#else
# define GEN_PARAM_DEFAULT
#endif
#if GEN_COMPILER_CPP
#define struct_init(type, value) {value}
#else
#define struct_init(type, value) {value}
#endif
#if 0
#ifndef GEN_OPTIMIZE_MAPPINGS_BEGIN
# define GEN_OPTIMIZE_MAPPINGS_BEGIN _pragma(optimize("gt", on))
# define GEN_OPITMIZE_MAPPINGS_END _pragma(optimize("", on))
#endif
#else
# define GEN_OPTIMIZE_MAPPINGS_BEGIN
# define GEN_OPITMIZE_MAPPINGS_END
#endif
#if GEN_COMPILER_C
// ____ _ ______ _ _ ____ _ __ _
// / ___} (_) | ____} | | (_) / __ \ | | | |(_)
// | | ___ ___ _ __ ___ _ __ _ ___ | |__ _ _ _ __ ___| |_ _ ___ _ __ | | | |_ _____ _ __ | | ___ __ _ __| | _ _ __ __ _
// | |{__ |/ _ \ '_ \ / _ \ '__} |/ __| | __} | | | '_ \ / __} __} |/ _ \| '_ \ | | | \ \ / / _ \ '_ \| |/ _ \ / _` |/ _` || | '_ \ / _` |
// | |__j | __/ | | | __/ | | | (__ | | | |_| | | | | (__| l_| | (_) | | | | | l__| |\ V / __/ | | | | (_) | (_| | (_| || | | | | (_| |
// \____/ \___}_l l_l\___}_l l_l\___| l_l \__,_l_l l_l\___}\__}_l\___/l_l l_l \____/ \_/ \___}_l l_l_l\___/ \__,_l\__,_l|_|_| |_|\__, |
// This implemnents macros for utilizing "The Naive Extendible _Generic Macro" explained in: __| |
// https://github.com/JacksonAllan/CC/blob/main/articles/Better_C_Generics_Part_1_The_Extendible_Generic.md {___/
// Since gencpp is used to generate the c-library, it was choosen over the more novel implementations to keep the macros as easy to understand and unobfuscated as possible.
#define GEN_COMMA_OPERATOR , // The comma operator is used by preprocessor macros to delimit arguments, so we have to represent it via a macro to prevent parsing incorrectly.
// Helper macros for argument selection
#define GEN_SELECT_ARG_1( _1, ... ) _1 // <-- Of all th args passed pick _1.
#define GEN_SELECT_ARG_2( _1, _2, ... ) _2 // <-- Of all the args passed pick _2.
#define GEN_SELECT_ARG_3( _1, _2, _3, ... ) _3 // etc..
#define GEN_GENERIC_SEL_ENTRY_TYPE GEN_SELECT_ARG_1 // Use the arg expansion macro to select arg 1 which should have the type.
#define GEN_GENERIC_SEL_ENTRY_FUNCTION GEN_SELECT_ARG_2 // Use the arg expansion macro to select arg 2 which should have the function.
#define GEN_GENERIC_SEL_ENTRY_COMMA_DELIMITER GEN_SELECT_ARG_3 // Use the arg expansion macro to select arg 3 which should have the comma delimiter ','.
#define GEN_RESOLVED_FUNCTION_CALL // Just used to indicate where the call "occurs"
// ----------------------------------------------------------------------------------------------------------------------------------
// GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( macro ) includes a _Generic slot only if the specified macro is defined (as type, function_name).
// It takes advantage of the fact that if the macro is defined, then the expanded text will contain a comma.
// Expands to ',' if it can find (type): (function) <comma_operator: ',' >
// Where GEN_GENERIC_SEL_ENTRY_COMMA_DELIMITER is specifically looking for that <comma> ,
#define GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( slot_exp ) GEN_GENERIC_SEL_ENTRY_COMMA_DELIMITER( slot_exp, GEN_GENERIC_SEL_ENTRY_TYPE( slot_exp, ): GEN_GENERIC_SEL_ENTRY_FUNCTION( slot_exp, ) GEN_COMMA_OPERATOR, , )
// ^ Selects the comma ^ is the type ^ is the function ^ Insert a comma
// The slot won't exist if that comma is not found. |
// For the occastion where an expression didn't resolve to a selection option the "default: <value>" wilbe set to:
typedef struct GENCPP_NO_RESOLVED_GENERIC_SELECTION GENCPP_NO_RESOLVED_GENERIC_SELECTION;
struct GENCPP_NO_RESOLVED_GENERIC_SELECTION {
void* _THE_VOID_SLOT_;
};
GENCPP_NO_RESOLVED_GENERIC_SELECTION const gen_generic_selection_fail = {0};
// Which will provide the message: error: called object type 'struct NO_RESOLVED_GENERIC_SELECTION' is not a function or function pointer
// ----------------------------------------------------------------------------------------------------------------------------------
// Below are generated on demand for an overlaod depdendent on a type:
// -----------------------------------------------------------------------------------------------------#define GEN_FUNCTION_GENERIC_EXAMPLE( selector_arg ) _Generic( k
#define GEN_FUNCTION_GENERIC_EXAMPLE( selector_arg ) _Generic( \
(selector_arg), /* Select Via Expression*/ \
/* Extendibility slots: */ \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( FunctionID__ARGS_SIG_1 ) \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( FunctionID__ARGS_SIG_1 ) \
default: gen_generic_selection_fail \
) GEN_RESOLVED_FUNCTION_CALL( selector_arg )
// ----------------------------------------------------------------------------------------------------------------------------------
// Then each definiton of a function has an associated define:
// #define <function_id_macro> GEN_GENERIC_FUNCTION_ARG_SIGNATURE( <function_id>, <arguments> )
#define GEN_GENERIC_FUNCTION_ARG_SIGNATURE( name_of_function, type_delimiter ) type_delimiter name_of_function
// Then somehwere later on
// <etc> <return_type> <function_id> ( <arguments> ) { <implementation> }
// Concrete example:
// To add support for long:
#define GEN_EXAMPLE_HASH__ARGS_SIG_1 GEN_GENERIC_FUNCTION_ARG_SIGNATURE( hash__P_long, long long )
size_t gen_example_hash__P_long( long val ) { return val * 2654435761ull; }
// To add support for long long:
#define GEN_EXAMPLE_HASH__ARGS_SIG_2 GEN_GENERIC_FUNCTION_ARG_SIGNATURE( hash__P_long_long, long long )
size_t gen_example_hash__P_long_long( long long val ) { return val * 2654435761ull; }
// If using an Editor with support for syntax hightlighting macros: HASH__ARGS_SIG_1 and HASH_ARGS_SIG_2 should show color highlighting indicating the slot is enabled,
// or, "defined" for usage during the compilation pass that handles the _Generic instrinsic.
#define gen_hash_example( function_arguments ) _Generic( \
(function_arguments), /* Select Via Expression*/ \
/* Extendibility slots: */ \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( HASH__ARGS_SIG_1 ) \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( HASH__ARGS_SIG_2 ) \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( HASH__ARGS_SIG_3 ) \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( HASH__ARGS_SIG_4 ) \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( HASH__ARGS_SIG_5 ) \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( HASH__ARGS_SIG_6 ) \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( HASH__ARGS_SIG_7 ) \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( HASH__ARGS_SIG_8 ) \
default: gen_generic_selection_fail \
) GEN_RESOLVED_FUNCTION_CALL( function_arguments )
// Additional Variations:
// If the function takes more than one argument the following is used:
#define GEN_FUNCTION_GENERIC_EXAMPLE_VARADIC( selector_arg, ... ) _Generic( \
(selector_arg), \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( FunctionID__ARGS_SIG_1 ) \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( FunctionID__ARGS_SIG_2 ) \
/* ... */ \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT(FunctionID__ARGS_SIG_N ) \
default: gen_generic_selection_fail \
) GEN_RESOLVED_FUNCTION_CALL( selector_arg, __VA_ARG__ )
// If the function does not take the arugment as a parameter:
#define GEN_FUNCTION_GENERIC_EXAMPLE_DIRECT_TYPE( selector_arg ) _Generic( \
( GEN_TYPE_TO_EXP(selector_arg) ), \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( FunctionID__ARGS_SIG_1 ) \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT( FunctionID__ARGS_SIG_2 ) \
/* ... */ \
GEN_IF_MACRO_DEFINED_INCLUDE_THIS_SLOT(FunctionID__ARGS_SIG_N ) \
default: gen_generic_selection_fail \
) GEN_RESOLVED_FUNCTION_CALL()
// Used to keep the _Generic keyword happy as bare types are not considered "expressions"
#define GEN_TYPE_TO_EXP(type) (* (type*)NULL)
// typedef void* GEN_GenericExampleType;
// GEN_FUNCTION_GENERIC_EXAMPLE_DIRECT_TYPE( GEN_GenericExampleType );
// END OF ------------------------ _Generic function overloading ----------------------------------------- END OF
#endif
#pragma endregion Macros

View File

@@ -0,0 +1,522 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "printing.cpp"
#endif
#pragma region Memory
void* mem_copy( void* dest, void const* source, ssize n )
{
if ( dest == nullptr )
{
return nullptr;
}
return memcpy( dest, source, n );
}
void const* mem_find( void const* data, u8 c, ssize n )
{
u8 const* s = rcast( u8 const*, data);
while ( ( rcast( uptr, s) & ( sizeof( usize ) - 1 ) ) && n && *s != c )
{
s++;
n--;
}
if ( n && *s != c )
{
ssize const* w;
ssize k = GEN__ONES * c;
w = rcast( ssize const*, s);
while ( n >= size_of( ssize ) && ! GEN__HAS_ZERO( *w ^ k ) )
{
w++;
n -= size_of( ssize );
}
s = rcast( u8 const*, w);
while ( n && *s != c )
{
s++;
n--;
}
}
return n ? rcast( void const*, s ) : NULL;
}
#define GEN_HEAP_STATS_MAGIC 0xDEADC0DE
typedef struct _heap_stats _heap_stats;
struct _heap_stats
{
u32 magic;
ssize used_memory;
ssize alloc_count;
};
global _heap_stats _heap_stats_info;
void heap_stats_init( void )
{
zero_item( &_heap_stats_info );
_heap_stats_info.magic = GEN_HEAP_STATS_MAGIC;
}
ssize heap_stats_used_memory( void )
{
GEN_ASSERT_MSG( _heap_stats_info.magic == GEN_HEAP_STATS_MAGIC, "heap_stats is not initialised yet, call heap_stats_init first!" );
return _heap_stats_info.used_memory;
}
ssize heap_stats_alloc_count( void )
{
GEN_ASSERT_MSG( _heap_stats_info.magic == GEN_HEAP_STATS_MAGIC, "heap_stats is not initialised yet, call heap_stats_init first!" );
return _heap_stats_info.alloc_count;
}
void heap_stats_check( void )
{
GEN_ASSERT_MSG( _heap_stats_info.magic == GEN_HEAP_STATS_MAGIC, "heap_stats is not initialised yet, call heap_stats_init first!" );
GEN_ASSERT( _heap_stats_info.used_memory == 0 );
GEN_ASSERT( _heap_stats_info.alloc_count == 0 );
}
typedef struct _heap_alloc_info _heap_alloc_info;
struct _heap_alloc_info
{
ssize size;
void* physical_start;
};
void* heap_allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags )
{
void* ptr = NULL;
// unused( allocator_data );
// unused( old_size );
if ( ! alignment )
alignment = GEN_DEFAULT_MEMORY_ALIGNMENT;
#ifdef GEN_HEAP_ANALYSIS
ssize alloc_info_size = size_of( _heap_alloc_info );
ssize alloc_info_remainder = ( alloc_info_size % alignment );
ssize track_size = max( alloc_info_size, alignment ) + alloc_info_remainder;
switch ( type )
{
case EAllocation_FREE :
{
if ( ! old_memory )
break;
_heap_alloc_info* alloc_info = rcast( _heap_alloc_info*, old_memory) - 1;
_heap_stats_info.used_memory -= alloc_info->size;
_heap_stats_info.alloc_count--;
old_memory = alloc_info->physical_start;
}
break;
case EAllocation_ALLOC :
{
size += track_size;
}
break;
default :
break;
}
#endif
switch ( type )
{
#if defined( GEN_COMPILER_MSVC ) || ( defined( GEN_COMPILER_GCC ) && defined( GEN_SYSTEM_WINDOWS ) ) || ( defined( GEN_COMPILER_TINYC ) && defined( GEN_SYSTEM_WINDOWS ) )
case EAllocation_ALLOC :
ptr = _aligned_malloc( size, alignment );
if ( flags & ALLOCATOR_FLAG_CLEAR_TO_ZERO )
zero_size( ptr, size );
break;
case EAllocation_FREE :
_aligned_free( old_memory );
break;
case EAllocation_RESIZE :
{
AllocatorInfo a = heap();
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
#elif defined( GEN_SYSTEM_LINUX ) && ! defined( GEN_CPU_ARM ) && ! defined( GEN_COMPILER_TINYC )
case EAllocation_ALLOC :
{
ptr = aligned_alloc( alignment, ( size + alignment - 1 ) & ~( alignment - 1 ) );
if ( flags & GEN_ALLOCATOR_FLAG_CLEAR_TO_ZERO )
{
zero_size( ptr, size );
}
}
break;
case EAllocation_FREE :
{
free( old_memory );
}
break;
case EAllocation_RESIZE :
{
AllocatorInfo a = heap();
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
#else
case EAllocation_ALLOC :
{
posix_memalign( &ptr, alignment, size );
if ( flags & GEN_ALLOCATOR_FLAG_CLEAR_TO_ZERO )
{
zero_size( ptr, size );
}
}
break;
case EAllocation_FREE :
{
free( old_memory );
}
break;
case EAllocation_RESIZE :
{
AllocatorInfo a = heap();
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
#endif
case EAllocation_FREE_ALL :
break;
}
#ifdef GEN_HEAP_ANALYSIS
if ( type == EAllocation_ALLOC )
{
_heap_alloc_info* alloc_info = rcast( _heap_alloc_info*, rcast( char*, ptr) + alloc_info_remainder );
zero_item( alloc_info );
alloc_info->size = size - track_size;
alloc_info->physical_start = ptr;
ptr = rcast( void*, alloc_info + 1 );
_heap_stats_info.used_memory += alloc_info->size;
_heap_stats_info.alloc_count++;
}
#endif
return ptr;
}
#pragma region VirtualMemory
VirtualMemory vm_from_memory( void* data, ssize size )
{
VirtualMemory vm;
vm.data = data;
vm.size = size;
return vm;
}
#if defined( GEN_SYSTEM_WINDOWS )
VirtualMemory vm_alloc( void* addr, ssize size )
{
VirtualMemory vm;
GEN_ASSERT( size > 0 );
vm.data = VirtualAlloc( addr, size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE );
vm.size = size;
return vm;
}
b32 vm_free( VirtualMemory vm )
{
MEMORY_BASIC_INFORMATION info;
while ( vm.size > 0 )
{
if ( VirtualQuery( vm.data, &info, size_of( info ) ) == 0 )
return false;
if ( info.BaseAddress != vm.data || info.AllocationBase != vm.data || info.State != MEM_COMMIT || info.RegionSize > scast( usize, vm.size) )
{
return false;
}
if ( VirtualFree( vm.data, 0, MEM_RELEASE ) == 0 )
return false;
vm.data = pointer_add( vm.data, info.RegionSize );
vm.size -= info.RegionSize;
}
return true;
}
VirtualMemory vm_trim( VirtualMemory vm, ssize lead_size, ssize size )
{
VirtualMemory new_vm = { 0 };
void* ptr;
GEN_ASSERT( vm.size >= lead_size + size );
ptr = pointer_add( vm.data, lead_size );
vm_free( vm );
new_vm = vm_alloc( ptr, size );
if ( new_vm.data == ptr )
return new_vm;
if ( new_vm.data )
vm_free( new_vm );
return new_vm;
}
b32 vm_purge( VirtualMemory vm )
{
VirtualAlloc( vm.data, vm.size, MEM_RESET, PAGE_READWRITE );
// NOTE: Can this really fail?
return true;
}
ssize virtual_memory_page_size( ssize* alignment_out )
{
SYSTEM_INFO info;
GetSystemInfo( &info );
if ( alignment_out )
*alignment_out = info.dwAllocationGranularity;
return info.dwPageSize;
}
#else
# include <sys/mman.h>
# ifndef MAP_ANONYMOUS
# define MAP_ANONYMOUS MAP_ANON
# endif
VirtualMemory vm_alloc( void* addr, ssize size )
{
VirtualMemory vm;
GEN_ASSERT( size > 0 );
vm.data = mmap( addr, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0 );
vm.size = size;
return vm;
}
b32 vm_free( VirtualMemory vm )
{
munmap( vm.data, vm.size );
return true;
}
VirtualMemory vm_trim( VirtualMemory vm, ssize lead_size, ssize size )
{
void* ptr;
ssize trail_size;
GEN_ASSERT( vm.size >= lead_size + size );
ptr = pointer_add( vm.data, lead_size );
trail_size = vm.size - lead_size - size;
if ( lead_size != 0 )
vm_free( vm_from_memory(( vm.data, lead_size ) );
if ( trail_size != 0 )
vm_free( vm_from_memory( ptr, trail_size ) );
return vm_from_memory( ptr, size );
}
b32 vm_purge( VirtualMemory vm )
{
int err = madvise( vm.data, vm.size, MADV_DONTNEED );
return err != 0;
}
ssize virtual_memory_page_size( ssize* alignment_out )
{
// TODO: Is this always true?
ssize result = scast( ssize, sysconf( _SC_PAGE_SIZE ));
if ( alignment_out )
*alignment_out = result;
return result;
}
#endif
#pragma endregion VirtualMemory
void* arena_allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags )
{
Arena* arena = rcast(Arena*, allocator_data);
void* ptr = NULL;
// unused( old_size );
switch ( type )
{
case EAllocation_ALLOC :
{
void* end = pointer_add( arena->PhysicalStart, arena->TotalUsed );
ssize total_size = align_forward_s64( size, alignment );
// NOTE: Out of memory
if ( arena->TotalUsed + total_size > (ssize) arena->TotalSize )
{
// zpl__printf_err("%s", "Arena out of memory\n");
GEN_FATAL("Arena out of memory! (Possibly could not fit for the largest size Arena!!)");
return nullptr;
}
ptr = align_forward( end, alignment );
arena->TotalUsed += total_size;
if ( flags & ALLOCATOR_FLAG_CLEAR_TO_ZERO )
zero_size( ptr, size );
}
break;
case EAllocation_FREE :
// NOTE: Free all at once
// Use Temp_Arena_Memory if you want to free a block
break;
case EAllocation_FREE_ALL :
arena->TotalUsed = 0;
break;
case EAllocation_RESIZE :
{
// TODO : Check if ptr is on top of stack and just extend
AllocatorInfo a = arena->Backing;
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
}
return ptr;
}
void* pool_allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags )
{
Pool* pool = rcast( Pool*, allocator_data);
void* ptr = NULL;
// unused( old_size );
switch ( type )
{
case EAllocation_ALLOC :
{
uptr next_free;
GEN_ASSERT( size == pool->BlockSize );
GEN_ASSERT( alignment == pool->BlockAlign );
GEN_ASSERT( pool->FreeList != NULL );
next_free = * rcast( uptr*, pool->FreeList);
ptr = pool->FreeList;
pool->FreeList = rcast( void*, next_free);
pool->TotalSize += pool->BlockSize;
if ( flags & ALLOCATOR_FLAG_CLEAR_TO_ZERO )
zero_size( ptr, size );
}
break;
case EAllocation_FREE :
{
uptr* next;
if ( old_memory == NULL )
return NULL;
next = rcast( uptr*, old_memory);
*next = rcast( uptr, pool->FreeList);
pool->FreeList = old_memory;
pool->TotalSize -= pool->BlockSize;
}
break;
case EAllocation_FREE_ALL :
{
ssize actual_block_size, block_index;
void* curr;
uptr* end;
actual_block_size = pool->BlockSize + pool->BlockAlign;
pool->TotalSize = 0;
// NOTE: Init intrusive freelist
curr = pool->PhysicalStart;
for ( block_index = 0; block_index < pool->NumBlocks - 1; block_index++ )
{
uptr* next = rcast( uptr*, curr);
* next = rcast( uptr, curr) + actual_block_size;
curr = pointer_add( curr, actual_block_size );
}
end = rcast( uptr*, curr);
* end = scast( uptr, NULL);
pool->FreeList = pool->PhysicalStart;
}
break;
case EAllocation_RESIZE :
// NOTE: Cannot resize
GEN_PANIC( "You cannot resize something allocated by with a pool." );
break;
}
return ptr;
}
Pool pool_init_align( AllocatorInfo backing, ssize num_blocks, ssize block_size, ssize block_align )
{
Pool pool = {};
ssize actual_block_size, pool_size, block_index;
void *data, *curr;
uptr* end;
zero_item( &pool );
pool.Backing = backing;
pool.BlockSize = block_size;
pool.BlockAlign = block_align;
pool.NumBlocks = num_blocks;
actual_block_size = block_size + block_align;
pool_size = num_blocks * actual_block_size;
data = alloc_align( backing, pool_size, block_align );
// NOTE: Init intrusive freelist
curr = data;
for ( block_index = 0; block_index < num_blocks - 1; block_index++ )
{
uptr* next = ( uptr* ) curr;
*next = ( uptr ) curr + actual_block_size;
curr = pointer_add( curr, actual_block_size );
}
end = ( uptr* ) curr;
*end = ( uptr ) NULL;
pool.PhysicalStart = data;
pool.FreeList = data;
return pool;
}
void pool_clear(Pool* pool)
{
ssize actual_block_size, block_index;
void* curr;
uptr* end;
actual_block_size = pool->BlockSize + pool->BlockAlign;
curr = pool->PhysicalStart;
for ( block_index = 0; block_index < pool->NumBlocks - 1; block_index++ )
{
uptr* next = ( uptr* ) curr;
*next = ( uptr ) curr + actual_block_size;
curr = pointer_add( curr, actual_block_size );
}
end = ( uptr* ) curr;
*end = ( uptr ) NULL;
pool->FreeList = pool->PhysicalStart;
}
#pragma endregion Memory

View File

@@ -0,0 +1,673 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "debug.hpp"
#endif
#pragma region Memory
#define kilobytes( x ) ( ( x ) * ( s64 )( 1024 ) )
#define megabytes( x ) ( kilobytes( x ) * ( s64 )( 1024 ) )
#define gigabytes( x ) ( megabytes( x ) * ( s64 )( 1024 ) )
#define terabytes( x ) ( gigabytes( x ) * ( s64 )( 1024 ) )
#define GEN__ONES ( scast( GEN_NS usize, - 1) / GEN_U8_MAX )
#define GEN__HIGHS ( GEN__ONES * ( GEN_U8_MAX / 2 + 1 ) )
#define GEN__HAS_ZERO( x ) ( ( ( x ) - GEN__ONES ) & ~( x ) & GEN__HIGHS )
template< class Type >
void swap( Type& a, Type& b )
{
Type tmp = a;
a = b;
b = tmp;
}
//! Checks if value is power of 2.
b32 is_power_of_two( ssize x );
//! Aligns address to specified alignment.
void* align_forward( void* ptr, ssize alignment );
//! Aligns value to a specified alignment.
s64 align_forward_by_value( s64 value, ssize alignment );
//! Moves pointer forward by bytes.
void* pointer_add( void* ptr, ssize bytes );
//! Moves pointer forward by bytes.
void const* pointer_add_const( void const* ptr, ssize bytes );
//! Calculates difference between two addresses.
ssize pointer_diff( void const* begin, void const* end );
//! Copy non-overlapping memory from source to destination.
void* mem_copy( void* dest, void const* source, ssize size );
//! Search for a constant value within the size limit at memory location.
void const* mem_find( void const* data, u8 byte_value, ssize size );
//! Copy memory from source to destination.
void* mem_move( void* dest, void const* source, ssize size );
//! Set constant value at memory location with specified size.
void* mem_set( void* data, u8 byte_value, ssize size );
//! @param ptr Memory location to clear up.
//! @param size The size to clear up with.
void zero_size( void* ptr, ssize size );
//! Clears up an item.
#define zero_item( t ) zero_size( ( t ), size_of( *( t ) ) ) // NOTE: Pass pointer of struct
//! Clears up an array.
#define zero_array( a, count ) zero_size( ( a ), size_of( *( a ) ) * count )
enum AllocType : u8
{
EAllocation_ALLOC,
EAllocation_FREE,
EAllocation_FREE_ALL,
EAllocation_RESIZE,
};
typedef void*(AllocatorProc)( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags );
struct AllocatorInfo
{
AllocatorProc* Proc;
void* Data;
};
enum AllocFlag
{
ALLOCATOR_FLAG_CLEAR_TO_ZERO = bit( 0 ),
};
#ifndef GEN_DEFAULT_MEMORY_ALIGNMENT
# define GEN_DEFAULT_MEMORY_ALIGNMENT ( 2 * size_of( void* ) )
#endif
#ifndef GEN_DEFAULT_ALLOCATOR_FLAGS
# define GEN_DEFAULT_ALLOCATOR_FLAGS ( ALLOCATOR_FLAG_CLEAR_TO_ZERO )
#endif
//! Allocate memory with default alignment.
void* alloc( AllocatorInfo a, ssize size );
//! Allocate memory with specified alignment.
void* alloc_align( AllocatorInfo a, ssize size, ssize alignment );
//! Free allocated memory.
void allocator_free( AllocatorInfo a, void* ptr );
//! Free all memory allocated by an allocator.
void free_all( AllocatorInfo a );
//! Resize an allocated memory.
void* resize( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size );
//! Resize an allocated memory with specified alignment.
void* resize_align( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size, ssize alignment );
//! Allocate memory for an item.
#define alloc_item( allocator_, Type ) ( Type* )alloc( allocator_, size_of( Type ) )
//! Allocate memory for an array of items.
#define alloc_array( allocator_, Type, count ) ( Type* )alloc( allocator_, size_of( Type ) * ( count ) )
/* heap memory analysis tools */
/* define GEN_HEAP_ANALYSIS to enable this feature */
/* call zpl_heap_stats_init at the beginning of the entry point */
/* you can call zpl_heap_stats_check near the end of the execution to validate any possible leaks */
void heap_stats_init( void );
ssize heap_stats_used_memory( void );
ssize heap_stats_alloc_count( void );
void heap_stats_check( void );
//! Allocate/Resize memory using default options.
//! Use this if you don't need a "fancy" resize allocation
void* default_resize_align( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size, ssize alignment );
void* heap_allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags );
//! The heap allocator backed by operating system's memory manager.
constexpr AllocatorInfo heap( void ) { AllocatorInfo allocator = { heap_allocator_proc, nullptr }; return allocator; }
//! Helper to allocate memory using heap allocator.
#define malloc( sz ) alloc( heap(), sz )
//! Helper to free memory allocated by heap allocator.
#define mfree( ptr ) free( heap(), ptr )
struct VirtualMemory
{
void* data;
ssize size;
};
//! Initialize virtual memory from existing data.
VirtualMemory vm_from_memory( void* data, ssize size );
//! Allocate virtual memory at address with size.
//! @param addr The starting address of the region to reserve. If NULL, it lets operating system to decide where to allocate it.
//! @param size The size to serve.
VirtualMemory vm_alloc( void* addr, ssize size );
//! Release the virtual memory.
b32 vm_free( VirtualMemory vm );
//! Trim virtual memory.
VirtualMemory vm_trim( VirtualMemory vm, ssize lead_size, ssize size );
//! Purge virtual memory.
b32 vm_purge( VirtualMemory vm );
//! Retrieve VM's page size and alignment.
ssize virtual_memory_page_size( ssize* alignment_out );
#pragma region Arena
struct Arena;
AllocatorInfo arena_allocator_info( Arena* arena );
// Remove static keyword and rename allocator_proc
void* arena_allocator_proc(void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags);
// Add these declarations after the Arena struct
Arena arena_init_from_allocator(AllocatorInfo backing, ssize size);
Arena arena_init_from_memory ( void* start, ssize size );
Arena arena_init_sub (Arena* parent, ssize size);
ssize arena_alignment_of (Arena* arena, ssize alignment);
void arena_check (Arena* arena);
void arena_free (Arena* arena);
ssize arena_size_remaining(Arena* arena, ssize alignment);
struct Arena
{
AllocatorInfo Backing;
void* PhysicalStart;
ssize TotalSize;
ssize TotalUsed;
ssize TempCount;
#if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP
#pragma region Member Mapping
forceinline operator AllocatorInfo() { return arena_allocator_info(this); }
forceinline static void* allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags ) { return arena_allocator_proc( allocator_data, type, size, alignment, old_memory, old_size, flags ); }
forceinline static Arena init_from_memory( void* start, ssize size ) { return arena_init_from_memory( start, size ); }
forceinline static Arena init_from_allocator( AllocatorInfo backing, ssize size ) { return arena_init_from_allocator( backing, size ); }
forceinline static Arena init_sub( Arena& parent, ssize size ) { return arena_init_from_allocator( parent.Backing, size ); }
forceinline ssize alignment_of( ssize alignment ) { return arena_alignment_of(this, alignment); }
forceinline void free() { return arena_free(this); }
forceinline ssize size_remaining( ssize alignment ) { return arena_size_remaining(this, alignment); }
// This id is defined by Unreal for asserts
#pragma push_macro("check")
#undef check
forceinline void check() { arena_check(this); }
#pragma pop_macro("check")
#pragma endregion Member Mapping
#endif
};
#if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP
forceinline AllocatorInfo allocator_info(Arena& arena ) { return arena_allocator_info(& arena); }
forceinline Arena init_sub (Arena& parent, ssize size) { return arena_init_sub( & parent, size); }
forceinline ssize alignment_of (Arena& arena, ssize alignment) { return arena_alignment_of( & arena, alignment); }
forceinline void free (Arena& arena) { return arena_free(& arena); }
forceinline ssize size_remaining(Arena& arena, ssize alignment) { return arena_size_remaining(& arena, alignment); }
// This id is defined by Unreal for asserts
#pragma push_macro("check")
#undef check
forceinline void check(Arena& arena) { return arena_check(& arena); };
#pragma pop_macro("check")
#endif
inline
AllocatorInfo arena_allocator_info( Arena* arena ) {
GEN_ASSERT(arena != nullptr);
AllocatorInfo info = { arena_allocator_proc, arena };
return info;
}
inline
Arena arena_init_from_memory( void* start, ssize size )
{
Arena arena = {
{ nullptr, nullptr },
start,
size,
0,
0
};
return arena;
}
inline
Arena arena_init_from_allocator(AllocatorInfo backing, ssize size) {
Arena result = {
backing,
alloc(backing, size),
size,
0,
0
};
return result;
}
inline
Arena arena_init_sub(Arena* parent, ssize size) {
GEN_ASSERT(parent != nullptr);
return arena_init_from_allocator(parent->Backing, size);
}
inline
ssize arena_alignment_of(Arena* arena, ssize alignment)
{
GEN_ASSERT(arena != nullptr);
ssize alignment_offset, result_pointer, mask;
GEN_ASSERT(is_power_of_two(alignment));
alignment_offset = 0;
result_pointer = (ssize)arena->PhysicalStart + arena->TotalUsed;
mask = alignment - 1;
if (result_pointer & mask)
alignment_offset = alignment - (result_pointer & mask);
return alignment_offset;
}
inline
void arena_check(Arena* arena)
{
GEN_ASSERT(arena != nullptr );
GEN_ASSERT(arena->TempCount == 0);
}
inline
void arena_free(Arena* arena)
{
GEN_ASSERT(arena != nullptr);
if (arena->Backing.Proc)
{
allocator_free(arena->Backing, arena->PhysicalStart);
arena->PhysicalStart = nullptr;
}
}
inline
ssize arena_size_remaining(Arena* arena, ssize alignment)
{
GEN_ASSERT(arena != nullptr);
ssize result = arena->TotalSize - (arena->TotalUsed + arena_alignment_of(arena, alignment));
return result;
}
#pragma endregion Arena
#pragma region FixedArena
template<s32 Size>
struct FixedArena;
template<s32 Size> FixedArena<Size> fixed_arena_init();
template<s32 Size> AllocatorInfo fixed_arena_allocator_info(FixedArena<Size>* fixed_arena );
template<s32 Size> ssize fixed_arena_size_remaining(FixedArena<Size>* fixed_arena, ssize alignment);
template<s32 Size> void fixed_arena_free(FixedArena<Size>* fixed_arena);
#if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP
template<s32 Size> AllocatorInfo allocator_info( FixedArena<Size>& fixed_arena ) { return allocator_info(& fixed_arena); }
template<s32 Size> ssize size_remaining(FixedArena<Size>& fixed_arena, ssize alignment) { return size_remaining( & fixed_arena, alignment); }
#endif
// Just a wrapper around using an arena with memory associated with its scope instead of from an allocator.
// Used for static segment or stack allocations.
template< s32 Size >
struct FixedArena
{
char memory[Size];
Arena arena;
#if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP
#pragma region Member Mapping
forceinline operator AllocatorInfo() { return fixed_arena_allocator_info(this); }
forceinline static FixedArena init() { FixedArena result; fixed_arena_init<Size>(result); return result; }
forceinline ssize size_remaining(ssize alignment) { fixed_arena_size_remaining(this, alignment); }
#pragma endregion Member Mapping
#endif
};
template<s32 Size> inline
AllocatorInfo fixed_arena_allocator_info( FixedArena<Size>* fixed_arena ) {
GEN_ASSERT(fixed_arena);
return { arena_allocator_proc, & fixed_arena->arena };
}
template<s32 Size> inline
void fixed_arena_init(FixedArena<Size>* result) {
zero_size(& result->memory[0], Size);
result->arena = arena_init_from_memory(& result->memory[0], Size);
}
template<s32 Size> inline
void fixed_arena_free(FixedArena<Size>* fixed_arena) {
arena_free( & fixed_arena->arena);
}
template<s32 Size> inline
ssize fixed_arena_size_remaining(FixedArena<Size>* fixed_arena, ssize alignment) {
return size_remaining(fixed_arena->arena, alignment);
}
using FixedArena_1KB = FixedArena< kilobytes( 1 ) >;
using FixedArena_4KB = FixedArena< kilobytes( 4 ) >;
using FixedArena_8KB = FixedArena< kilobytes( 8 ) >;
using FixedArena_16KB = FixedArena< kilobytes( 16 ) >;
using FixedArena_32KB = FixedArena< kilobytes( 32 ) >;
using FixedArena_64KB = FixedArena< kilobytes( 64 ) >;
using FixedArena_128KB = FixedArena< kilobytes( 128 ) >;
using FixedArena_256KB = FixedArena< kilobytes( 256 ) >;
using FixedArena_512KB = FixedArena< kilobytes( 512 ) >;
using FixedArena_1MB = FixedArena< megabytes( 1 ) >;
using FixedArena_2MB = FixedArena< megabytes( 2 ) >;
using FixedArena_4MB = FixedArena< megabytes( 4 ) >;
#pragma endregion FixedArena
#pragma region Pool
struct Pool;
void* pool_allocator_proc(void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags);
Pool pool_init(AllocatorInfo backing, ssize num_blocks, ssize block_size);
Pool pool_init_align(AllocatorInfo backing, ssize num_blocks, ssize block_size, ssize block_align);
AllocatorInfo pool_allocator_info(Pool* pool);
void pool_clear(Pool* pool);
void pool_free(Pool* pool);
#if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP
AllocatorInfo allocator_info(Pool& pool) { return pool_allocator_info(& pool); }
void clear(Pool& pool) { return pool_clear(& pool); }
void free(Pool& pool) { return pool_free(& pool); }
#endif
struct Pool
{
AllocatorInfo Backing;
void* PhysicalStart;
void* FreeList;
ssize BlockSize;
ssize BlockAlign;
ssize TotalSize;
ssize NumBlocks;
#if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP
#pragma region Member Mapping
forceinline operator AllocatorInfo() { return pool_allocator_info(this); }
forceinline static void* allocator_proc(void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags) { return pool_allocator_proc(allocator_data, type, size, alignment, old_memory, old_size, flags); }
forceinline static Pool init(AllocatorInfo backing, ssize num_blocks, ssize block_size) { return pool_init(backing, num_blocks, block_size); }
forceinline static Pool init_align(AllocatorInfo backing, ssize num_blocks, ssize block_size, ssize block_align) { return pool_init_align(backing, num_blocks, block_size, block_align); }
forceinline void clear() { pool_clear( this); }
forceinline void free() { pool_free( this); }
#pragma endregion
#endif
};
inline
AllocatorInfo pool_allocator_info(Pool* pool) {
AllocatorInfo info = { pool_allocator_proc, pool };
return info;
}
inline
Pool pool_init(AllocatorInfo backing, ssize num_blocks, ssize block_size) {
return pool_init_align(backing, num_blocks, block_size, GEN_DEFAULT_MEMORY_ALIGNMENT);
}
inline
void pool_free(Pool* pool) {
if(pool->Backing.Proc) {
allocator_free(pool->Backing, pool->PhysicalStart);
}
}
#pragma endregion Pool
inline
b32 is_power_of_two( ssize x ) {
if ( x <= 0 )
return false;
return ! ( x & ( x - 1 ) );
}
inline
mem_ptr align_forward( void* ptr, ssize alignment )
{
GEN_ASSERT( is_power_of_two( alignment ) );
uptr p = to_uptr(ptr);
uptr forward = (p + ( alignment - 1 ) ) & ~( alignment - 1 );
return to_mem_ptr(forward);
}
inline s64 align_forward_s64( s64 value, ssize alignment ) { return value + ( alignment - value % alignment ) % alignment; }
inline void* pointer_add ( void* ptr, ssize bytes ) { return rcast(void*, rcast( u8*, ptr) + bytes ); }
inline void const* pointer_add_const( void const* ptr, ssize bytes ) { return rcast(void const*, rcast( u8 const*, ptr) + bytes ); }
inline sptr pointer_diff( mem_ptr_const begin, mem_ptr_const end ) {
return scast( ssize, rcast( u8 const*, end) - rcast(u8 const*, begin) );
}
inline
void* mem_move( void* destination, void const* source, ssize byte_count )
{
if ( destination == NULL )
{
return NULL;
}
u8* dest_ptr = rcast( u8*, destination);
u8 const* src_ptr = rcast( u8 const*, source);
if ( dest_ptr == src_ptr )
return dest_ptr;
if ( src_ptr + byte_count <= dest_ptr || dest_ptr + byte_count <= src_ptr ) // NOTE: Non-overlapping
return mem_copy( dest_ptr, src_ptr, byte_count );
if ( dest_ptr < src_ptr )
{
if ( to_uptr(src_ptr) % size_of( ssize ) == to_uptr(dest_ptr) % size_of( ssize ) )
{
while ( pcast( uptr, dest_ptr) % size_of( ssize ) )
{
if ( ! byte_count-- )
return destination;
*dest_ptr++ = *src_ptr++;
}
while ( byte_count >= size_of( ssize ) )
{
* rcast(ssize*, dest_ptr) = * rcast(ssize const*, src_ptr);
byte_count -= size_of( ssize );
dest_ptr += size_of( ssize );
src_ptr += size_of( ssize );
}
}
for ( ; byte_count; byte_count-- )
*dest_ptr++ = *src_ptr++;
}
else
{
if ( ( to_uptr(src_ptr) % size_of( ssize ) ) == ( to_uptr(dest_ptr) % size_of( ssize ) ) )
{
while ( to_uptr( dest_ptr + byte_count ) % size_of( ssize ) )
{
if ( ! byte_count-- )
return destination;
dest_ptr[ byte_count ] = src_ptr[ byte_count ];
}
while ( byte_count >= size_of( ssize ) )
{
byte_count -= size_of( ssize );
* rcast(ssize*, dest_ptr + byte_count ) = * rcast( ssize const*, src_ptr + byte_count );
}
}
while ( byte_count )
byte_count--, dest_ptr[ byte_count ] = src_ptr[ byte_count ];
}
return destination;
}
inline
void* mem_set( void* destination, u8 fill_byte, ssize byte_count )
{
if ( destination == NULL )
{
return NULL;
}
ssize align_offset;
u8* dest_ptr = rcast( u8*, destination);
u32 fill_word = ( ( u32 )-1 ) / 255 * fill_byte;
if ( byte_count == 0 )
return destination;
dest_ptr[ 0 ] = dest_ptr[ byte_count - 1 ] = fill_byte;
if ( byte_count < 3 )
return destination;
dest_ptr[ 1 ] = dest_ptr[ byte_count - 2 ] = fill_byte;
dest_ptr[ 2 ] = dest_ptr[ byte_count - 3 ] = fill_byte;
if ( byte_count < 7 )
return destination;
dest_ptr[ 3 ] = dest_ptr[ byte_count - 4 ] = fill_byte;
if ( byte_count < 9 )
return destination;
align_offset = -to_sptr( dest_ptr ) & 3;
dest_ptr += align_offset;
byte_count -= align_offset;
byte_count &= -4;
* rcast( u32*, ( dest_ptr + 0 ) ) = fill_word;
* rcast( u32*, ( dest_ptr + byte_count - 4 ) ) = fill_word;
if ( byte_count < 9 )
return destination;
* rcast( u32*, dest_ptr + 4 ) = fill_word;
* rcast( u32*, dest_ptr + 8 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 12 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 8 ) = fill_word;
if ( byte_count < 25 )
return destination;
* rcast( u32*, dest_ptr + 12 ) = fill_word;
* rcast( u32*, dest_ptr + 16 ) = fill_word;
* rcast( u32*, dest_ptr + 20 ) = fill_word;
* rcast( u32*, dest_ptr + 24 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 28 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 24 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 20 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 16 ) = fill_word;
align_offset = 24 + to_uptr( dest_ptr ) & 4;
dest_ptr += align_offset;
byte_count -= align_offset;
{
u64 fill_doubleword = ( scast( u64, fill_word) << 32 ) | fill_word;
while ( byte_count > 31 )
{
* rcast( u64*, dest_ptr + 0 ) = fill_doubleword;
* rcast( u64*, dest_ptr + 8 ) = fill_doubleword;
* rcast( u64*, dest_ptr + 16 ) = fill_doubleword;
* rcast( u64*, dest_ptr + 24 ) = fill_doubleword;
byte_count -= 32;
dest_ptr += 32;
}
}
return destination;
}
inline
void* alloc_align( AllocatorInfo a, ssize size, ssize alignment ) {
return a.Proc( a.Data, EAllocation_ALLOC, size, alignment, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
inline
void* alloc( AllocatorInfo a, ssize size ) {
return alloc_align( a, size, GEN_DEFAULT_MEMORY_ALIGNMENT );
}
inline
void allocator_free( AllocatorInfo a, void* ptr ) {
if ( ptr != nullptr )
a.Proc( a.Data, EAllocation_FREE, 0, 0, ptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
inline
void free_all( AllocatorInfo a ) {
a.Proc( a.Data, EAllocation_FREE_ALL, 0, 0, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
inline
void* resize( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size ) {
return resize_align( a, ptr, old_size, new_size, GEN_DEFAULT_MEMORY_ALIGNMENT );
}
inline
void* resize_align( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size, ssize alignment ) {
return a.Proc( a.Data, EAllocation_RESIZE, new_size, alignment, ptr, old_size, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
inline
void* default_resize_align( AllocatorInfo a, void* old_memory, ssize old_size, ssize new_size, ssize alignment )
{
if ( ! old_memory )
return alloc_align( a, new_size, alignment );
if ( new_size == 0 )
{
allocator_free( a, old_memory );
return nullptr;
}
if ( new_size < old_size )
new_size = old_size;
if ( old_size == new_size )
{
return old_memory;
}
else
{
void* new_memory = alloc_align( a, new_size, alignment );
if ( ! new_memory )
return nullptr;
mem_move( new_memory, old_memory, min( new_size, old_size ) );
allocator_free( a, old_memory );
return new_memory;
}
}
inline
void zero_size( void* ptr, ssize size ) {
mem_set( ptr, 0, size );
}
#pragma endregion Memory

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,432 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
#endif
#pragma region ADT
enum ADT_Type : u32
{
EADT_TYPE_UNINITIALISED, /* node was not initialised, this is a programming error! */
EADT_TYPE_ARRAY,
EADT_TYPE_OBJECT,
EADT_TYPE_STRING,
EADT_TYPE_MULTISTRING,
EADT_TYPE_INTEGER,
EADT_TYPE_REAL,
};
enum ADT_Props : u32
{
EADT_PROPS_NONE,
EADT_PROPS_NAN,
EADT_PROPS_NAN_NEG,
EADT_PROPS_INFINITY,
EADT_PROPS_INFINITY_NEG,
EADT_PROPS_FALSE,
EADT_PROPS_TRUE,
EADT_PROPS_NULL,
EADT_PROPS_IS_EXP,
EADT_PROPS_IS_HEX,
// Used internally so that people can fill in real numbers they plan to write.
EADT_PROPS_IS_PARSED_REAL,
};
enum ADT_NamingStyle : u32
{
EADT_NAME_STYLE_DOUBLE_QUOTE,
EADT_NAME_STYLE_SINGLE_QUOTE,
EADT_NAME_STYLE_NO_QUOTES,
};
enum ADT_AssignStyle : u32
{
EADT_ASSIGN_STYLE_COLON,
EADT_ASSIGN_STYLE_EQUALS,
EADT_ASSIGN_STYLE_LINE,
};
enum ADT_DelimStyle : u32
{
EADT_DELIM_STYLE_COMMA,
EADT_DELIM_STYLE_LINE,
EADT_DELIM_STYLE_NEWLINE,
};
enum ADT_Error : u32
{
EADT_ERROR_NONE,
EADT_ERROR_INTERNAL,
EADT_ERROR_ALREADY_CONVERTED,
EADT_ERROR_INVALID_TYPE,
EADT_ERROR_OUT_OF_MEMORY,
};
struct ADT_Node
{
char const* name;
struct ADT_Node* parent;
/* properties */
ADT_Type type : 4;
u8 props : 4;
#ifndef GEN_PARSER_DISABLE_ANALYSIS
u8 cfg_mode : 1;
u8 name_style : 2;
u8 assign_style : 2;
u8 delim_style : 2;
u8 delim_line_width : 4;
u8 assign_line_width : 4;
#endif
/* adt data */
union
{
char const* string;
Array(ADT_Node) nodes; ///< zpl_array
struct
{
union
{
f64 real;
s64 integer;
};
#ifndef GEN_PARSER_DISABLE_ANALYSIS
/* number analysis */
s32 base;
s32 base2;
u8 base2_offset : 4;
s8 exp : 4;
u8 neg_zero : 1;
u8 lead_digit : 1;
#endif
};
};
};
/* ADT NODE LIMITS
* delimiter and assignment segment width is limited to 128 whitespace symbols each.
* real number limits decimal position to 128 places.
* real number exponent is limited to 64 digits.
*/
/**
* @brief Initialise an ADT object or array
*
* @param node
* @param backing Memory allocator used for descendants
* @param name Node's name
* @param is_array
* @return error code
*/
u8 adt_make_branch( ADT_Node* node, AllocatorInfo backing, char const* name, b32 is_array );
/**
* @brief Destroy an ADT branch and its descendants
*
* @param node
* @return error code
*/
u8 adt_destroy_branch( ADT_Node* node );
/**
* @brief Initialise an ADT leaf
*
* @param node
* @param name Node's name
* @param type Node's type (use zpl_adt_make_branch for container nodes)
* @return error code
*/
u8 adt_make_leaf( ADT_Node* node, char const* name, ADT_Type type );
/**
* @brief Fetch a node using provided URI string.
*
* This method uses a basic syntax to fetch a node from the ADT. The following features are available
* to retrieve the data:
*
* - "a/b/c" navigates through objects "a" and "b" to get to "c"
* - "arr/[foo=123]/bar" iterates over "arr" to find any object with param "foo" that matches the value "123", then gets its field called "bar"
* - "arr/3" retrieves the 4th element in "arr"
* - "arr/[apple]" retrieves the first element of value "apple" in "arr"
*
* @param node ADT node
* @param uri Locator string as described above
* @return zpl_adt_node*
*
* @see code/apps/examples/json_get.c
*/
ADT_Node* adt_query( ADT_Node* node, char const* uri );
/**
* @brief Find a field node within an object by the given name.
*
* @param node
* @param name
* @param deep_search Perform search recursively
* @return zpl_adt_node * node
*/
ADT_Node* adt_find( ADT_Node* node, char const* name, b32 deep_search );
/**
* @brief Allocate an unitialised node within a container at a specified index.
*
* @param parent
* @param index
* @return zpl_adt_node * node
*/
ADT_Node* adt_alloc_at( ADT_Node* parent, ssize index );
/**
* @brief Allocate an unitialised node within a container.
*
* @param parent
* @return zpl_adt_node * node
*/
ADT_Node* adt_alloc( ADT_Node* parent );
/**
* @brief Move an existing node to a new container at a specified index.
*
* @param node
* @param new_parent
* @param index
* @return zpl_adt_node * node
*/
ADT_Node* adt_move_node_at( ADT_Node* node, ADT_Node* new_parent, ssize index );
/**
* @brief Move an existing node to a new container.
*
* @param node
* @param new_parent
* @return zpl_adt_node * node
*/
ADT_Node* adt_move_node( ADT_Node* node, ADT_Node* new_parent );
/**
* @brief Swap two nodes.
*
* @param node
* @param other_node
* @return
*/
void adt_swap_nodes( ADT_Node* node, ADT_Node* other_node );
/**
* @brief Remove node from container.
*
* @param node
* @return
*/
void adt_remove_node( ADT_Node* node );
/**
* @brief Initialise a node as an object
*
* @param obj
* @param name
* @param backing
* @return
*/
b8 adt_set_obj( ADT_Node* obj, char const* name, AllocatorInfo backing );
/**
* @brief Initialise a node as an array
*
* @param obj
* @param name
* @param backing
* @return
*/
b8 adt_set_arr( ADT_Node* obj, char const* name, AllocatorInfo backing );
/**
* @brief Initialise a node as a string
*
* @param obj
* @param name
* @param value
* @return
*/
b8 adt_set_str( ADT_Node* obj, char const* name, char const* value );
/**
* @brief Initialise a node as a float
*
* @param obj
* @param name
* @param value
* @return
*/
b8 adt_set_flt( ADT_Node* obj, char const* name, f64 value );
/**
* @brief Initialise a node as a signed integer
*
* @param obj
* @param name
* @param value
* @return
*/
b8 adt_set_int( ADT_Node* obj, char const* name, s64 value );
/**
* @brief Append a new node to a container as an object
*
* @param parent
* @param name
* @return*
*/
ADT_Node* adt_append_obj( ADT_Node* parent, char const* name );
/**
* @brief Append a new node to a container as an array
*
* @param parent
* @param name
* @return*
*/
ADT_Node* adt_append_arr( ADT_Node* parent, char const* name );
/**
* @brief Append a new node to a container as a string
*
* @param parent
* @param name
* @param value
* @return*
*/
ADT_Node* adt_append_str( ADT_Node* parent, char const* name, char const* value );
/**
* @brief Append a new node to a container as a float
*
* @param parent
* @param name
* @param value
* @return*
*/
ADT_Node* adt_append_flt( ADT_Node* parent, char const* name, f64 value );
/**
* @brief Append a new node to a container as a signed integer
*
* @param parent
* @param name
* @param value
* @return*
*/
ADT_Node* adt_append_int( ADT_Node* parent, char const* name, s64 value );
/* parser helpers */
/**
* @brief Parses a text and stores the result into an unitialised node.
*
* @param node
* @param base
* @return*
*/
char* adt_parse_number( ADT_Node* node, char* base );
/**
* @brief Parses a text and stores the result into an unitialised node.
* This function expects the entire input to be a number.
*
* @param node
* @param base
* @return*
*/
char* adt_parse_number_strict( ADT_Node* node, char* base_str );
/**
* @brief Parses and converts an existing string node into a number.
*
* @param node
* @return
*/
ADT_Error adt_str_to_number( ADT_Node* node );
/**
* @brief Parses and converts an existing string node into a number.
* This function expects the entire input to be a number.
*
* @param node
* @return
*/
ADT_Error adt_str_to_number_strict( ADT_Node* node );
/**
* @brief Prints a number into a file stream.
*
* The provided file handle can also be a memory mapped stream.
*
* @see zpl_file_stream_new
* @param file
* @param node
* @return
*/
ADT_Error adt_print_number( FileInfo* file, ADT_Node* node );
/**
* @brief Prints a string into a file stream.
*
* The provided file handle can also be a memory mapped stream.
*
* @see zpl_file_stream_new
* @param file
* @param node
* @param escaped_chars
* @param escape_symbol
* @return
*/
ADT_Error adt_print_string( FileInfo* file, ADT_Node* node, char const* escaped_chars, char const* escape_symbol );
#pragma endregion ADT
#pragma region CSV
enum CSV_Error : u32
{
ECSV_Error__NONE,
ECSV_Error__INTERNAL,
ECSV_Error__UNEXPECTED_END_OF_INPUT,
ECSV_Error__MISMATCHED_ROWS,
};
typedef ADT_Node CSV_Object;
u8 csv_parse( CSV_Object* root, char* text, AllocatorInfo allocator, b32 has_header );
u8 csv_parse_delimiter( CSV_Object* root, char* text, AllocatorInfo allocator, b32 has_header, char delim );
void csv_free( CSV_Object* obj );
void csv_write( FileInfo* file, CSV_Object* obj );
String csv_write_string( AllocatorInfo a, CSV_Object* obj );
void csv_write_delimiter( FileInfo* file, CSV_Object* obj, char delim );
String csv_write_string_delimiter( AllocatorInfo a, CSV_Object* obj, char delim );
/* inline */
inline
u8 csv_parse( CSV_Object* root, char* text, AllocatorInfo allocator, b32 has_header )
{
return csv_parse_delimiter( root, text, allocator, has_header, ',' );
}
inline
void csv_write( FileInfo* file, CSV_Object* obj )
{
csv_write_delimiter( file, obj, ',' );
}
inline
String csv_write_string( AllocatorInfo a, CSV_Object* obj )
{
return csv_write_string_delimiter( a, obj, ',' );
}
#pragma endregion CSV

View File

@@ -0,0 +1,176 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
#endif
#pragma region Platform Detection
/* Platform architecture */
#if defined( _WIN64 ) || defined( __x86_64__ ) || defined( _M_X64 ) || defined( __64BIT__ ) || defined( __powerpc64__ ) || defined( __ppc64__ ) || defined( __aarch64__ )
# ifndef GEN_ARCH_64_BIT
# define GEN_ARCH_64_BIT 1
# endif
#else
# ifndef GEN_ARCH_32_BItxt_StrCaT
# define GEN_ARCH_32_BIT 1
# endif
#endif
/* Platform OS */
#if defined( _WIN32 ) || defined( _WIN64 )
# ifndef GEN_SYSTEM_WINDOWS
# define GEN_SYSTEM_WINDOWS 1
# endif
#elif defined( __APPLE__ ) && defined( __MACH__ )
# ifndef GEN_SYSTEM_OSX
# define GEN_SYSTEM_OSX 1
# endif
# ifndef GEN_SYSTEM_MACOS
# define GEN_SYSTEM_MACOS 1
# endif
# include <TargetConditionals.h>
# if TARGET_IPHONE_SIMULATOR == 1 || TARGET_OS_IPHONE == 1
# ifndef GEN_SYSTEM_IOS
# define GEN_SYSTEM_IOS 1
# endif
# endif
#elif defined( __unix__ )
# ifndef GEN_SYSTEM_UNIX
# define GEN_SYSTEM_UNIX 1
# endif
# if defined( ANDROID ) || defined( __ANDROID__ )
# ifndef GEN_SYSTEM_ANDROID
# define GEN_SYSTEM_ANDROID 1
# endif
# ifndef GEN_SYSTEM_LINUX
# define GEN_SYSTEM_LINUX 1
# endif
# elif defined( __linux__ )
# ifndef GEN_SYSTEM_LINUX
# define GEN_SYSTEM_LINUX 1
# endif
# elif defined( __FreeBSD__ ) || defined( __FreeBSD_kernel__ )
# ifndef GEN_SYSTEM_FREEBSD
# define GEN_SYSTEM_FREEBSD 1
# endif
# elif defined( __OpenBSD__ )
# ifndef GEN_SYSTEM_OPENBSD
# define GEN_SYSTEM_OPENBSD 1
# endif
# elif defined( __EMSCRIPTEN__ )
# ifndef GEN_SYSTEM_EMSCRIPTEN
# define GEN_SYSTEM_EMSCRIPTEN 1
# endif
# elif defined( __CYGWIN__ )
# ifndef GEN_SYSTEM_CYGWIN
# define GEN_SYSTEM_CYGWIN 1
# endif
# else
# error This UNIX operating system is not supported
# endif
#else
# error This operating system is not supported
#endif
/* Platform compiler */
#if defined( _MSC_VER )
# pragma message("Detected MSVC")
// # define GEN_COMPILER_CLANG 0
# define GEN_COMPILER_MSVC 1
// # define GEN_COMPILER_GCC 0
#elif defined( __GNUC__ )
# pragma message("Detected GCC")
// # define GEN_COMPILER_CLANG 0
// # define GEN_COMPILER_MSVC 0
# define GEN_COMPILER_GCC 1
#elif defined( __clang__ )
# pragma message("Detected CLANG")
# define GEN_COMPILER_CLANG 1
// # define GEN_COMPILER_MSVC 0
// # define GEN_COMPILER_GCC 0
#else
# error Unknown compiler
#endif
#if defined( __has_attribute )
# define GEN_HAS_ATTRIBUTE( attribute ) __has_attribute( attribute )
#else
# define GEN_HAS_ATTRIBUTE( attribute ) ( 0 )
#endif
#if defined(GEN_GCC_VERSION_CHECK)
# undef GEN_GCC_VERSION_CHECK
#endif
#if defined(GEN_GCC_VERSION)
# define GEN_GCC_VERSION_CHECK(major,minor,patch) (GEN_GCC_VERSION >= GEN_VERSION_ENCODE(major, minor, patch))
#else
# define GEN_GCC_VERSION_CHECK(major,minor,patch) (0)
#endif
#if !defined(GEN_COMPILER_C)
# ifdef __cplusplus
# define GEN_COMPILER_C 0
# define GEN_COMPILER_CPP 1
# else
# if defined(__STDC__)
# define GEN_COMPILER_C 1
# define GEN_COMPILER_CPP 0
# else
// Fallback for very old C compilers
# define GEN_COMPILER_C 1
# define GEN_COMPILER_CPP 0
# endif
# endif
#endif
#if GEN_COMPILER_C
#pragma message("GENCPP: Detected C")
#endif
#pragma endregion Platform Detection
#pragma region Mandatory Includes
# include <stdarg.h>
# include <stddef.h>
# if defined( GEN_SYSTEM_WINDOWS )
# include <intrin.h>
# endif
#if GEN_COMPILER_C
#include <assert.h>
#include <stdbool.h>
#endif
#pragma endregion Mandatory Includes
#if GEN_DONT_USE_NAMESPACE || GEN_COMPILER_C
# if GEN_COMPILER_C
# define GEN_NS_PARSER_BEGIN
# define GEN_NS_PARSER_END
# define GEN_USING_NS_PARSER
# define GEN_NS_PARSER
# define GEN_NS
# define GEN_NS_BEGIN
# define GEN_NS_END
# else
# define GEN_NS_PARSER_BEGIN namespace parser {
# define GEN_NS_PARSER_END }
# define GEN_USING_NS_PARSER using namespace parser
# define GEN_NS_PARSER parser::
# define GEN_NS ::
# define GEN_NS_BEGIN
# define GEN_NS_END
# endif
#else
# define GEN_NS_PARSER_BEGIN namespace parser {
# define GEN_NS_PARSER_END }
# define GEN_NS_PARSER parser::
# define GEN_USING_NS_PARSER using namespace parser
# define GEN_NS gen::
# define GEN_NS_BEGIN namespace gen {
# define GEN_NS_END }
#endif

View File

@@ -0,0 +1,601 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "filesystem.hpp"
# include "strings.hpp"
# include "string_ops.cpp"
#endif
#pragma region Printing
enum
{
GEN_FMT_MINUS = bit( 0 ),
GEN_FMT_PLUS = bit( 1 ),
GEN_FMT_ALT = bit( 2 ),
GEN_FMT_SPACE = bit( 3 ),
GEN_FMT_ZERO = bit( 4 ),
GEN_FMT_CHAR = bit( 5 ),
GEN_FMT_SHORT = bit( 6 ),
GEN_FMT_INT = bit( 7 ),
GEN_FMT_LONG = bit( 8 ),
GEN_FMT_LLONG = bit( 9 ),
GEN_FMT_SIZE = bit( 10 ),
GEN_FMT_INTPTR = bit( 11 ),
GEN_FMT_UNSIGNED = bit( 12 ),
GEN_FMT_LOWER = bit( 13 ),
GEN_FMT_UPPER = bit( 14 ),
GEN_FMT_WIDTH = bit( 15 ),
GEN_FMT_DONE = bit( 30 ),
GEN_FMT_INTS = GEN_FMT_CHAR | GEN_FMT_SHORT | GEN_FMT_INT | GEN_FMT_LONG | GEN_FMT_LLONG | GEN_FMT_SIZE | GEN_FMT_INTPTR
};
typedef struct _format_info _format_info;
struct _format_info
{
s32 base;
s32 flags;
s32 width;
s32 precision;
};
internal ssize _print_string( char* text, ssize max_len, _format_info* info, char const* str )
{
ssize res = 0, len = 0;
ssize remaining = max_len;
char* begin = text;
if ( str == NULL && max_len >= 6 )
{
res += str_copy_nulpad( text, "(null)", 6 );
return res;
}
if ( info && info->precision >= 0 )
// Made the design decision for this library that precision is the length of the string.
len = info->precision;
else
len = str_len( str );
if ( info && ( info->width == 0 && info->flags & GEN_FMT_WIDTH ) )
{
return res;
}
if ( info && ( info->width == 0 || info->flags & GEN_FMT_MINUS ) )
{
if ( info->precision > 0 )
len = info->precision < len ? info->precision : len;
if ( res + len > max_len )
return res;
res += str_copy_nulpad( text, str, len );
text += res;
if ( info->width > res )
{
ssize padding = info->width - len;
char pad = ( info->flags & GEN_FMT_ZERO ) ? '0' : ' ';
while ( padding-- > 0 && remaining-- > 0 )
*text++ = pad, res++;
}
}
else
{
if ( info && ( info->width > res ) )
{
ssize padding = info->width - len;
char pad = ( info->flags & GEN_FMT_ZERO ) ? '0' : ' ';
while ( padding-- > 0 && remaining-- > 0 )
*text++ = pad, res++;
}
if ( res + len > max_len )
return res;
res += str_copy_nulpad( text, str, len );
}
if ( info )
{
if ( info->flags & GEN_FMT_UPPER )
str_to_upper( begin );
else if ( info->flags & GEN_FMT_LOWER )
str_to_lower( begin );
}
return res;
}
internal ssize _print_char( char* text, ssize max_len, _format_info* info, char arg )
{
char str[ 2 ] = "";
str[ 0 ] = arg;
return _print_string( text, max_len, info, str );
}
internal ssize _print_repeated_char( char* text, ssize max_len, _format_info* info, char arg )
{
ssize res = 0;
s32 rem = ( info ) ? ( info->width > 0 ) ? info->width : 1 : 1;
res = rem;
while ( rem-- > 0 )
*text++ = arg;
return res;
}
internal ssize _print_i64( char* text, ssize max_len, _format_info* info, s64 value )
{
char num[ 130 ];
i64_to_str( value, num, info ? info->base : 10 );
return _print_string( text, max_len, info, num );
}
internal ssize _print_u64( char* text, ssize max_len, _format_info* info, u64 value )
{
char num[ 130 ];
u64_to_str( value, num, info ? info->base : 10 );
return _print_string( text, max_len, info, num );
}
internal ssize _print_f64( char* text, ssize max_len, _format_info* info, b32 is_hexadecimal, f64 arg )
{
// TODO: Handle exponent notation
ssize width, len, remaining = max_len;
char* text_begin = text;
if ( arg )
{
u64 value;
if ( arg < 0 )
{
if ( remaining > 1 )
*text = '-', remaining--;
text++;
arg = -arg;
}
else if ( info->flags & GEN_FMT_MINUS )
{
if ( remaining > 1 )
*text = '+', remaining--;
text++;
}
value = scast( u64, arg);
len = _print_u64( text, remaining, NULL, value );
text += len;
if ( len >= remaining )
remaining = min( remaining, 1 );
else
remaining -= len;
arg -= value;
if ( info->precision < 0 )
info->precision = 6;
if ( ( info->flags & GEN_FMT_ALT ) || info->precision > 0 )
{
s64 mult = 10;
if ( remaining > 1 )
*text = '.', remaining--;
text++;
while ( info->precision-- > 0 )
{
value = scast( u64, arg * mult );
len = _print_u64( text, remaining, NULL, value );
text += len;
if ( len >= remaining )
remaining = min( remaining, 1 );
else
remaining -= len;
arg -= scast( f64, value / mult);
mult *= 10;
}
}
}
else
{
if ( remaining > 1 )
*text = '0', remaining--;
text++;
if ( info->flags & GEN_FMT_ALT )
{
if ( remaining > 1 )
*text = '.', remaining--;
text++;
}
}
width = info->width - ( text - text_begin );
if ( width > 0 )
{
char fill = ( info->flags & GEN_FMT_ZERO ) ? '0' : ' ';
char* end = text + remaining - 1;
len = ( text - text_begin );
for ( len = ( text - text_begin ); len--; )
{
if ( ( text_begin + len + width ) < end )
*( text_begin + len + width ) = *( text_begin + len );
}
len = width;
text += len;
if ( len >= remaining )
remaining = min( remaining, 1 );
else
remaining -= len;
while ( len-- )
{
if ( text_begin + len < end )
text_begin[ len ] = fill;
}
}
return ( text - text_begin );
}
neverinline ssize str_fmt_va( char* text, ssize max_len, char const* fmt, va_list va )
{
char const* text_begin = text;
ssize remaining = max_len, res;
while ( *fmt )
{
_format_info info = { 0 };
ssize len = 0;
info.precision = -1;
while ( *fmt && *fmt != '%' && remaining )
*text++ = *fmt++;
if ( *fmt == '%' )
{
do
{
switch ( *++fmt )
{
case '-' :
{
info.flags |= GEN_FMT_MINUS;
break;
}
case '+' :
{
info.flags |= GEN_FMT_PLUS;
break;
}
case '#' :
{
info.flags |= GEN_FMT_ALT;
break;
}
case ' ' :
{
info.flags |= GEN_FMT_SPACE;
break;
}
case '0' :
{
info.flags |= ( GEN_FMT_ZERO | GEN_FMT_WIDTH );
break;
}
default :
{
info.flags |= GEN_FMT_DONE;
break;
}
}
} while ( ! ( info.flags & GEN_FMT_DONE ) );
}
// NOTE: Optional Width
if ( *fmt == '*' )
{
int width = va_arg( va, int );
if ( width < 0 )
{
info.flags |= GEN_FMT_MINUS;
info.width = -width;
}
else
{
info.width = width;
}
info.flags |= GEN_FMT_WIDTH;
fmt++;
}
else
{
info.width = scast( s32, str_to_i64( fmt, ccast( char**, & fmt), 10 ));
if ( info.width != 0 )
{
info.flags |= GEN_FMT_WIDTH;
}
}
// NOTE: Optional Precision
if ( *fmt == '.' )
{
fmt++;
if ( *fmt == '*' )
{
info.precision = va_arg( va, int );
fmt++;
}
else
{
info.precision = scast( s32, str_to_i64( fmt, ccast( char**, & fmt), 10 ));
}
info.flags &= ~GEN_FMT_ZERO;
}
switch ( *fmt++ )
{
case 'h' :
if ( *fmt == 'h' )
{ // hh => char
info.flags |= GEN_FMT_CHAR;
fmt++;
}
else
{ // h => short
info.flags |= GEN_FMT_SHORT;
}
break;
case 'l' :
if ( *fmt == 'l' )
{ // ll => long long
info.flags |= GEN_FMT_LLONG;
fmt++;
}
else
{ // l => long
info.flags |= GEN_FMT_LONG;
}
break;
break;
case 'z' : // NOTE: zpl_usize
info.flags |= GEN_FMT_UNSIGNED;
// fallthrough
case 't' : // NOTE: zpl_isize
info.flags |= GEN_FMT_SIZE;
break;
default :
fmt--;
break;
}
switch ( *fmt )
{
case 'u' :
info.flags |= GEN_FMT_UNSIGNED;
// fallthrough
case 'd' :
case 'i' :
info.base = 10;
break;
case 'o' :
info.base = 8;
break;
case 'x' :
info.base = 16;
info.flags |= ( GEN_FMT_UNSIGNED | GEN_FMT_LOWER );
break;
case 'X' :
info.base = 16;
info.flags |= ( GEN_FMT_UNSIGNED | GEN_FMT_UPPER );
break;
case 'f' :
case 'F' :
case 'g' :
case 'G' :
len = _print_f64( text, remaining, &info, 0, va_arg( va, f64 ) );
break;
case 'a' :
case 'A' :
len = _print_f64( text, remaining, &info, 1, va_arg( va, f64 ) );
break;
case 'c' :
len = _print_char( text, remaining, &info, scast( char, va_arg( va, int ) ));
break;
case 's' :
len = _print_string( text, remaining, &info, va_arg( va, char* ) );
break;
case 'S':
{
if ( *(fmt + 1) == 'C' )
{
++ fmt;
StrC gen_str = va_arg( va, StrC);
info.precision = gen_str.Len;
len = _print_string( text, remaining, &info, gen_str.Ptr );
break;
}
String gen_str = { va_arg( va, char*) };
info.precision = string_length(gen_str);
len = _print_string( text, remaining, &info, gen_str );
}
break;
case 'r' :
len = _print_repeated_char( text, remaining, &info, va_arg( va, int ) );
break;
case 'p' :
info.base = 16;
info.flags |= ( GEN_FMT_LOWER | GEN_FMT_UNSIGNED | GEN_FMT_ALT | GEN_FMT_INTPTR );
break;
case '%' :
len = _print_char( text, remaining, &info, '%' );
break;
default :
fmt--;
break;
}
fmt++;
if ( info.base != 0 )
{
if ( info.flags & GEN_FMT_UNSIGNED )
{
u64 value = 0;
switch ( info.flags & GEN_FMT_INTS )
{
case GEN_FMT_CHAR :
value = scast( u64, scast( u8, va_arg( va, int )));
break;
case GEN_FMT_SHORT :
value = scast( u64, scast( u16, va_arg( va, int )));
break;
case GEN_FMT_LONG:
value = scast( u64, va_arg( va, unsigned long ));
break;
case GEN_FMT_LLONG :
value = scast( u64, va_arg( va, unsigned long long ));
break;
case GEN_FMT_SIZE :
value = scast( u64, va_arg( va, usize ));
break;
case GEN_FMT_INTPTR :
value = scast( u64, va_arg( va, uptr ));
break;
default :
value = scast( u64, va_arg( va, unsigned int ));
break;
}
len = _print_u64( text, remaining, &info, value );
}
else
{
s64 value = 0;
switch ( info.flags & GEN_FMT_INTS )
{
case GEN_FMT_CHAR :
value = scast( s64, scast( s8, va_arg( va, int )));
break;
case GEN_FMT_SHORT :
value = scast( s64, scast( s16, va_arg( va, int )));
break;
case GEN_FMT_LONG :
value = scast( s64, va_arg( va, long ));
break;
case GEN_FMT_LLONG :
value = scast( s64, va_arg( va, long long ));
break;
case GEN_FMT_SIZE :
value = scast( s64, va_arg( va, usize ));
break;
case GEN_FMT_INTPTR :
value = scast( s64, va_arg( va, uptr ));
break;
default :
value = scast( s64, va_arg( va, int ));
break;
}
len = _print_i64( text, remaining, &info, value );
}
}
text += len;
if ( len >= remaining )
remaining = min( remaining, 1 );
else
remaining -= len;
}
*text++ = '\0';
res = ( text - text_begin );
return ( res >= max_len || res < 0 ) ? -1 : res;
}
char* str_fmt_buf_va( char const* fmt, va_list va )
{
local_persist thread_local char buffer[ GEN_PRINTF_MAXLEN ];
str_fmt_va( buffer, size_of( buffer ), fmt, va );
return buffer;
}
char* str_fmt_buf( char const* fmt, ... )
{
va_list va;
char* str;
va_start( va, fmt );
str = str_fmt_buf_va( fmt, va );
va_end( va );
return str;
}
ssize str_fmt_file_va( FileInfo* f, char const* fmt, va_list va )
{
local_persist thread_local char buf[ GEN_PRINTF_MAXLEN ];
ssize len = str_fmt_va( buf, size_of( buf ), fmt, va );
b32 res = file_write( f, buf, len - 1 ); // NOTE: prevent extra whitespace
return res ? len : -1;
}
ssize str_fmt_file( FileInfo* f, char const* fmt, ... )
{
ssize res;
va_list va;
va_start( va, fmt );
res = str_fmt_file_va( f, fmt, va );
va_end( va );
return res;
}
ssize str_fmt( char* str, ssize n, char const* fmt, ... )
{
ssize res;
va_list va;
va_start( va, fmt );
res = str_fmt_va( str, n, fmt, va );
va_end( va );
return res;
}
ssize str_fmt_out_va( char const* fmt, va_list va )
{
return str_fmt_file_va( file_get_standard( EFileStandard_OUTPUT ), fmt, va );
}
ssize str_fmt_out_err_va( char const* fmt, va_list va )
{
return str_fmt_file_va( file_get_standard( EFileStandard_ERROR ), fmt, va );
}
ssize str_fmt_out_err( char const* fmt, ... )
{
ssize res;
va_list va;
va_start( va, fmt );
res = str_fmt_out_err_va( fmt, va );
va_end( va );
return res;
}
#pragma endregion Printing

View File

@@ -0,0 +1,42 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "string_ops.hpp"
#endif
#pragma region Printing
typedef struct FileInfo FileInfo;
#ifndef GEN_PRINTF_MAXLEN
# define GEN_PRINTF_MAXLEN kilobytes(128)
#endif
typedef char PrintF_Buffer[GEN_PRINTF_MAXLEN];
// NOTE: A locally persisting buffer is used internally
char* str_fmt_buf ( char const* fmt, ... );
char* str_fmt_buf_va ( char const* fmt, va_list va );
ssize str_fmt ( char* str, ssize n, char const* fmt, ... );
ssize str_fmt_va ( char* str, ssize n, char const* fmt, va_list va );
ssize str_fmt_out_va ( char const* fmt, va_list va );
ssize str_fmt_out_err ( char const* fmt, ... );
ssize str_fmt_out_err_va( char const* fmt, va_list va );
ssize str_fmt_file ( FileInfo* f, char const* fmt, ... );
ssize str_fmt_file_va ( FileInfo* f, char const* fmt, va_list va );
constexpr
char const* Msg_Invalid_Value = "INVALID VALUE PROVIDED";
inline
ssize log_fmt(char const* fmt, ...)
{
ssize res;
va_list va;
va_start(va, fmt);
res = str_fmt_out_va(fmt, va);
va_end(va);
return res;
}
#pragma endregion Printing

View File

@@ -0,0 +1,84 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# include "header_start.hpp"
#endif
#pragma region Macros and Includes
# include <stdio.h>
// NOTE: Ensure we use standard methods for these calls if we use GEN_PICO
# if ! defined( GEN_PICO_CUSTOM_ROUTINES )
# if ! defined( GEN_MODULE_CORE )
# define _strlen strlen
# define _printf_err( fmt, ... ) fprintf( stderr, fmt, __VA_ARGS__ )
# define _printf_err_va( fmt, va ) vfprintf( stderr, fmt, va )
# else
# define _strlen str_len
# define _printf_err( fmt, ... ) str_fmt_out_err( fmt, __VA_ARGS__ )
# define _printf_err_va( fmt, va ) str_fmt_out_err_va( fmt, va )
# endif
# endif
#
# include <errno.h>
#
# if defined( GEN_SYSTEM_UNIX ) || defined( GEN_SYSTEM_MACOS )
# include <unistd.h>
# elif defined( GEN_SYSTEM_WINDOWS )
# if ! defined( GEN_NO_WINDOWS_H )
# ifndef WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
#
# define WIN32_LEAN_AND_MEAN
# define WIN32_MEAN_AND_LEAN
# define VC_EXTRALEAN
# endif
# include <windows.h>
# undef NOMINMAX
# undef WIN32_LEAN_AND_MEAN
# undef WIN32_MEAN_AND_LEAN
# undef VC_EXTRALEAN
# endif
# endif
#include <sys/stat.h>
#ifdef GEN_SYSTEM_MACOS
# include <copyfile.h>
#endif
#ifdef GEN_SYSTEM_CYGWIN
# include <windows.h>
#endif
#if defined( GEN_SYSTEM_WINDOWS ) && ! defined( GEN_COMPILER_GCC )
# include <io.h>
#endif
#if defined( GEN_SYSTEM_LINUX )
# include <sys/types.h>
#endif
#ifdef GEN_BENCHMARK
// Timing includes
#if defined( GEN_SYSTEM_MACOS ) || GEN_SYSTEM_UNIX
# include <time.h>
# include <sys/time.h>
#endif
#if defined( GEN_SYSTEM_MACOS )
# include <mach/mach.h>
# include <mach/mach_time.h>
# include <mach/clock.h>
#endif
#if defined( GEN_SYSTEM_EMSCRIPTEN )
# include <emscripten.h>
#endif
#if defined( GEN_SYSTEM_WINDOWS )
# include <timezoneapi.h>
#endif
#endif
#pragma endregion Macros and Includes

View File

@@ -0,0 +1,215 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "string_ops.hpp"
# include "debug.cpp"
#endif
#pragma region String Ops
internal
ssize _scan_zpl_i64( const char* text, s32 base, s64* value )
{
const char* text_begin = text;
s64 result = 0;
b32 negative = false;
if ( *text == '-' )
{
negative = true;
text++;
}
if ( base == 16 && str_compare_len( text, "0x", 2 ) == 0 )
text += 2;
for ( ;; )
{
s64 v;
if ( char_is_digit( *text ) )
v = *text - '0';
else if ( base == 16 && char_is_hex_digit( *text ) )
v = hex_digit_to_int( *text );
else
break;
result *= base;
result += v;
text++;
}
if ( value )
{
if ( negative )
result = -result;
*value = result;
}
return ( text - text_begin );
}
// TODO : Are these good enough for characters?
global const char _num_to_char_table[] =
"0123456789"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"@$";
s64 str_to_i64( const char* str, char** end_ptr, s32 base )
{
ssize len;
s64 value;
if ( ! base )
{
if ( ( str_len( str ) > 2 ) && ( str_compare_len( str, "0x", 2 ) == 0 ) )
base = 16;
else
base = 10;
}
len = _scan_zpl_i64( str, base, &value );
if ( end_ptr )
*end_ptr = ( char* )str + len;
return value;
}
void i64_to_str( s64 value, char* string, s32 base )
{
char* buf = string;
b32 negative = false;
u64 v;
if ( value < 0 )
{
negative = true;
value = -value;
}
v = scast( u64, value);
if ( v != 0 )
{
while ( v > 0 )
{
*buf++ = _num_to_char_table[ v % base ];
v /= base;
}
}
else
{
*buf++ = '0';
}
if ( negative )
*buf++ = '-';
*buf = '\0';
str_reverse( string );
}
void u64_to_str( u64 value, char* string, s32 base )
{
char* buf = string;
if ( value )
{
while ( value > 0 )
{
*buf++ = _num_to_char_table[ value % base ];
value /= base;
}
}
else
{
*buf++ = '0';
}
*buf = '\0';
str_reverse( string );
}
f64 str_to_f64( const char* str, char** end_ptr )
{
f64 result, value, sign, scale;
s32 frac;
while ( char_is_space( *str ) )
{
str++;
}
sign = 1.0;
if ( *str == '-' )
{
sign = -1.0;
str++;
}
else if ( *str == '+' )
{
str++;
}
for ( value = 0.0; char_is_digit( *str ); str++ )
{
value = value * 10.0 + ( *str - '0' );
}
if ( *str == '.' )
{
f64 pow10 = 10.0;
str++;
while ( char_is_digit( *str ) )
{
value += ( *str - '0' ) / pow10;
pow10 *= 10.0;
str++;
}
}
frac = 0;
scale = 1.0;
if ( ( *str == 'e' ) || ( *str == 'E' ) )
{
u32 exp;
str++;
if ( *str == '-' )
{
frac = 1;
str++;
}
else if ( *str == '+' )
{
str++;
}
for ( exp = 0; char_is_digit( *str ); str++ )
{
exp = exp * 10 + ( *str - '0' );
}
if ( exp > 308 )
exp = 308;
while ( exp >= 50 )
{
scale *= 1e50;
exp -= 50;
}
while ( exp >= 8 )
{
scale *= 1e8;
exp -= 8;
}
while ( exp > 0 )
{
scale *= 10.0;
exp -= 1;
}
}
result = sign * ( frac ? ( value / scale ) : ( value * scale ) );
if ( end_ptr )
* end_ptr = rcast( char*, ccast(char*, str) );
return result;
}
#pragma endregion String Ops

View File

@@ -0,0 +1,287 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "memory.hpp"
#endif
#pragma region String Ops
const char* char_first_occurence( const char* str, char c );
b32 char_is_alpha( char c );
b32 char_is_alphanumeric( char c );
b32 char_is_digit( char c );
b32 char_is_hex_digit( char c );
b32 char_is_space( char c );
char char_to_lower( char c );
char char_to_upper( char c );
s32 digit_to_int( char c );
s32 hex_digit_to_int( char c );
s32 str_compare( const char* s1, const char* s2 );
s32 str_compare_len( const char* s1, const char* s2, ssize len );
char* str_copy( char* dest, const char* source, ssize len );
ssize str_copy_nulpad( char* dest, const char* source, ssize len );
ssize str_len( const char* str );
ssize str_len_capped( const char* str, ssize max_len );
char* str_reverse( char* str ); // NOTE: ASCII only
char const* str_skip( char const* str, char c );
char const* str_skip_any( char const* str, char const* char_list );
char const* str_trim( char const* str, b32 catch_newline );
// NOTE: ASCII only
void str_to_lower( char* str );
void str_to_upper( char* str );
s64 str_to_i64( const char* str, char** end_ptr, s32 base );
void i64_to_str( s64 value, char* string, s32 base );
void u64_to_str( u64 value, char* string, s32 base );
f64 str_to_f64( const char* str, char** end_ptr );
inline
const char* char_first_occurence( const char* s, char c )
{
char ch = c;
for ( ; *s != ch; s++ )
{
if ( *s == '\0' )
return NULL;
}
return s;
}
inline
b32 char_is_alpha( char c )
{
if ( ( c >= 'A' && c <= 'Z' ) || ( c >= 'a' && c <= 'z' ) )
return true;
return false;
}
inline
b32 char_is_alphanumeric( char c )
{
return char_is_alpha( c ) || char_is_digit( c );
}
inline
b32 char_is_digit( char c )
{
if ( c >= '0' && c <= '9' )
return true;
return false;
}
inline
b32 char_is_hex_digit( char c )
{
if ( char_is_digit( c ) || ( c >= 'a' && c <= 'f' ) || ( c >= 'A' && c <= 'F' ) )
return true;
return false;
}
inline
b32 char_is_space( char c )
{
if ( c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f' || c == '\v' )
return true;
return false;
}
inline
char char_to_lower( char c )
{
if ( c >= 'A' && c <= 'Z' )
return 'a' + ( c - 'A' );
return c;
}
inline char char_to_upper( char c )
{
if ( c >= 'a' && c <= 'z' )
return 'A' + ( c - 'a' );
return c;
}
inline
s32 digit_to_int( char c )
{
return char_is_digit( c ) ? c - '0' : c - 'W';
}
inline
s32 hex_digit_to_int( char c )
{
if ( char_is_digit( c ) )
return digit_to_int( c );
else if ( is_between( c, 'a', 'f' ) )
return c - 'a' + 10;
else if ( is_between( c, 'A', 'F' ) )
return c - 'A' + 10;
return -1;
}
inline
s32 str_compare( const char* s1, const char* s2 )
{
while ( *s1 && ( *s1 == *s2 ) )
{
s1++, s2++;
}
return *( u8* )s1 - *( u8* )s2;
}
inline
s32 str_compare_len( const char* s1, const char* s2, ssize len )
{
for ( ; len > 0; s1++, s2++, len-- )
{
if ( *s1 != *s2 )
return ( ( s1 < s2 ) ? -1 : +1 );
else if ( *s1 == '\0' )
return 0;
}
return 0;
}
inline
char* str_copy( char* dest, const char* source, ssize len )
{
GEN_ASSERT_NOT_NULL( dest );
if ( source )
{
char* str = dest;
while ( len > 0 && *source )
{
*str++ = *source++;
len--;
}
while ( len > 0 )
{
*str++ = '\0';
len--;
}
}
return dest;
}
inline
ssize str_copy_nulpad( char* dest, const char* source, ssize len )
{
ssize result = 0;
GEN_ASSERT_NOT_NULL( dest );
if ( source )
{
const char* source_start = source;
char* str = dest;
while ( len > 0 && *source )
{
*str++ = *source++;
len--;
}
while ( len > 0 )
{
*str++ = '\0';
len--;
}
result = source - source_start;
}
return result;
}
inline
ssize str_len( const char* str )
{
if ( str == NULL )
{
return 0;
}
const char* p = str;
while ( *str )
str++;
return str - p;
}
inline
ssize str_len_capped( const char* str, ssize max_len )
{
const char* end = rcast(const char*, mem_find( str, 0, max_len ));
if ( end )
return end - str;
return max_len;
}
inline
char* str_reverse( char* str )
{
ssize len = str_len( str );
char* a = str + 0;
char* b = str + len - 1;
len /= 2;
while ( len-- )
{
swap( *a, *b );
a++, b--;
}
return str;
}
inline
char const* str_skip( char const* str, char c )
{
while ( *str && *str != c )
{
++str;
}
return str;
}
inline
char const* str_skip_any( char const* str, char const* char_list )
{
char const* closest_ptr = rcast( char const*, pointer_add_const( rcast(mem_ptr_const, str), str_len( str ) ));
ssize char_list_count = str_len( char_list );
for ( ssize i = 0; i < char_list_count; i++ )
{
char const* p = str_skip( str, char_list[ i ] );
closest_ptr = min( closest_ptr, p );
}
return closest_ptr;
}
inline
char const* str_trim( char const* str, b32 catch_newline )
{
while ( *str && char_is_space( *str ) && ( ! catch_newline || ( catch_newline && *str != '\n' ) ) )
{
++str;
}
return str;
}
inline
void str_to_lower( char* str )
{
if ( ! str )
return;
while ( *str )
{
*str = char_to_lower( *str );
str++;
}
}
inline
void str_to_upper( char* str )
{
if ( ! str )
return;
while ( *str )
{
*str = char_to_upper( *str );
str++;
}
}
#pragma endregion String Ops

View File

@@ -0,0 +1,61 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "hashing.cpp"
#endif
#pragma region String
String string_make_length( AllocatorInfo allocator, char const* str, ssize length )
{
ssize const header_size = sizeof( StringHeader );
s32 alloc_size = header_size + length + 1;
void* allocation = alloc( allocator, alloc_size );
if ( allocation == nullptr ) {
String null_string = {nullptr};
return null_string;
}
StringHeader*
header = rcast(StringHeader*, allocation);
header->Allocator = allocator;
header->Capacity = length;
header->Length = length;
String result = { rcast( char*, allocation) + header_size };
if ( length && str )
mem_copy( result, str, length );
else
mem_set( result, 0, alloc_size - header_size );
result[ length ] = '\0';
return result;
}
String string_make_reserve( AllocatorInfo allocator, ssize capacity )
{
ssize const header_size = sizeof( StringHeader );
s32 alloc_size = header_size + capacity + 1;
void* allocation = alloc( allocator, alloc_size );
if ( allocation == nullptr ) {
String null_string = {nullptr};
return null_string;
}
mem_set( allocation, 0, alloc_size );
StringHeader*
header = rcast(StringHeader*, allocation);
header->Allocator = allocator;
header->Capacity = capacity;
header->Length = 0;
String result = { rcast(char*, allocation) + header_size };
return result;
}
#pragma endregion String

View File

@@ -0,0 +1,744 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "hashing.hpp"
#endif
#pragma region Strings
struct StrC;
StrC to_strc_from_c_str (char const* bad_string);
bool strc_are_equal (StrC lhs, StrC rhs);
char const* strc_back (StrC str);
bool strc_contains (StrC str, StrC substring);
StrC strc_duplicate (StrC str, AllocatorInfo allocator);
b32 strc_starts_with (StrC str, StrC substring);
StrC strc_visualize_whitespace(StrC str, AllocatorInfo allocator);
// Constant string with length.
struct StrC
{
ssize Len;
char const* Ptr;
#if GEN_COMPILER_CPP
forceinline operator char const* () const { return Ptr; }
forceinline char const& operator[]( ssize index ) const { return Ptr[index]; }
#if ! GEN_C_LIKE_CPP
forceinline bool is_equal (StrC rhs) const { return strc_are_equal(* this, rhs); }
forceinline char const* back () const { return strc_back(* this); }
forceinline bool contains (StrC substring) const { return strc_contains(* this, substring); }
forceinline StrC duplicate (AllocatorInfo allocator) const { return strc_duplicate(* this, allocator); }
forceinline b32 starts_with (StrC substring) const { return strc_starts_with(* this, substring); }
forceinline StrC visualize_whitespace(AllocatorInfo allocator) const { return strc_visualize_whitespace(* this, allocator); }
#endif
#endif
};
#define cast_to_strc( str ) * rcast( StrC*, (str) - sizeof(ssize) )
#ifndef txt
# if GEN_COMPILER_CPP
# define txt( text ) StrC { sizeof( text ) - 1, ( text ) }
# else
# define txt( text ) (StrC){ sizeof( text ) - 1, ( text ) }
# endif
#endif
GEN_API_C_BEGIN
forceinline char const* strc_begin(StrC str) { return str.Ptr; }
forceinline char const* strc_end (StrC str) { return str.Ptr + str.Len; }
forceinline char const* strc_next (StrC str, char const* iter) { return iter + 1; }
GEN_API_C_END
#if GEN_COMPILER_CPP
forceinline char const* begin(StrC str) { return str.Ptr; }
forceinline char const* end (StrC str) { return str.Ptr + str.Len; }
forceinline char const* next (StrC str, char const* iter) { return iter + 1; }
#endif
inline
bool strc_are_equal(StrC lhs, StrC rhs)
{
if (lhs.Len != rhs.Len)
return false;
for (ssize idx = 0; idx < lhs.Len; ++idx)
if (lhs.Ptr[idx] != rhs.Ptr[idx])
return false;
return true;
}
inline
char const* strc_back(StrC str) {
return & str.Ptr[str.Len - 1];
}
inline
bool strc_contains(StrC str, StrC substring)
{
if (substring.Len > str.Len)
return false;
ssize main_len = str.Len;
ssize sub_len = substring.Len;
for (ssize idx = 0; idx <= main_len - sub_len; ++idx)
{
if (str_compare_len(str.Ptr + idx, substring.Ptr, sub_len) == 0)
return true;
}
return false;
}
inline
b32 strc_starts_with(StrC str, StrC substring) {
if (substring.Len > str.Len)
return false;
b32 result = str_compare_len(str.Ptr, substring.Ptr, substring.Len) == 0;
return result;
}
inline
StrC to_strc_from_c_str( char const* bad_str ) {
StrC result = { str_len( bad_str ), bad_str };
return result;
}
// Dynamic String
// This is directly based off the ZPL string api.
// They used a header pattern
// I kept it for simplicty of porting but its not necessary to keep it that way.
#pragma region String
struct StringHeader;
#if GEN_COMPILER_C
typedef char* String;
#else
struct String;
#endif
forceinline usize string_grow_formula(usize value);
String string_make_c_str (AllocatorInfo allocator, char const* str);
String string_make_strc (AllocatorInfo allocator, StrC str);
String string_make_reserve (AllocatorInfo allocator, ssize capacity);
String string_make_length (AllocatorInfo allocator, char const* str, ssize length);
String string_fmt (AllocatorInfo allocator, char* buf, ssize buf_size, char const* fmt, ...);
String string_fmt_buf (AllocatorInfo allocator, char const* fmt, ...);
String string_join (AllocatorInfo allocator, char const** parts, ssize num_parts, char const* glue);
bool string_are_equal (String const lhs, String const rhs);
bool string_are_equal_strc (String const lhs, StrC rhs);
bool string_make_space_for (String* str, char const* to_append, ssize add_len);
bool string_append_char (String* str, char c);
bool string_append_c_str (String* str, char const* str_to_append);
bool string_append_c_str_len (String* str, char const* str_to_append, ssize length);
bool string_append_strc (String* str, StrC str_to_append);
bool string_append_string (String* str, String const other);
bool string_append_fmt (String* str, char const* fmt, ...);
ssize string_avail_space (String const str);
char* string_back (String str);
bool string_contains_strc (String const str, StrC substring);
bool string_contains_string (String const str, String const substring);
ssize string_capacity (String const str);
void string_clear (String str);
String string_duplicate (String const str, AllocatorInfo allocator);
void string_free (String* str);
StringHeader* string_get_header (String str);
ssize string_length (String const str);
b32 string_starts_with_strc (String const str, StrC substring);
b32 string_starts_with_string (String const str, String substring);
void string_skip_line (String str);
void string_strip_space (String str);
StrC string_to_strc (String str);
void string_trim (String str, char const* cut_set);
void string_trim_space (String str);
String string_visualize_whitespace(String const str);
struct StringHeader {
AllocatorInfo Allocator;
ssize Capacity;
ssize Length;
};
#if GEN_COMPILER_CPP
struct String
{
char* Data;
forceinline operator char*() { return Data; }
forceinline operator char const*() const { return Data; }
forceinline operator StrC() const { return { string_length(* this), Data }; }
String const& operator=(String const& other) const {
if (this == &other)
return *this;
String* this_ = ccast(String*, this);
this_->Data = other.Data;
return *this;
}
forceinline char& operator[](ssize index) { return Data[index]; }
forceinline char const& operator[](ssize index) const { return Data[index]; }
forceinline bool operator==(std::nullptr_t) const { return Data == nullptr; }
forceinline bool operator!=(std::nullptr_t) const { return Data != nullptr; }
friend forceinline bool operator==(std::nullptr_t, const String str) { return str.Data == nullptr; }
friend forceinline bool operator!=(std::nullptr_t, const String str) { return str.Data != nullptr; }
#if ! GEN_C_LIKE_CPP
forceinline char* begin() const { return Data; }
forceinline char* end() const { return Data + string_length(* this); }
#pragma region Member Mapping
forceinline static String make(AllocatorInfo allocator, char const* str) { return string_make_c_str(allocator, str); }
forceinline static String make(AllocatorInfo allocator, StrC str) { return string_make_strc(allocator, str); }
forceinline static String make_reserve(AllocatorInfo allocator, ssize cap) { return string_make_reserve(allocator, cap); }
forceinline static String make_length(AllocatorInfo a, char const* s, ssize l) { return string_make_length(a, s, l); }
forceinline static String join(AllocatorInfo a, char const** p, ssize n, char const* g) { return string_join(a, p, n, g); }
forceinline static usize grow_formula(usize value) { return string_grow_formula(value); }
static
String fmt(AllocatorInfo allocator, char* buf, ssize buf_size, char const* fmt, ...) {
va_list va;
va_start(va, fmt);
ssize res = str_fmt_va(buf, buf_size, fmt, va) - 1;
va_end(va);
return string_make_length(allocator, buf, res);
}
static
String fmt_buf(AllocatorInfo allocator, char const* fmt, ...) {
local_persist thread_local
char buf[GEN_PRINTF_MAXLEN] = { 0 };
va_list va;
va_start(va, fmt);
ssize res = str_fmt_va(buf, GEN_PRINTF_MAXLEN, fmt, va) - 1;
va_end(va);
return string_make_length(allocator, buf, res);
}
forceinline bool make_space_for(char const* str, ssize add_len) { return string_make_space_for(this, str, add_len); }
forceinline bool append(char c) { return string_append_char(this, c); }
forceinline bool append(char const* str) { return string_append_c_str(this, str); }
forceinline bool append(char const* str, ssize length) { return string_append_c_str_len(this, str, length); }
forceinline bool append(StrC str) { return string_append_strc(this, str); }
forceinline bool append(const String other) { return string_append_string(this, other); }
forceinline ssize avail_space() const { return string_avail_space(* this); }
forceinline char* back() { return string_back(* this); }
forceinline bool contains(StrC substring) const { return string_contains_strc(* this, substring); }
forceinline bool contains(String const& substring) const { return string_contains_string(* this, substring); }
forceinline ssize capacity() const { return string_capacity(* this); }
forceinline void clear() { string_clear(* this); }
forceinline String duplicate(AllocatorInfo allocator) const { return string_duplicate(* this, allocator); }
forceinline void free() { string_free(this); }
forceinline bool is_equal(String const& other) const { return string_are_equal(* this, other); }
forceinline bool is_equal(StrC other) const { return string_are_equal_strc(* this, other); }
forceinline ssize length() const { return string_length(* this); }
forceinline b32 starts_with(StrC substring) const { return string_starts_with_strc(* this, substring); }
forceinline b32 starts_with(String substring) const { return string_starts_with_string(* this, substring); }
forceinline void skip_line() { string_skip_line(* this); }
forceinline void strip_space() { string_strip_space(* this); }
forceinline StrC to_strc() { return { string_length(*this), Data}; }
forceinline void trim(char const* cut_set) { string_trim(* this, cut_set); }
forceinline void trim_space() { string_trim_space(* this); }
forceinline String visualize_whitespace() const { return string_visualize_whitespace(* this); }
forceinline StringHeader& get_header() { return * string_get_header(* this); }
bool append_fmt(char const* fmt, ...) {
ssize res;
char buf[GEN_PRINTF_MAXLEN] = { 0 };
va_list va;
va_start(va, fmt);
res = str_fmt_va(buf, count_of(buf) - 1, fmt, va) - 1;
va_end(va);
return string_append_c_str_len(this, buf, res);
}
#pragma endregion Member Mapping
#endif
};
#endif
forceinline char* string_begin(String str) { return ((char*) str); }
forceinline char* string_end (String str) { return ((char*) str + string_length(str)); }
forceinline char* string_next (String str, char const* iter) { return ((char*) iter + 1); }
#if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP
forceinline char* begin(String str) { return ((char*) str); }
forceinline char* end (String str) { return ((char*) str + string_length(str)); }
forceinline char* next (String str, char* iter) { return ((char*) iter + 1); }
#endif
#if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP
forceinline bool make_space_for(String& str, char const* to_append, ssize add_len);
forceinline bool append(String& str, char c);
forceinline bool append(String& str, char const* str_to_append);
forceinline bool append(String& str, char const* str_to_append, ssize length);
forceinline bool append(String& str, StrC str_to_append);
forceinline bool append(String& str, const String other);
forceinline bool append_fmt(String& str, char const* fmt, ...);
forceinline char& back(String& str);
forceinline void clear(String& str);
forceinline void free(String& str);
#endif
forceinline
usize string_grow_formula(usize value) {
// Using a very aggressive growth formula to reduce time mem_copying with recursive calls to append in this library.
return 4 * value + 8;
}
forceinline
String string_make_c_str(AllocatorInfo allocator, char const* str) {
ssize length = str ? str_len(str) : 0;
return string_make_length(allocator, str, length);
}
forceinline
String string_make_strc(AllocatorInfo allocator, StrC str) {
return string_make_length(allocator, str.Ptr, str.Len);
}
inline
String string_fmt(AllocatorInfo allocator, char* buf, ssize buf_size, char const* fmt, ...) {
va_list va;
va_start(va, fmt);
ssize res = str_fmt_va(buf, buf_size, fmt, va) - 1;
va_end(va);
return string_make_length(allocator, buf, res);
}
inline
String string_fmt_buf(AllocatorInfo allocator, char const* fmt, ...)
{
local_persist thread_local
PrintF_Buffer buf = struct_init(PrintF_Buffer, {0});
va_list va;
va_start(va, fmt);
ssize res = str_fmt_va(buf, GEN_PRINTF_MAXLEN, fmt, va) -1;
va_end(va);
return string_make_length(allocator, buf, res);
}
inline
String string_join(AllocatorInfo allocator, char const** parts, ssize num_parts, char const* glue)
{
String result = string_make_c_str(allocator, "");
for (ssize idx = 0; idx < num_parts; ++idx)
{
string_append_c_str(& result, parts[idx]);
if (idx < num_parts - 1)
string_append_c_str(& result, glue);
}
return result;
}
forceinline
bool string_append_char(String* str, char c) {
GEN_ASSERT(str != nullptr);
return string_append_c_str_len( str, (char const*)& c, (ssize)1);
}
forceinline
bool string_append_c_str(String* str, char const* str_to_append) {
GEN_ASSERT(str != nullptr);
return string_append_c_str_len(str, str_to_append, str_len(str_to_append));
}
inline
bool string_append_c_str_len(String* str, char const* str_to_append, ssize append_length)
{
GEN_ASSERT(str != nullptr);
if ( rcast(sptr, str_to_append) > 0)
{
ssize curr_len = string_length(* str);
if ( ! string_make_space_for(str, str_to_append, append_length))
return false;
StringHeader* header = string_get_header(* str);
char* Data = * str;
mem_copy( Data + curr_len, str_to_append, append_length);
Data[curr_len + append_length] = '\0';
header->Length = curr_len + append_length;
}
return str_to_append != nullptr;
}
forceinline
bool string_append_strc(String* str, StrC str_to_append) {
GEN_ASSERT(str != nullptr);
return string_append_c_str_len(str, str_to_append.Ptr, str_to_append.Len);
}
forceinline
bool string_append_string(String* str, String const other) {
GEN_ASSERT(str != nullptr);
return string_append_c_str_len(str, (char const*)other, string_length(other));
}
bool string_append_fmt(String* str, char const* fmt, ...) {
GEN_ASSERT(str != nullptr);
ssize res;
char buf[GEN_PRINTF_MAXLEN] = { 0 };
va_list va;
va_start(va, fmt);
res = str_fmt_va(buf, count_of(buf) - 1, fmt, va) - 1;
va_end(va);
return string_append_c_str_len(str, (char const*)buf, res);
}
inline
bool string_are_equal_string(String const lhs, String const rhs)
{
if (string_length(lhs) != string_length(rhs))
return false;
for (ssize idx = 0; idx < string_length(lhs); ++idx)
if (lhs[idx] != rhs[idx])
return false;
return true;
}
inline
bool string_are_equal_strc(String const lhs, StrC rhs)
{
if (string_length(lhs) != (rhs.Len))
return false;
for (ssize idx = 0; idx < string_length(lhs); ++idx)
if (lhs[idx] != rhs.Ptr[idx])
return false;
return true;
}
forceinline
ssize string_avail_space(String const str) {
StringHeader const* header = rcast(StringHeader const*, scast(char const*, str) - sizeof(StringHeader));
return header->Capacity - header->Length;
}
forceinline
char* string_back(String str) {
return & (str)[string_length(str) - 1];
}
inline
bool string_contains_StrC(String const str, StrC substring)
{
StringHeader const* header = rcast(StringHeader const*, scast(char const*, str) - sizeof(StringHeader));
if (substring.Len > header->Length)
return false;
ssize main_len = header->Length;
ssize sub_len = substring.Len;
for (ssize idx = 0; idx <= main_len - sub_len; ++idx)
{
if (str_compare_len(str + idx, substring.Ptr, sub_len) == 0)
return true;
}
return false;
}
inline
bool string_contains_string(String const str, String const substring)
{
StringHeader const* header = rcast(StringHeader const*, scast(char const*, str) - sizeof(StringHeader));
if (string_length(substring) > header->Length)
return false;
ssize main_len = header->Length;
ssize sub_len = string_length(substring);
for (ssize idx = 0; idx <= main_len - sub_len; ++idx)
{
if (str_compare_len(str + idx, substring, sub_len) == 0)
return true;
}
return false;
}
forceinline
ssize string_capacity(String const str) {
StringHeader const* header = rcast(StringHeader const*, scast(char const*, str) - sizeof(StringHeader));
return header->Capacity;
}
forceinline
void string_clear(String str) {
string_get_header(str)->Length = 0;
}
forceinline
String string_duplicate(String const str, AllocatorInfo allocator) {
return string_make_length(allocator, str, string_length(str));
}
forceinline
void string_free(String* str) {
GEN_ASSERT(str != nullptr);
if (! (* str))
return;
StringHeader* header = string_get_header(* str);
allocator_free(header->Allocator, header);
}
forceinline
StringHeader* string_get_header(String str) {
return (StringHeader*)(scast(char*, str) - sizeof(StringHeader));
}
forceinline
ssize string_length(String const str)
{
StringHeader const* header = rcast(StringHeader const*, scast(char const*, str) - sizeof(StringHeader));
return header->Length;
}
inline
bool string_make_space_for(String* str, char const* to_append, ssize add_len)
{
ssize available = string_avail_space(* str);
if (available >= add_len) {
return true;
}
else
{
ssize new_len, old_size, new_size;
void* ptr;
void* new_ptr;
AllocatorInfo allocator = string_get_header(* str)->Allocator;
StringHeader* header = nullptr;
new_len = string_grow_formula(string_length(* str) + add_len);
ptr = string_get_header(* str);
old_size = size_of(StringHeader) + string_length(* str) + 1;
new_size = size_of(StringHeader) + new_len + 1;
new_ptr = resize(allocator, ptr, old_size, new_size);
if (new_ptr == nullptr)
return false;
header = rcast(StringHeader*, new_ptr);
header->Allocator = allocator;
header->Capacity = new_len;
char** Data = rcast(char**, str);
* Data = rcast(char*, header + 1);
return true;
}
}
forceinline
b32 string_starts_with_strc(String const str, StrC substring) {
if (substring.Len > string_length(str))
return false;
b32 result = str_compare_len(str, substring.Ptr, substring.Len) == 0;
return result;
}
forceinline
b32 string_starts_with_string(String const str, String substring) {
if (string_length(substring) > string_length(str))
return false;
b32 result = str_compare_len(str, substring, string_length(substring) - 1) == 0;
return result;
}
inline
void string_skip_line(String str)
{
#define current (*scanner)
char* scanner = str;
while (current != '\r' && current != '\n') {
++scanner;
}
s32 new_length = scanner - str;
if (current == '\r') {
new_length += 1;
}
mem_move((char*)str, scanner, new_length);
StringHeader* header = string_get_header(str);
header->Length = new_length;
#undef current
}
inline
void strip_space(String str)
{
char* write_pos = str;
char* read_pos = str;
while (* read_pos)
{
if (! char_is_space(* read_pos))
{
* write_pos = * read_pos;
write_pos++;
}
read_pos++;
}
write_pos[0] = '\0'; // Null-terminate the modified string
// Update the length if needed
string_get_header(str)->Length = write_pos - str;
}
forceinline
StrC string_to_strc(String str) {
StrC result = { string_length(str), (char const*)str };
return result;
}
inline
void string_trim(String str, char const* cut_set)
{
ssize len = 0;
char* start_pos = str;
char* end_pos = scast(char*, str) + string_length(str) - 1;
while (start_pos <= end_pos && char_first_occurence(cut_set, *start_pos))
start_pos++;
while (end_pos > start_pos && char_first_occurence(cut_set, *end_pos))
end_pos--;
len = scast(ssize, (start_pos > end_pos) ? 0 : ((end_pos - start_pos) + 1));
if (str != start_pos)
mem_move(str, start_pos, len);
str[len] = '\0';
string_get_header(str)->Length = len;
}
forceinline
void string_trim_space(String str) {
string_trim(str, " \t\r\n\v\f");
}
inline
String string_visualize_whitespace(String const str)
{
StringHeader* header = (StringHeader*)(scast(char const*, str) - sizeof(StringHeader));
String result = string_make_reserve(header->Allocator, string_length(str) * 2); // Assume worst case for space requirements.
for (char const* c = string_begin(str); c != string_end(str); c = string_next(str, c))
switch ( * c )
{
case ' ':
string_append_strc(& result, txt("·"));
break;
case '\t':
string_append_strc(& result, txt(""));
break;
case '\n':
string_append_strc(& result, txt(""));
break;
case '\r':
string_append_strc(& result, txt(""));
break;
case '\v':
string_append_strc(& result, txt(""));
break;
case '\f':
string_append_strc(& result, txt(""));
break;
default:
string_append_char(& result, * c);
break;
}
return result;
}
#pragma endregion String
#if GEN_COMPILER_CPP
struct String_POD {
char* Data;
};
static_assert( sizeof( String_POD ) == sizeof( String ), "String is not a POD" );
#endif
forceinline
StrC strc_duplicate(StrC str, AllocatorInfo allocator) {
StrC result = string_to_strc( string_make_length(allocator, str.Ptr, str.Len));
return result;
}
inline
StrC strc_visualize_whitespace(StrC str, AllocatorInfo allocator)
{
String result = string_make_reserve(allocator, str.Len * 2); // Assume worst case for space requirements.
for (char const* c = strc_begin(str); c != strc_end(str); c = strc_next(str, c))
switch ( * c )
{
case ' ':
string_append_strc(& result, txt("·"));
break;
case '\t':
string_append_strc(& result, txt(""));
break;
case '\n':
string_append_strc(& result, txt(""));
break;
case '\r':
string_append_strc(& result, txt(""));
break;
case '\v':
string_append_strc(& result, txt(""));
break;
case '\f':
string_append_strc(& result, txt(""));
break;
default:
string_append_char(& result, * c);
break;
}
return string_to_strc(result);
}
// Represents strings cached with the string table.
// Should never be modified, if changed string is desired, cache_string( str ) another.
typedef StrC StringCached;
// Implements basic string interning. Data structure is based off the ZPL Hashtable.
typedef HashTable(StringCached) StringTable;
#pragma endregion Strings

View File

@@ -0,0 +1,167 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "filesystem.cpp"
#endif
#pragma region Timing
#ifdef GEN_BENCHMARK
#if defined( GEN_COMPILER_MSVC ) && ! defined( __clang__ )
u64 read_cpu_time_stamp_counter( void )
{
return __rdtsc();
}
#elif defined( __i386__ )
u64 read_cpu_time_stamp_counter( void )
{
u64 x;
__asm__ volatile( ".byte 0x0f, 0x31" : "=A"( x ) );
return x;
}
#elif defined( __x86_64__ )
u64 read_cpu_time_stamp_counter( void )
{
u32 hi, lo;
__asm__ __volatile__( "rdtsc" : "=a"( lo ), "=d"( hi ) );
return scast( u64, lo ) | ( scast( u64, hi ) << 32 );
}
#elif defined( __powerpc__ )
u64 read_cpu_time_stamp_counter( void )
{
u64 result = 0;
u32 upper, lower, tmp;
__asm__ volatile(
"0: \n"
"\tmftbu %0 \n"
"\tmftb %1 \n"
"\tmftbu %2 \n"
"\tcmpw %2,%0 \n"
"\tbne 0b \n"
: "=r"( upper ), "=r"( lower ), "=r"( tmp )
);
result = upper;
result = result << 32;
result = result | lower;
return result;
}
#elif defined( GEN_SYSTEM_EMSCRIPTEN )
u64 read_cpu_time_stamp_counter( void )
{
return ( u64 )( emscripten_get_now() * 1e+6 );
}
#elif defined( GEN_CPU_ARM ) && ! defined( GEN_COMPILER_TINYC )
u64 read_cpu_time_stamp_counter( void )
{
# if defined( __aarch64__ )
int64_t r = 0;
asm volatile( "mrs %0, cntvct_el0" : "=r"( r ) );
# elif ( __ARM_ARCH >= 6 )
uint32_t r = 0;
uint32_t pmccntr;
uint32_t pmuseren;
uint32_t pmcntenset;
// Read the user mode perf monitor counter access permissions.
asm volatile( "mrc p15, 0, %0, c9, c14, 0" : "=r"( pmuseren ) );
if ( pmuseren & 1 )
{ // Allows reading perfmon counters for user mode code.
asm volatile( "mrc p15, 0, %0, c9, c12, 1" : "=r"( pmcntenset ) );
if ( pmcntenset & 0x80000000ul )
{ // Is it counting?
asm volatile( "mrc p15, 0, %0, c9, c13, 0" : "=r"( pmccntr ) );
// The counter is set up to count every 64th cycle
return ( ( int64_t )pmccntr ) * 64; // Should optimize to << 6
}
}
# else
# error "No suitable method for read_cpu_time_stamp_counter for this cpu type"
# endif
return r;
}
#else
u64 read_cpu_time_stamp_counter( void )
{
GEN_PANIC( "read_cpu_time_stamp_counter is not supported on this particular setup" );
return -0;
}
#endif
#if defined( GEN_SYSTEM_WINDOWS ) || defined( GEN_SYSTEM_CYGWIN )
u64 time_rel_ms( void )
{
local_persist LARGE_INTEGER win32_perf_count_freq = {};
u64 result;
LARGE_INTEGER counter;
local_persist LARGE_INTEGER win32_perf_counter = {};
if ( ! win32_perf_count_freq.QuadPart )
{
QueryPerformanceFrequency( &win32_perf_count_freq );
GEN_ASSERT( win32_perf_count_freq.QuadPart != 0 );
QueryPerformanceCounter( &win32_perf_counter );
}
QueryPerformanceCounter( &counter );
result = ( counter.QuadPart - win32_perf_counter.QuadPart ) * 1000 / ( win32_perf_count_freq.QuadPart );
return result;
}
#else
# if defined( GEN_SYSTEM_LINUX ) || defined( GEN_SYSTEM_FREEBSD ) || defined( GEN_SYSTEM_OPENBSD ) || defined( GEN_SYSTEM_EMSCRIPTEN )
u64 _unix_gettime( void )
{
struct timespec t;
u64 result;
clock_gettime( 1 /*CLOCK_MONOTONIC*/, &t );
result = 1000 * t.tv_sec + 1.0e-6 * t.tv_nsec;
return result;
}
# endif
u64 time_rel_ms( void )
{
# if defined( GEN_SYSTEM_OSX )
u64 result;
local_persist u64 timebase = 0;
local_persist u64 timestart = 0;
if ( ! timestart )
{
mach_timebase_info_data_t tb = { 0 };
mach_timebase_info( &tb );
timebase = tb.numer;
timebase /= tb.denom;
timestart = mach_absolute_time();
}
// NOTE: mach_absolute_time() returns things in nanoseconds
result = 1.0e-6 * ( mach_absolute_time() - timestart ) * timebase;
return result;
# else
local_persist u64 unix_timestart = 0.0;
if ( ! unix_timestart )
{
unix_timestart = _unix_gettime();
}
u64 now = _unix_gettime();
return ( now - unix_timestart );
# endif
}
#endif
f64 time_rel( void )
{
return ( f64 )( time_rel_ms() * 1e-3 );
}
#endif
#pragma endregion Timing

View File

@@ -0,0 +1,19 @@
#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "filesystem.hpp"
#endif
#pragma region Timing
#ifdef GEN_BENCHMARK
//! Return CPU timestamp.
u64 read_cpu_time_stamp_counter( void );
//! Return relative time (in seconds) since the application start.
f64 time_rel( void );
//! Return relative time since the application start.
u64 time_rel_ms( void );
#endif
#pragma endregion Timing