1
0
mirror of https://github.com/Ed94/gencpp.git synced 2025-01-14 02:34:07 -08:00
2023-11-19 00:01:35 -05:00

4911 lines
228 KiB
C

/**********************************************************************************************
*
* rlgl v4.5 - A multi-OpenGL abstraction layer with an immediate-mode style API
*
* DESCRIPTION:
* An abstraction layer for multiple OpenGL versions (1.1, 2.1, 3.3 Core, 4.3 Core, ES 2.0)
* that provides a pseudo-OpenGL 1.1 immediate-mode style API (Vertex, Translate, Rotate...)
*
* ADDITIONAL NOTES:
* When choosing an OpenGL backend different than OpenGL 1.1, some internal buffer are
* initialized on init() to accumulate vertex data.
*
* When an internal state change is required all the stored vertex data is renderer in batch,
* additionally, draw_render_batch_active() could be called to force flushing of the batch.
*
* Some resources are also loaded for convenience, here the complete list:
* - Default batch (GLOBAL_DATA.defaultBatch): RenderBatch system to accumulate vertex data
* - Default texture (GLOBAL_DATA.defaultTextureId): 1x1 white pixel R8G8B8A8
* - Default shader (GLOBAL_DATA.State.defaultShaderId, GLOBAL_DATA.State.defaultShaderLocs)
*
* Internal buffer (and resources) must be manually unloaded calling close().
*
* CONFIGURATION:
* #define GRAPHICS_API_OPENGL_11
* #define GRAPHICS_API_OPENGL_21
* #define GRAPHICS_API_OPENGL_33
* #define GRAPHICS_API_OPENGL_43
* #define GRAPHICS_API_OPENGL_ES2
* #define GRAPHICS_API_OPENGL_ES3
* Use selected OpenGL graphics backend, should be supported by platform
* Those preprocessor defines are only used on rlgl module, if OpenGL version is
* required by any other module, use get_version() to check it
*
* #define RLGL_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
* #define RLGL_RENDER_TEXTURES_HINT
* Enable framebuffer objects (fbo) support (enabled by default)
* Some GPUs could not support them despite the OpenGL version
*
* #define RLGL_SHOW_GL_DETAILS_INFO
* Show OpenGL extensions and capabilities detailed logs on init
*
* #define RLGL_ENABLE_OPENGL_DEBUG_CONTEXT
* Enable debug context (only available on OpenGL 4.3)
*
* rlgl capabilities could be customized just defining some internal
* values before library inclusion (default values listed):
*
* #define RL_DEFAULT_BATCH_BUFFER_ELEMENTS 8192 // Default internal render batch elements limits
* #define RL_DEFAULT_BATCH_BUFFERS 1 // Default number of batch buffers (multi-buffering)
* #define RL_DEFAULT_BATCH_DRAWCALLS 256 // Default number of batch draw calls (by state changes: mode, texture)
* #define RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS 4 // Maximum number of textures units that can be activated on batch drawing (SetShaderValueTexture())
*
* #define RL_MAX_MATRIX_STACK_SIZE 32 // Maximum size of internal Matrix stack
* #define RL_MAX_SHADER_LOCATIONS 32 // Maximum number of shader locations supported
* #define CULL_DISTANCE_NEAR 0.01 // Default projection matrix near cull distance
* #define CULL_DISTANCE_FAR 1000.0 // Default projection matrix far cull distance
*
* When loading a shader, the following vertex attributes and uniform
* location names are tried to be set automatically:
*
* #define RL_DEFAULT_SHADER_ATTRIB_NAME_POSITION "vertexPosition" // Bound by default to shader location: 0
* #define RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD "vertexTexCoord" // Bound by default to shader location: 1
* #define RL_DEFAULT_SHADER_ATTRIB_NAME_NORMAL "vertexNormal" // Bound by default to shader location: 2
* #define RL_DEFAULT_SHADER_ATTRIB_NAME_COLOR "vertexColor" // Bound by default to shader location: 3
* #define RL_DEFAULT_SHADER_ATTRIB_NAME_TANGENT "vertexTangent" // Bound by default to shader location: 4
* #define RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2 "vertexTexCoord2" // Bound by default to shader location: 5
* #define RL_DEFAULT_SHADER_UNIFORM_NAME_MVP "mvp" // model-view-projection matrix
* #define RL_DEFAULT_SHADER_UNIFORM_NAME_VIEW "matView" // view matrix
* #define RL_DEFAULT_SHADER_UNIFORM_NAME_PROJECTION "matProjection" // projection matrix
* #define RL_DEFAULT_SHADER_UNIFORM_NAME_MODEL "matModel" // model matrix
* #define RL_DEFAULT_SHADER_UNIFORM_NAME_NORMAL "matNormal" // normal matrix (transpose(inverse(matModelView))
* #define RL_DEFAULT_SHADER_UNIFORM_NAME_COLOR "colDiffuse" // color diffuse (base tint color, multiplied by texture color)
* #define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE0 "texture0" // texture0 (texture slot active 0)
* #define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE1 "texture1" // texture1 (texture slot active 1)
* #define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE2 "texture2" // texture2 (texture slot active 2)
*
* DEPENDENCIES:
* - OpenGL libraries (depending on platform and OpenGL version selected)
* - GLAD OpenGL extensions loading library (only for OpenGL 3.3 Core, 4.3 Core)
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2014-2023 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#ifndef RLGL_H
#define RLGL_H
#define RLGL_VERSION "4.5"
#ifndef RAYLIB_H
// Function specifiers in case library is build/used as a shared library (Windows)
// NOTE: Microsoft specifiers to tell compiler that symbols are imported/exported from a .dll
#if defined(_WIN32)
#if defined(BUILD_LIBTYPE_SHARED)
#define RLAPI __declspec(dllexport) // We are building the library as a Win32 shared library (.dll)
#elif defined(USE_LIBTYPE_SHARED)
#define RLAPI __declspec(dllimport) // We are using the library as a Win32 shared library (.dll)
#endif
#endif
// Function specifiers definition
#ifndef RLAPI
#define RLAPI // Functions defined as 'extern' by default (implicit specifiers)
#endif
#endif
// Indicates of raylib has been refactored
#ifndef RL_REFACTORED_CPP
#define RL_REFACTORED_CPP
#endif
#define RLGL_USE_CPP_NAMESPACE 1
#define RLGL_USE_CPP_MANGLING 1
#if RLGL_USE_CPP_NAMESPACE && defined(__cplusplus)
#pragma message("USING CPP MANGLING")
#define RLGL_NS_BEGIN namespace rl {
#define RLGL_NS_END }
#else
#define RLGL_NS_BEGIN
#define RLGL_NS_END
#endif
#if RLGL_USE_CPP_MANGLING && defined(__cplusplus)
#pragma message("USING CPP MANGALING")
#define RLGL_EXTERN_C_BEGIN
#define RLGL_EXTERN_C_END
#else
#ifdef __cplusplus
#define RLGL_EXTERN_C_BEGIN extern "C" {
#define RLGL_EXTERN_C_END }
#else
#define RLGL_EXTERN_C_BEGIN
#define RLGL_EXTERN_C_END
#endif
#endif
// Support RL_TRACELOG macros
#ifndef RL_TRACELOG
#define RL_TRACELOG(level, ...) (void)0
#define TRACELOGD(...) (void)0
#endif
// Allow custom memory allocators
#ifndef RL_MALLOC
#define RL_MALLOC(sz) malloc(sz)
#endif
#ifndef RL_CALLOC
#define RL_CALLOC(n,sz) calloc(n,sz)
#endif
#ifndef RL_REALLOC
#define RL_REALLOC(n,sz) realloc(n,sz)
#endif
#ifndef RL_FREE
#define RL_FREE(p) free(p)
#endif
// Security check in case no GRAPHICS_API_OPENGL_* defined
#if !defined(GRAPHICS_API_OPENGL_11) && \
!defined(GRAPHICS_API_OPENGL_21) && \
!defined(GRAPHICS_API_OPENGL_33) && \
!defined(GRAPHICS_API_OPENGL_43) && \
!defined(GRAPHICS_API_OPENGL_ES2) && \
!defined(GRAPHICS_API_OPENGL_ES3)
#define GRAPHICS_API_OPENGL_33
#endif
// Security check in case multiple GRAPHICS_API_OPENGL_* defined
#if defined(GRAPHICS_API_OPENGL_11)
#if defined(GRAPHICS_API_OPENGL_21)
#undef GRAPHICS_API_OPENGL_21
#endif
#if defined(GRAPHICS_API_OPENGL_33)
#undef GRAPHICS_API_OPENGL_33
#endif
#if defined(GRAPHICS_API_OPENGL_43)
#undef GRAPHICS_API_OPENGL_43
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
#undef GRAPHICS_API_OPENGL_ES2
#endif
#endif
// OpenGL 2.1 uses most of OpenGL 3.3 Core functionality
// WARNING: Specific parts are checked with #if defines
#if defined(GRAPHICS_API_OPENGL_21)
#define GRAPHICS_API_OPENGL_33
#endif
// OpenGL 4.3 uses OpenGL 3.3 Core functionality
#if defined(GRAPHICS_API_OPENGL_43)
#define GRAPHICS_API_OPENGL_33
#endif
// OpenGL ES 3.0 uses OpenGL ES 2.0 functionality (and more)
#if defined(GRAPHICS_API_OPENGL_ES3)
#define GRAPHICS_API_OPENGL_ES2
#endif
// Support framebuffer objects by default
// NOTE: Some driver implementation do not support it, despite they should
#define RLGL_RENDER_TEXTURES_HINT
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
// Default internal render batch elements limits
#ifndef RL_DEFAULT_BATCH_BUFFER_ELEMENTS
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
// This is the maximum amount of elements (quads) per batch
// NOTE: Be careful with text, every letter maps to a quad
#define RL_DEFAULT_BATCH_BUFFER_ELEMENTS 8192
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
// We reduce memory sizes for embedded systems (RPI and HTML5)
// NOTE: On HTML5 (emscripten) this is allocated on heap,
// by default it's only 16MB!...just take care...
#define RL_DEFAULT_BATCH_BUFFER_ELEMENTS 2048
#endif
#endif
#ifndef RL_DEFAULT_BATCH_BUFFERS
#define RL_DEFAULT_BATCH_BUFFERS 1 // Default number of batch buffers (multi-buffering)
#endif
#ifndef RL_DEFAULT_BATCH_DRAWCALLS
#define RL_DEFAULT_BATCH_DRAWCALLS 256 // Default number of batch draw calls (by state changes: mode, texture)
#endif
#ifndef RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS
#define RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS 4 // Maximum number of textures units that can be activated on batch drawing (SetShaderValueTexture())
#endif
// Internal Matrix stack
#ifndef RL_MAX_MATRIX_STACK_SIZE
#define RL_MAX_MATRIX_STACK_SIZE 32 // Maximum size of Matrix stack
#endif
// Shader limits
#ifndef RL_MAX_SHADER_LOCATIONS
#define RL_MAX_SHADER_LOCATIONS 32 // Maximum number of shader locations supported
#endif
// Projection matrix culling
#ifndef CULL_DISTANCE_NEAR
#define CULL_DISTANCE_NEAR 0.01 // Default near cull distance
#endif
#ifndef CULL_DISTANCE_FAR
#define CULL_DISTANCE_FAR 1000.0 // Default far cull distance
#endif
// Texture parameters (equivalent to OpenGL defines)
#define TEXTURE_WRAP_S 0x2802 // GL_TEXTURE_WRAP_S
#define TEXTURE_WRAP_T 0x2803 // GL_TEXTURE_WRAP_T
#define TEXTURE_MAG_FILTER 0x2800 // GL_TEXTURE_MAG_FILTER
#define TEXTURE_MIN_FILTER 0x2801 // GL_TEXTURE_MIN_FILTER
#define TEXTURE_FILTER_NEAREST 0x2600 // GL_NEAREST
#define TEXTURE_FILTER_LINEAR 0x2601 // GL_LINEAR
#define TEXTURE_FILTER_MIP_NEAREST 0x2700 // GL_NEAREST_MIPMAP_NEAREST
#define TEXTURE_FILTER_NEAREST_MIP_LINEAR 0x2702 // GL_NEAREST_MIPMAP_LINEAR
#define TEXTURE_FILTER_LINEAR_MIP_NEAREST 0x2701 // GL_LINEAR_MIPMAP_NEAREST
#define TEXTURE_FILTER_MIP_LINEAR 0x2703 // GL_LINEAR_MIPMAP_LINEAR
#define TEXTURE_FILTER_ANISOTROPIC 0x3000 // Anisotropic filter (custom identifier)
#define TEXTURE_MIPMAP_BIAS_RATIO 0x4000 // Texture mipmap bias, percentage ratio (custom identifier)
#define TEXTURE_WRAP_REPEAT 0x2901 // GL_REPEAT
#define TEXTURE_WRAP_CLAMP 0x812F // GL_CLAMP_TO_EDGE
#define TEXTURE_WRAP_MIRROR_REPEAT 0x8370 // GL_MIRRORED_REPEAT
#define TEXTURE_WRAP_MIRROR_CLAMP 0x8742 // GL_MIRROR_CLAMP_EXT
// Matrix modes (equivalent to OpenGL)
#define RL_MODELVIEW 0x1700 // GL_MODELVIEW
#define RL_PROJECTION 0x1701 // GL_PROJECTION
#define RL_TEXTURE 0x1702 // GL_TEXTURE
// Primitive assembly draw modes
#define RL_LINES 0x0001 // GL_LINES
#define RL_TRIANGLES 0x0004 // GL_TRIANGLES
#define RL_QUADS 0x0007 // GL_QUADS
// GL equivalent data types
#define RL_UNSIGNED_BYTE 0x1401 // GL_UNSIGNED_BYTE
#define RL_FLOAT 0x1406 // GL_FLOAT
// GL buffer usage hint
#define RL_STREAM_DRAW 0x88E0 // GL_STREAM_DRAW
#define RL_STREAM_READ 0x88E1 // GL_STREAM_READ
#define RL_STREAM_COPY 0x88E2 // GL_STREAM_COPY
#define RL_STATIC_DRAW 0x88E4 // GL_STATIC_DRAW
#define RL_STATIC_READ 0x88E5 // GL_STATIC_READ
#define RL_STATIC_COPY 0x88E6 // GL_STATIC_COPY
#define RL_DYNAMIC_DRAW 0x88E8 // GL_DYNAMIC_DRAW
#define RL_DYNAMIC_READ 0x88E9 // GL_DYNAMIC_READ
#define RL_DYNAMIC_COPY 0x88EA // GL_DYNAMIC_COPY
// GL Shader type
#define RL_FRAGMENT_SHADER 0x8B30 // GL_FRAGMENT_SHADER
#define RL_VERTEX_SHADER 0x8B31 // GL_VERTEX_SHADER
#define RL_COMPUTE_SHADER 0x91B9 // GL_COMPUTE_SHADER
// GL blending factors
#define RL_ZERO 0 // GL_ZERO
#define RL_ONE 1 // GL_ONE
#define RL_SRC_COLOR 0x0300 // GL_SRC_COLOR
#define RL_ONE_MINUS_SRC_COLOR 0x0301 // GL_ONE_MINUS_SRC_COLOR
#define RL_SRC_ALPHA 0x0302 // GL_SRC_ALPHA
#define RL_ONE_MINUS_SRC_ALPHA 0x0303 // GL_ONE_MINUS_SRC_ALPHA
#define RL_DST_ALPHA 0x0304 // GL_DST_ALPHA
#define RL_ONE_MINUS_DST_ALPHA 0x0305 // GL_ONE_MINUS_DST_ALPHA
#define RL_DST_COLOR 0x0306 // GL_DST_COLOR
#define RL_ONE_MINUS_DST_COLOR 0x0307 // GL_ONE_MINUS_DST_COLOR
#define RL_SRC_ALPHA_SATURATE 0x0308 // GL_SRC_ALPHA_SATURATE
#define RL_CONSTANT_COLOR 0x8001 // GL_CONSTANT_COLOR
#define RL_ONE_MINUS_CONSTANT_COLOR 0x8002 // GL_ONE_MINUS_CONSTANT_COLOR
#define RL_CONSTANT_ALPHA 0x8003 // GL_CONSTANT_ALPHA
#define RL_ONE_MINUS_CONSTANT_ALPHA 0x8004 // GL_ONE_MINUS_CONSTANT_ALPHA
// GL blending functions/equations
#define RL_FUNC_ADD 0x8006 // GL_FUNC_ADD
#define RL_MIN 0x8007 // GL_MIN
#define RL_MAX 0x8008 // GL_MAX
#define RL_FUNC_SUBTRACT 0x800A // GL_FUNC_SUBTRACT
#define RL_FUNC_REVERSE_SUBTRACT 0x800B // GL_FUNC_REVERSE_SUBTRACT
#define BLEND_EQUATION 0x8009 // GL_BLEND_EQUATION
#define BLEND_EQUATION_RGB 0x8009 // GL_BLEND_EQUATION_RGB // (Same as BLEND_EQUATION)
#define BLEND_EQUATION_ALPHA 0x883D // GL_BLEND_EQUATION_ALPHA
#define BLEND_DST_RGB 0x80C8 // GL_BLEND_DST_RGB
#define BLEND_SRC_RGB 0x80C9 // GL_BLEND_SRC_RGB
#define BLEND_DST_ALPHA 0x80CA // GL_BLEND_DST_ALPHA
#define BLEND_SRC_ALPHA 0x80CB // GL_BLEND_SRC_ALPHA
#define BLEND_COLOR 0x8005 // GL_BLEND_COLOR
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
#if (defined(__STDC__) && __STDC_VERSION__ >= 199901L) || (defined(_MSC_VER) && _MSC_VER >= 1800)
#include <stdbool.h>
#elif !defined(__cplusplus) && !defined(bool) && !defined(RL_BOOL_TYPE)
// Boolean type
typedef enum bool { false = 0, true = !false } bool;
#endif
RLGL_NS_BEGIN
#if !defined(RL_MATRIX_TYPE)
// Matrix, 4x4 components, column major, OpenGL style, right handed
typedef struct Matrix {
float m0, m4, m8, m12; // Matrix first row (4 components)
float m1, m5, m9, m13; // Matrix second row (4 components)
float m2, m6, m10, m14; // Matrix third row (4 components)
float m3, m7, m11, m15; // Matrix fourth row (4 components)
} Matrix;
#define RL_MATRIX_TYPE
#endif
// Dynamic vertex buffers (position + texcoords + colors + indices arrays)
typedef struct vertex_buffer {
int elementCount; // Number of elements in the buffer (QUADS)
float *vertices; // Vertex position (XYZ - 3 components per vertex) (shader-location = 0)
float *texcoords; // Vertex texture coordinates (UV - 2 components per vertex) (shader-location = 1)
unsigned char *colors; // Vertex colors (RGBA - 4 components per vertex) (shader-location = 3)
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
unsigned int *indices; // Vertex indices (in case vertex data comes indexed) (6 indices per quad)
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
unsigned short *indices; // Vertex indices (in case vertex data comes indexed) (6 indices per quad)
#endif
unsigned int vaoId; // OpenGL Vertex Array Object id
unsigned int vboId[4]; // OpenGL Vertex Buffer Objects id (4 types of vertex data)
} vertex_buffer;
// Draw call type
// NOTE: Only texture changes register a new draw, other state-change-related elements are not
// used at this moment (vaoId, shaderId, matrices), raylib just forces a batch draw call if any
// of those state-change happens (this is done in core module)
typedef struct draw_call {
int mode; // Drawing mode: LINES, TRIANGLES, QUADS
int vertexCount; // Number of vertex of the draw
int vertexAlignment; // Number of vertex required for index alignment (LINES, TRIANGLES)
//unsigned int vaoId; // Vertex array id to be used on the draw -> Using GLOBAL_DATA.currentBatch->vertexBuffer.vaoId
//unsigned int shaderId; // Shader id to be used on the draw -> Using GLOBAL_DATA.currentShaderId
unsigned int textureId; // Texture id to be used on the draw -> Use to create new draw call if changes
//Matrix projection; // Projection matrix for this draw -> Using GLOBAL_DATA.projection by default
//Matrix modelview; // Modelview matrix for this draw -> Using GLOBAL_DATA.modelview by default
} draw_call;
// render_batch type
typedef struct render_batch {
int bufferCount; // Number of vertex buffers (multi-buffering support)
int currentBuffer; // Current buffer tracking in case of multi-buffering
vertex_buffer *vertexBuffer; // Dynamic buffer(s) for vertex data
draw_call *draws; // Draw calls array, depends on textureId
int drawCounter; // Draw calls counter
float currentDepth; // Current depth value for next draw
} render_batch;
// OpenGL version
typedef enum {
RL_OPENGL_11 = 1, // OpenGL 1.1
RL_OPENGL_21, // OpenGL 2.1 (GLSL 120)
RL_OPENGL_33, // OpenGL 3.3 (GLSL 330)
RL_OPENGL_43, // OpenGL 4.3 (using GLSL 330)
RL_OPENGL_ES_20, // OpenGL ES 2.0 (GLSL 100)
RL_OPENGL_ES_30 // OpenGL ES 3.0 (GLSL 300 es)
} gl_version;
// Will not define these if not built standalone OR RLAPI is defined which means this file was not refactored
#if !defined(RL_REFACTORED_C) && !defined(RL_REFACTORED_CPP)
// Trace log level
// NOTE: Organized by priority level
typedef enum {
LOG_ALL = 0, // Display all logs
LOG_TRACE, // Trace logging, intended for internal use only
LOG_DEBUG, // Debug logging, used for internal debugging, it should be disabled on release builds
LOG_INFO, // Info logging, used for program execution info
LOG_WARNING, // Warning logging, used on recoverable failures
LOG_ERROR, // Error logging, used on unrecoverable failures
LOG_FATAL, // Fatal logging, used to abort program: exit(EXIT_FAILURE)
LOG_NONE // Disable logging
} trace_log_level;
// Texture pixel formats
// NOTE: Support depends on OpenGL version
typedef enum {
PIXELFORMAT_UNCOMPRESSED_GRAYSCALE = 1, // 8 bit per pixel (no alpha)
PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA, // 8*2 bpp (2 channels)
PIXELFORMAT_UNCOMPRESSED_R5G6B5, // 16 bpp
PIXELFORMAT_UNCOMPRESSED_R8G8B8, // 24 bpp
PIXELFORMAT_UNCOMPRESSED_R5G5B5A1, // 16 bpp (1 bit alpha)
PIXELFORMAT_UNCOMPRESSED_R4G4B4A4, // 16 bpp (4 bit alpha)
PIXELFORMAT_UNCOMPRESSED_R8G8B8A8, // 32 bpp
PIXELFORMAT_UNCOMPRESSED_R32, // 32 bpp (1 channel - float)
PIXELFORMAT_UNCOMPRESSED_R32G32B32, // 32*3 bpp (3 channels - float)
PIXELFORMAT_UNCOMPRESSED_R32G32B32A32, // 32*4 bpp (4 channels - float)
PIXELFORMAT_UNCOMPRESSED_R16, // 16 bpp (1 channel - half float)
PIXELFORMAT_UNCOMPRESSED_R16G16B16, // 16*3 bpp (3 channels - half float)
PIXELFORMAT_UNCOMPRESSED_R16G16B16A16, // 16*4 bpp (4 channels - half float)
PIXELFORMAT_COMPRESSED_DXT1_RGB, // 4 bpp (no alpha)
PIXELFORMAT_COMPRESSED_DXT1_RGBA, // 4 bpp (1 bit alpha)
PIXELFORMAT_COMPRESSED_DXT3_RGBA, // 8 bpp
PIXELFORMAT_COMPRESSED_DXT5_RGBA, // 8 bpp
PIXELFORMAT_COMPRESSED_ETC1_RGB, // 4 bpp
PIXELFORMAT_COMPRESSED_ETC2_RGB, // 4 bpp
PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA, // 8 bpp
PIXELFORMAT_COMPRESSED_PVRT_RGB, // 4 bpp
PIXELFORMAT_COMPRESSED_PVRT_RGBA, // 4 bpp
PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA, // 8 bpp
PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA // 2 bpp
} pixel_format;
// Texture parameters: filter mode
// NOTE 1: Filtering considers mipmaps if available in the texture
// NOTE 2: Filter is accordingly set for minification and magnification
typedef enum {
TEXTURE_FILTER_POINT = 0, // No filter, just pixel approximation
TEXTURE_FILTER_BILINEAR, // Linear filtering
TEXTURE_FILTER_TRILINEAR, // Trilinear filtering (linear with mipmaps)
TEXTURE_FILTER_ANISOTROPIC_4X, // Anisotropic filtering 4x
TEXTURE_FILTER_ANISOTROPIC_8X, // Anisotropic filtering 8x
TEXTURE_FILTER_ANISOTROPIC_16X, // Anisotropic filtering 16x
} texture_filter;
// Shader location point type
typedef enum {
SHADER_LOC_VERTEX_POSITION = 0, // Shader location: vertex attribute: position
SHADER_LOC_VERTEX_TEXCOORD01, // Shader location: vertex attribute: texcoord01
SHADER_LOC_VERTEX_TEXCOORD02, // Shader location: vertex attribute: texcoord02
SHADER_LOC_VERTEX_NORMAL, // Shader location: vertex attribute: normal
SHADER_LOC_VERTEX_TANGENT, // Shader location: vertex attribute: tangent
SHADER_LOC_VERTEX_COLOR, // Shader location: vertex attribute: color
SHADER_LOC_MATRIX_MVP, // Shader location: matrix uniform: model-view-projection
SHADER_LOC_MATRIX_VIEW, // Shader location: matrix uniform: view (camera transform)
SHADER_LOC_MATRIX_PROJECTION, // Shader location: matrix uniform: projection
SHADER_LOC_MATRIX_MODEL, // Shader location: matrix uniform: model (transform)
SHADER_LOC_MATRIX_NORMAL, // Shader location: matrix uniform: normal
SHADER_LOC_VECTOR_VIEW, // Shader location: vector uniform: view
SHADER_LOC_COLOR_DIFFUSE, // Shader location: vector uniform: diffuse color
SHADER_LOC_COLOR_SPECULAR, // Shader location: vector uniform: specular color
SHADER_LOC_COLOR_AMBIENT, // Shader location: vector uniform: ambient color
SHADER_LOC_MAP_ALBEDO, // Shader location: sampler2d texture: albedo (same as: SHADER_LOC_MAP_DIFFUSE)
SHADER_LOC_MAP_METALNESS, // Shader location: sampler2d texture: metalness (same as: SHADER_LOC_MAP_SPECULAR)
SHADER_LOC_MAP_NORMAL, // Shader location: sampler2d texture: normal
SHADER_LOC_MAP_ROUGHNESS, // Shader location: sampler2d texture: roughness
SHADER_LOC_MAP_OCCLUSION, // Shader location: sampler2d texture: occlusion
SHADER_LOC_MAP_EMISSION, // Shader location: sampler2d texture: emission
SHADER_LOC_MAP_HEIGHT, // Shader location: sampler2d texture: height
SHADER_LOC_MAP_CUBEMAP, // Shader location: samplerCube texture: cubemap
SHADER_LOC_MAP_IRRADIANCE, // Shader location: samplerCube texture: irradiance
SHADER_LOC_MAP_PREFILTER, // Shader location: samplerCube texture: prefilter
SHADER_LOC_MAP_BRDF // Shader location: sampler2d texture: brdf
} shader_location_index;
#define SHADER_LOC_MAP_DIFFUSE RL_NS(SHADER_LOC_MAP_ALBEDO)
#define SHADER_LOC_MAP_SPECULAR RL_NS(SHADER_LOC_MAP_METALNESS)
// Shader uniform data type
typedef enum {
SHADER_UNIFORM_FLOAT = 0, // Shader uniform type: float
SHADER_UNIFORM_VEC2, // Shader uniform type: vec2 (2 float)
SHADER_UNIFORM_VEC3, // Shader uniform type: vec3 (3 float)
SHADER_UNIFORM_VEC4, // Shader uniform type: vec4 (4 float)
SHADER_UNIFORM_INT, // Shader uniform type: int
SHADER_UNIFORM_IVEC2, // Shader uniform type: ivec2 (2 int)
SHADER_UNIFORM_IVEC3, // Shader uniform type: ivec3 (3 int)
SHADER_UNIFORM_IVEC4, // Shader uniform type: ivec4 (4 int)
SHADER_UNIFORM_SAMPLER2D // Shader uniform type: sampler2d
} shader_uniform_data_type;
// Shader attribute data types
typedef enum {
SHADER_ATTRIB_FLOAT = 0, // Shader attribute type: float
SHADER_ATTRIB_VEC2, // Shader attribute type: vec2 (2 float)
SHADER_ATTRIB_VEC3, // Shader attribute type: vec3 (3 float)
SHADER_ATTRIB_VEC4 // Shader attribute type: vec4 (4 float)
} shader_attribute_data_type;
// Color blending modes (pre-defined)
typedef enum {
BLEND_ALPHA = 0, // Blend textures considering alpha (default)
BLEND_ADDITIVE, // Blend textures adding colors
BLEND_MULTIPLIED, // Blend textures multiplying colors
BLEND_ADD_COLORS, // Blend textures adding colors (alternative)
BLEND_SUBTRACT_COLORS, // Blend textures subtracting colors (alternative)
BLEND_ALPHA_PREMULTIPLY, // Blend premultiplied textures considering alpha
BLEND_CUSTOM, // Blend textures using custom src/dst factors (use set_blend_factors())
BLEND_CUSTOM_SEPARATE // Blend textures using custom src/dst factors (use set_blend_factors_separate())
} blend_mode;
#endif //ifndef RAYLIB_H
// Framebuffer attachment type
// NOTE: By default up to 8 color channels defined, but it can be more
typedef enum {
ATTACHMENT_COLOR_CHANNEL0 = 0, // Framebuffer attachment type: color 0
ATTACHMENT_COLOR_CHANNEL1 = 1, // Framebuffer attachment type: color 1
ATTACHMENT_COLOR_CHANNEL2 = 2, // Framebuffer attachment type: color 2
ATTACHMENT_COLOR_CHANNEL3 = 3, // Framebuffer attachment type: color 3
ATTACHMENT_COLOR_CHANNEL4 = 4, // Framebuffer attachment type: color 4
ATTACHMENT_COLOR_CHANNEL5 = 5, // Framebuffer attachment type: color 5
ATTACHMENT_COLOR_CHANNEL6 = 6, // Framebuffer attachment type: color 6
ATTACHMENT_COLOR_CHANNEL7 = 7, // Framebuffer attachment type: color 7
ATTACHMENT_DEPTH = 100, // Framebuffer attachment type: depth
ATTACHMENT_STENCIL = 200, // Framebuffer attachment type: stencil
} framebuffer_attach_type;
// Framebuffer texture attachment type
typedef enum {
ATTACHMENT_CUBEMAP_POSITIVE_X = 0, // Framebuffer texture attachment type: cubemap, +X side
ATTACHMENT_CUBEMAP_NEGATIVE_X = 1, // Framebuffer texture attachment type: cubemap, -X side
ATTACHMENT_CUBEMAP_POSITIVE_Y = 2, // Framebuffer texture attachment type: cubemap, +Y side
ATTACHMENT_CUBEMAP_NEGATIVE_Y = 3, // Framebuffer texture attachment type: cubemap, -Y side
ATTACHMENT_CUBEMAP_POSITIVE_Z = 4, // Framebuffer texture attachment type: cubemap, +Z side
ATTACHMENT_CUBEMAP_NEGATIVE_Z = 5, // Framebuffer texture attachment type: cubemap, -Z side
ATTACHMENT_TEXTURE2D = 100, // Framebuffer texture attachment type: texture2d
ATTACHMENT_RENDERBUFFER = 200, // Framebuffer texture attachment type: renderbuffer
} framebuffer_attach_texture_type;
// Face culling mode
typedef enum {
CULL_FACE_FRONT = 0,
CULL_FACE_BACK
} cull_mode;
//------------------------------------------------------------------------------------
// Functions Declaration - Matrix operations
//------------------------------------------------------------------------------------
RLGL_EXTERN_C_BEGIN
RLAPI void matrix_mode(int mode); // Choose the current matrix to be transformed
RLAPI void push_matrix(void); // Push the current matrix to stack
RLAPI void pop_matrix(void); // Pop latest inserted matrix from stack
RLAPI void load_identity(void); // Reset current matrix to identity matrix
RLAPI void translatef(float x, float y, float z); // Multiply the current matrix by a translation matrix
RLAPI void rotatef(float angle, float x, float y, float z); // Multiply the current matrix by a rotation matrix
RLAPI void scalef(float x, float y, float z); // Multiply the current matrix by a scaling matrix
RLAPI void mult_matrixf(const float *matf); // Multiply the current matrix by another matrix
RLAPI void frustum(double left, double right, double bottom, double top, double znear, double zfar);
RLAPI void ortho(double left, double right, double bottom, double top, double znear, double zfar);
RLAPI void viewport(int x, int y, int width, int height); // Set the viewport area
//------------------------------------------------------------------------------------
// Functions Declaration - Vertex level operations
//------------------------------------------------------------------------------------
RLAPI void begin(int mode); // Initialize drawing mode (how to organize vertex)
RLAPI void end(void); // Finish vertex providing
RLAPI void vertex2i(int x, int y); // Define one vertex (position) - 2 int
RLAPI void vertex2f(float x, float y); // Define one vertex (position) - 2 float
RLAPI void vertex3f(float x, float y, float z); // Define one vertex (position) - 3 float
RLAPI void tex_coord2f(float x, float y); // Define one vertex (texture coordinate) - 2 float
RLAPI void normal3f(float x, float y, float z); // Define one vertex (normal) - 3 float
RLAPI void color4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a); // Define one vertex (color) - 4 byte
RLAPI void color3f(float x, float y, float z); // Define one vertex (color) - 3 float
RLAPI void color4f(float x, float y, float z, float w); // Define one vertex (color) - 4 float
//------------------------------------------------------------------------------------
// Functions Declaration - OpenGL style functions (common to 1.1, 3.3+, ES2)
// NOTE: This functions are used to completely abstract raylib code from OpenGL layer,
// some of them are direct wrappers over OpenGL calls, some others are custom
//------------------------------------------------------------------------------------
// Vertex buffers state
RLAPI bool enable_vertex_array(unsigned int vaoId); // Enable vertex array (VAO, if supported)
RLAPI void disable_vertex_array(void); // Disable vertex array (VAO, if supported)
RLAPI void enable_vertex_buffer(unsigned int id); // Enable vertex buffer (VBO)
RLAPI void disable_vertex_buffer(void); // Disable vertex buffer (VBO)
RLAPI void enable_vertex_buffer_element(unsigned int id);// Enable vertex buffer element (VBO element)
RLAPI void disable_vertex_buffer_element(void); // Disable vertex buffer element (VBO element)
RLAPI void enable_vertex_attribute(unsigned int index); // Enable vertex attribute index
RLAPI void disable_vertex_attribute(unsigned int index);// Disable vertex attribute index
#if defined(GRAPHICS_API_OPENGL_11)
RLAPI void enable_state_pointer(int vertexAttribType, void *buffer); // Enable attribute state pointer
RLAPI void disable_state_pointer(int vertexAttribType); // Disable attribute state pointer
#endif
// Textures state
RLAPI void active_texture_slot(int slot); // Select and active a texture slot
RLAPI void enable_texture(unsigned int id); // Enable texture
RLAPI void disable_texture(void); // Disable texture
RLAPI void enable_texture_cubemap(unsigned int id); // Enable texture cubemap
RLAPI void disable_texture_cubemap(void); // Disable texture cubemap
RLAPI void texture_parameters(unsigned int id, int param, int value); // Set texture parameters (filter, wrap)
RLAPI void cubemap_parameters(unsigned int id, int param, int value); // Set cubemap parameters (filter, wrap)
// Shader state
RLAPI void enable_shader(unsigned int id); // Enable shader program
RLAPI void disable_shader(void); // Disable shader program
// Framebuffer state
RLAPI void enable_framebuffer(unsigned int id); // Enable render texture (fbo)
RLAPI void disable_framebuffer(void); // Disable render texture (fbo), return to default framebuffer
RLAPI void active_draw_buffers(int count); // Activate multiple draw color buffers
RLAPI void blit_framebuffer(int srcX, int srcY, int srcWidth, int srcHeight, int dstX, int dstY, int dstWidth, int dstHeight, int bufferMask); // Blit active framebuffer to main framebuffer
// General render state
RLAPI void enable_color_blend(void); // Enable color blending
RLAPI void disable_color_blend(void); // Disable color blending
RLAPI void enable_depth_test(void); // Enable depth test
RLAPI void disable_depth_test(void); // Disable depth test
RLAPI void enable_depth_mask(void); // Enable depth write
RLAPI void disable_depth_mask(void); // Disable depth write
RLAPI void enable_backface_culling(void); // Enable backface culling
RLAPI void disable_backface_culling(void); // Disable backface culling
RLAPI void set_cull_face(int mode); // Set face culling mode
RLAPI void enable_scissor_test(void); // Enable scissor test
RLAPI void disable_scissor_test(void); // Disable scissor test
RLAPI void scissor(int x, int y, int width, int height); // Scissor test
RLAPI void enable_wire_mode(void); // Enable wire mode
RLAPI void enable_point_mode(void); // Enable point mode
RLAPI void disable_wire_mode(void); // Disable wire mode ( and point ) maybe rename
RLAPI void set_line_width(float width); // Set the line drawing width
RLAPI float get_line_width(void); // Get the line drawing width
RLAPI void enable_smooth_lines(void); // Enable line aliasing
RLAPI void disable_smooth_lines(void); // Disable line aliasing
RLAPI void enable_stereo_render(void); // Enable stereo rendering
RLAPI void disable_stereo_render(void); // Disable stereo rendering
RLAPI bool is_stereo_render_enabled(void); // Check if stereo render is enabled
RLAPI void clear_color(unsigned char r, unsigned char g, unsigned char b, unsigned char a); // Clear color buffer with color
RLAPI void clear_screen_buffers(void); // Clear used screen buffers (color and depth)
RLAPI void check_errors(void); // Check and log OpenGL error codes
RLAPI void set_blend_mode(int mode); // Set blending mode
RLAPI void set_blend_factors(int glSrcFactor, int glDstFactor, int glEquation); // Set blending mode factor and equation (using OpenGL factors)
RLAPI void set_blend_factors_separate(int glSrcRGB, int glDstRGB, int glSrcAlpha, int glDstAlpha, int glEqRGB, int glEqAlpha); // Set blending mode factors and equations separately (using OpenGL factors)
//------------------------------------------------------------------------------------
// Functions Declaration - rlgl functionality
//------------------------------------------------------------------------------------
// rlgl initialization functions
RLAPI void init(int width, int height); // Initialize rlgl (buffers, shaders, textures, states)
RLAPI void close(void); // De-initialize rlgl (buffers, shaders, textures)
RLAPI void load_extensions(void *loader); // Load OpenGL extensions (loader function required)
RLAPI int get_version(void); // Get current OpenGL version
RLAPI void set_framebuffer_width(int width); // Set current framebuffer width
RLAPI int get_framebuffer_width(void); // Get default framebuffer width
RLAPI void set_framebuffer_height(int height); // Set current framebuffer height
RLAPI int get_framebuffer_height(void); // Get default framebuffer height
RLAPI unsigned int get_texture_id_default(void); // Get default texture id
RLAPI unsigned int get_shader_id_default(void); // Get default shader id
RLAPI int *get_shader_locs_default(void); // Get default shader locations
// Render batch management
// NOTE: rlgl provides a default render batch to behave like OpenGL 1.1 immediate mode
// but this render batch API is exposed in case of custom batches are required
RLAPI render_batch load_render_batch(int numBuffers, int bufferElements); // Load a render batch system
RLAPI void unload_render_batch(render_batch batch); // Unload render batch system
RLAPI void draw_render_batch(render_batch *batch); // Draw render batch data (Update->Draw->Reset)
RLAPI void set_render_batch_active(render_batch *batch); // Set the active render batch for rlgl (NULL for default internal)
RLAPI void draw_render_batch_active(void); // Update and draw internal render batch
RLAPI bool check_render_batch_limit(int vCount); // Check internal buffer overflow for a given number of vertex
RLAPI void set_texture(unsigned int id); // Set current texture for render batch and check buffers limits
//------------------------------------------------------------------------------------------------------------------------
// Vertex buffers management
RLAPI unsigned int load_vertex_array(void); // Load vertex array (vao) if supported
RLAPI unsigned int load_vertex_buffer(const void *buffer, int size, bool dynamic); // Load a vertex buffer attribute
RLAPI unsigned int load_vertex_buffer_element(const void *buffer, int size, bool dynamic); // Load a new attributes element buffer
RLAPI void update_vertex_buffer(unsigned int bufferId, const void *data, int dataSize, int offset); // Update GPU buffer with new data
RLAPI void update_vertex_buffer_elements(unsigned int id, const void *data, int dataSize, int offset); // Update vertex buffer elements with new data
RLAPI void unload_vertex_array(unsigned int vaoId);
RLAPI void unload_vertex_buffer(unsigned int vboId);
RLAPI void set_vertex_attribute(unsigned int index, int compSize, int type, bool normalized, int stride, const void *pointer);
RLAPI void set_vertex_attribute_divisor(unsigned int index, int divisor);
RLAPI void set_vertex_attribute_default(int locIndex, const void *value, int attribType, int count); // Set vertex attribute default value
RLAPI void draw_vertex_array(int offset, int count);
RLAPI void draw_vertex_array_elements(int offset, int count, const void *buffer);
RLAPI void draw_vertex_array_instanced(int offset, int count, int instances);
RLAPI void draw_vertex_array_elements_instanced(int offset, int count, const void *buffer, int instances);
// Textures management
RLAPI unsigned int load_texture(const void *data, int width, int height, int format, int mipmapCount); // Load texture in GPU
RLAPI unsigned int load_texture_depth(int width, int height, bool useRenderBuffer); // Load depth texture/renderbuffer (to be attached to fbo)
RLAPI unsigned int load_texture_cubemap(const void *data, int size, int format); // Load texture cubemap
RLAPI void update_texture(unsigned int id, int offsetX, int offsetY, int width, int height, int format, const void *data); // Update GPU texture with new data
RLAPI void get_gl_texture_formats(int format, unsigned int *glInternalFormat, unsigned int *glFormat, unsigned int *glType); // Get OpenGL internal formats
RLAPI const char *get_pixel_format_name(unsigned int format); // Get name string for pixel format
RLAPI void unload_texture(unsigned int id); // Unload texture from GPU memory
RLAPI void gen_texture_mipmaps(unsigned int id, int width, int height, int format, int *mipmaps); // Generate mipmap data for selected texture
RLAPI void *read_texture_pixels(unsigned int id, int width, int height, int format); // Read texture pixel data
RLAPI unsigned char *read_screen_pixels(int width, int height); // Read screen pixel data (color buffer)
// Framebuffer management (fbo)
RLAPI unsigned int load_framebuffer(int width, int height); // Load an empty framebuffer
RLAPI void framebuffer_attach(unsigned int fboId, unsigned int texId, int attachType, int texType, int mipLevel); // Attach texture/renderbuffer to a framebuffer
RLAPI bool framebuffer_complete(unsigned int id); // Verify framebuffer is complete
RLAPI void unload_framebuffer(unsigned int id); // Delete framebuffer from GPU
// Shaders management
RLAPI unsigned int load_shader_code(const char *vsCode, const char *fsCode); // Load shader from code strings
RLAPI unsigned int compile_shader(const char *shaderCode, int type); // Compile custom shader and return shader id (type: RL_VERTEX_SHADER, RL_FRAGMENT_SHADER, RL_COMPUTE_SHADER)
RLAPI unsigned int load_shader_program(unsigned int vShaderId, unsigned int fShaderId); // Load custom shader program
RLAPI void unload_shader_program(unsigned int id); // Unload shader program
RLAPI int get_location_uniform(unsigned int shaderId, const char *uniformName); // Get shader location uniform
RLAPI int get_location_attrib(unsigned int shaderId, const char *attribName); // Get shader location attribute
RLAPI void set_uniform(int locIndex, const void *value, int uniformType, int count); // Set shader value uniform
RLAPI void set_uniform_matrix(int locIndex, Matrix mat); // Set shader value matrix
RLAPI void set_uniform_sampler(int locIndex, unsigned int textureId); // Set shader value sampler
RLAPI void set_shader(unsigned int id, int *locs); // Set shader currently active (id and locations)
// Compute shader management
RLAPI unsigned int load_compute_shader_program(unsigned int shaderId); // Load compute shader program
RLAPI void compute_shader_dispatch(unsigned int groupX, unsigned int groupY, unsigned int groupZ); // Dispatch compute shader (equivalent to *draw* for graphics pipeline)
// Shader buffer storage object management (ssbo)
RLAPI unsigned int load_shader_buffer(unsigned int size, const void *data, int usageHint); // Load shader storage buffer object (SSBO)
RLAPI void unload_shader_buffer(unsigned int ssboId); // Unload shader storage buffer object (SSBO)
RLAPI void update_shader_buffer(unsigned int id, const void *data, unsigned int dataSize, unsigned int offset); // Update SSBO buffer data
RLAPI void bind_shader_buffer(unsigned int id, unsigned int index); // Bind SSBO buffer
RLAPI void read_shader_buffer(unsigned int id, void *dest, unsigned int count, unsigned int offset); // Read SSBO buffer data (GPU->CPU)
RLAPI void copy_shader_buffer(unsigned int destId, unsigned int srcId, unsigned int destOffset, unsigned int srcOffset, unsigned int count); // Copy SSBO data between buffers
RLAPI unsigned int get_shader_buffer_size(unsigned int id); // Get SSBO buffer size
// Buffer management
RLAPI void bind_image_texture(unsigned int id, unsigned int index, int format, bool readonly); // Bind image texture
// Matrix state management
RLAPI Matrix get_matrix_modelview(void); // Get internal modelview matrix
RLAPI Matrix get_matrix_projection(void); // Get internal projection matrix
RLAPI Matrix get_matrix_transform(void); // Get internal accumulated transform matrix
RLAPI Matrix get_matrix_projection_stereo(int eye); // Get internal projection matrix for stereo render (selected eye)
RLAPI Matrix get_matrix_view_offset_stereo(int eye); // Get internal view offset matrix for stereo render (selected eye)
RLAPI void set_matrix_projection(Matrix proj); // Set a custom projection matrix (replaces internal projection matrix)
RLAPI void set_matrix_modelview(Matrix view); // Set a custom modelview matrix (replaces internal modelview matrix)
RLAPI void set_matrix_projection_stereo(Matrix right, Matrix left); // Set eyes projection matrices for stereo rendering
RLAPI void set_matrix_view_offset_stereo(Matrix right, Matrix left); // Set eyes view offsets matrices for stereo rendering
// Quick and dirty cube/quad buffers load->draw->unload
RLAPI void load_draw_cube(void); // Load and draw a cube
RLAPI void load_draw_quad(void); // Load and draw a quad
RLGL_EXTERN_C_END
RLGL_NS_END
#endif // RLGL_H
/***********************************************************************************
*
* GLOBAL_DATA IMPLEMENTATION
*
************************************************************************************/
#if defined(RLGL_IMPLEMENTATION)
#if defined(GRAPHICS_API_OPENGL_11)
#if defined(__APPLE__)
#include <OpenGL/gl.h> // OpenGL 1.1 library for OSX
#include <OpenGL/glext.h> // OpenGL extensions library
#else
// APIENTRY for OpenGL function pointer declarations is required
#if !defined(APIENTRY)
#if defined(_WIN32)
#define APIENTRY __stdcall
#else
#define APIENTRY
#endif
#endif
// WINGDIAPI definition. Some Windows OpenGL headers need it
#if !defined(WINGDIAPI) && defined(_WIN32)
#define WINGDIAPI __declspec(dllimport)
#endif
#include <GL/gl.h> // OpenGL 1.1 library
#endif
#endif
#if defined(GRAPHICS_API_OPENGL_33)
#define GLAD_MALLOC RL_MALLOC
#define GLAD_FREE RL_FREE
#define GLAD_GL_IMPLEMENTATION
#include "external/glad.h" // GLAD extensions loading library, includes OpenGL headers
#endif
#if defined(GRAPHICS_API_OPENGL_ES3)
#include <GLES3/gl3.h> // OpenGL ES 3.0 library
#define GL_GLEXT_PROTOTYPES
#include <GLES2/gl2ext.h> // OpenGL ES 2.0 extensions library
#elif defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: OpenGL ES 2.0 can be enabled on PLATFORM_DESKTOP,
// in that case, functions are loaded from a custom glad for OpenGL ES 2.0
#if defined(PLATFORM_DESKTOP) || defined(PLATFORM_DESKTOP_SDL)
#define GLAD_GLES2_IMPLEMENTATION
#include "external/glad_gles2.h"
#else
#define GL_GLEXT_PROTOTYPES
//#include <EGL/egl.h> // EGL library -> not required, platform layer
#include <GLES2/gl2.h> // OpenGL ES 2.0 library
#include <GLES2/gl2ext.h> // OpenGL ES 2.0 extensions library
#endif
// It seems OpenGL ES 2.0 instancing entry points are not defined on Raspberry Pi
// provided headers (despite being defined in official Khronos GLES2 headers)
#if defined(PLATFORM_DRM)
typedef void (GL_APIENTRYP PFNGLDRAWARRAYSINSTANCEDEXTPROC) (GLenum mode, GLint start, GLsizei count, GLsizei primcount);
typedef void (GL_APIENTRYP PFNGLDRAWELEMENTSINSTANCEDEXTPROC) (GLenum mode, GLsizei count, GLenum type, const void *indices, GLsizei primcount);
typedef void (GL_APIENTRYP PFNGLVERTEXATTRIBDIVISOREXTPROC) (GLuint index, GLuint divisor);
#endif
#endif
#include <stdlib.h> // Required for: malloc(), free()
#include <string.h> // Required for: strcmp(), strlen() [Used in init(), on extensions loading]
#include <math.h> // Required for: sqrtf(), sinf(), cosf(), floor(), log()
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#ifndef PI
#define PI 3.14159265358979323846f
#endif
#ifndef DEG2RAD
#define DEG2RAD (PI/180.0f)
#endif
#ifndef RAD2DEG
#define RAD2DEG (180.0f/PI)
#endif
#ifndef GL_SHADING_LANGUAGE_VERSION
#define GL_SHADING_LANGUAGE_VERSION 0x8B8C
#endif
#ifndef GL_COMPRESSED_RGB_S3TC_DXT1_EXT
#define GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0
#endif
#ifndef GL_COMPRESSED_RGBA_S3TC_DXT1_EXT
#define GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1
#endif
#ifndef GL_COMPRESSED_RGBA_S3TC_DXT3_EXT
#define GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2
#endif
#ifndef GL_COMPRESSED_RGBA_S3TC_DXT5_EXT
#define GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3
#endif
#ifndef GL_ETC1_RGB8_OES
#define GL_ETC1_RGB8_OES 0x8D64
#endif
#ifndef GL_COMPRESSED_RGB8_ETC2
#define GL_COMPRESSED_RGB8_ETC2 0x9274
#endif
#ifndef GL_COMPRESSED_RGBA8_ETC2_EAC
#define GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278
#endif
#ifndef GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG
#define GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00
#endif
#ifndef GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG
#define GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02
#endif
#ifndef GL_COMPRESSED_RGBA_ASTC_4x4_KHR
#define GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0
#endif
#ifndef GL_COMPRESSED_RGBA_ASTC_8x8_KHR
#define GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7
#endif
#ifndef GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT
#define GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF
#endif
#ifndef GL_TEXTURE_MAX_ANISOTROPY_EXT
#define GL_TEXTURE_MAX_ANISOTROPY_EXT 0x84FE
#endif
#if defined(GRAPHICS_API_OPENGL_11)
#define GL_UNSIGNED_SHORT_5_6_5 0x8363
#define GL_UNSIGNED_SHORT_5_5_5_1 0x8034
#define GL_UNSIGNED_SHORT_4_4_4_4 0x8033
#endif
#if defined(GRAPHICS_API_OPENGL_21)
#define GL_LUMINANCE 0x1909
#define GL_LUMINANCE_ALPHA 0x190A
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
#define glClearDepth glClearDepthf
#if !defined(GRAPHICS_API_OPENGL_ES3)
#define GL_READ_FRAMEBUFFER GL_FRAMEBUFFER
#define GL_DRAW_FRAMEBUFFER GL_FRAMEBUFFER
#endif
#endif
// Default shader vertex attribute names to set location points
#ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_POSITION
#define RL_DEFAULT_SHADER_ATTRIB_NAME_POSITION "vertexPosition" // Bound by default to shader location: 0
#endif
#ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD
#define RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD "vertexTexCoord" // Bound by default to shader location: 1
#endif
#ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_NORMAL
#define RL_DEFAULT_SHADER_ATTRIB_NAME_NORMAL "vertexNormal" // Bound by default to shader location: 2
#endif
#ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_COLOR
#define RL_DEFAULT_SHADER_ATTRIB_NAME_COLOR "vertexColor" // Bound by default to shader location: 3
#endif
#ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_TANGENT
#define RL_DEFAULT_SHADER_ATTRIB_NAME_TANGENT "vertexTangent" // Bound by default to shader location: 4
#endif
#ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2
#define RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2 "vertexTexCoord2" // Bound by default to shader location: 5
#endif
#ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_MVP
#define RL_DEFAULT_SHADER_UNIFORM_NAME_MVP "mvp" // model-view-projection matrix
#endif
#ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_VIEW
#define RL_DEFAULT_SHADER_UNIFORM_NAME_VIEW "matView" // view matrix
#endif
#ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_PROJECTION
#define RL_DEFAULT_SHADER_UNIFORM_NAME_PROJECTION "matProjection" // projection matrix
#endif
#ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_MODEL
#define RL_DEFAULT_SHADER_UNIFORM_NAME_MODEL "matModel" // model matrix
#endif
#ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_NORMAL
#define RL_DEFAULT_SHADER_UNIFORM_NAME_NORMAL "matNormal" // normal matrix (transpose(inverse(matModelView))
#endif
#ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_COLOR
#define RL_DEFAULT_SHADER_UNIFORM_NAME_COLOR "colDiffuse" // color diffuse (base tint color, multiplied by texture color)
#endif
#ifndef RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE0
#define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE0 "texture0" // texture0 (texture slot active 0)
#endif
#ifndef RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE1
#define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE1 "texture1" // texture1 (texture slot active 1)
#endif
#ifndef RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE2
#define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE2 "texture2" // texture2 (texture slot active 2)
#endif
RLGL_NS_BEGIN
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
typedef struct glData {
render_batch *currentBatch; // Current render batch
render_batch defaultBatch; // Default internal render batch
struct {
int vertexCounter; // Current active render batch vertex counter (generic, used for all batches)
float texcoordx, texcoordy; // Current active texture coordinate (added on glVertex*())
float normalx, normaly, normalz; // Current active normal (added on glVertex*())
unsigned char colorr, colorg, colorb, colora; // Current active color (added on glVertex*())
int currentMatrixMode; // Current matrix mode
Matrix *currentMatrix; // Current matrix pointer
Matrix modelview; // Default modelview matrix
Matrix projection; // Default projection matrix
Matrix transform; // Transform matrix to be used with Translate, Rotate, Scale
bool transformRequired; // Require transform matrix application to current draw-call vertex (if required)
Matrix stack[RL_MAX_MATRIX_STACK_SIZE];// Matrix stack for push/pop
int stackCounter; // Matrix stack counter
unsigned int defaultTextureId; // Default texture used on shapes/poly drawing (required by shader)
unsigned int activeTextureId[RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS]; // Active texture ids to be enabled on batch drawing (0 active by default)
unsigned int defaultVShaderId; // Default vertex shader id (used by default shader program)
unsigned int defaultFShaderId; // Default fragment shader id (used by default shader program)
unsigned int defaultShaderId; // Default shader program id, supports vertex color and diffuse texture
int *defaultShaderLocs; // Default shader locations pointer to be used on rendering
unsigned int currentShaderId; // Current shader id to be used on rendering (by default, defaultShaderId)
int *currentShaderLocs; // Current shader locations pointer to be used on rendering (by default, defaultShaderLocs)
bool stereoRender; // Stereo rendering flag
Matrix projectionStereo[2]; // VR stereo rendering eyes projection matrices
Matrix viewOffsetStereo[2]; // VR stereo rendering eyes view offset matrices
// Blending variables
int currentBlendMode; // Blending mode active
int glBlendSrcFactor; // Blending source factor
int glBlendDstFactor; // Blending destination factor
int glBlendEquation; // Blending equation
int glBlendSrcFactorRGB; // Blending source RGB factor
int glBlendDestFactorRGB; // Blending destination RGB factor
int glBlendSrcFactorAlpha; // Blending source alpha factor
int glBlendDestFactorAlpha; // Blending destination alpha factor
int glBlendEquationRGB; // Blending equation for RGB
int glBlendEquationAlpha; // Blending equation for alpha
bool glCustomBlendModeModified; // Custom blending factor and equation modification status
int framebufferWidth; // Current framebuffer width
int framebufferHeight; // Current framebuffer height
} State; // Renderer state
struct {
bool vao; // VAO support (OpenGL ES2 could not support VAO extension) (GL_ARB_vertex_array_object)
bool instancing; // Instancing supported (GL_ANGLE_instanced_arrays, GL_EXT_draw_instanced + GL_EXT_instanced_arrays)
bool texNPOT; // NPOT textures full support (GL_ARB_texture_non_power_of_two, GL_OES_texture_npot)
bool texDepth; // Depth textures supported (GL_ARB_depth_texture, GL_OES_depth_texture)
bool texDepthWebGL; // Depth textures supported WebGL specific (GL_WEBGL_depth_texture)
bool texFloat32; // float textures support (32 bit per channel) (GL_OES_texture_float)
bool texFloat16; // half float textures support (16 bit per channel) (GL_OES_texture_half_float)
bool texCompDXT; // DDS texture compression support (GL_EXT_texture_compression_s3tc, GL_WEBGL_compressed_texture_s3tc, GL_WEBKIT_WEBGL_compressed_texture_s3tc)
bool texCompETC1; // ETC1 texture compression support (GL_OES_compressed_ETC1_RGB8_texture, GL_WEBGL_compressed_texture_etc1)
bool texCompETC2; // ETC2/EAC texture compression support (GL_ARB_ES3_compatibility)
bool texCompPVRT; // PVR texture compression support (GL_IMG_texture_compression_pvrtc)
bool texCompASTC; // ASTC texture compression support (GL_KHR_texture_compression_astc_hdr, GL_KHR_texture_compression_astc_ldr)
bool texMirrorClamp; // Clamp mirror wrap mode supported (GL_EXT_texture_mirror_clamp)
bool texAnisoFilter; // Anisotropic texture filtering support (GL_EXT_texture_filter_anisotropic)
bool computeShader; // Compute shaders support (GL_ARB_compute_shader)
bool ssbo; // Shader storage buffer object support (GL_ARB_shader_storage_buffer_object)
float maxAnisotropyLevel; // Maximum anisotropy level supported (minimum is 2.0f)
int maxDepthBits; // Maximum bits for depth component
} ExtSupported; // Extensions supported flags
} glData;
typedef void *(*glLoadProc)(const char *name); // OpenGL extension functions loader signature (same as GLADloadproc)
#endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
static glData GLOBAL_DATA = { 0 };
#endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2
#if defined(GRAPHICS_API_OPENGL_ES2) && !defined(GRAPHICS_API_OPENGL_ES3)
// NOTE: VAO functionality is exposed through extensions (OES)
static PFNGLGENVERTEXARRAYSOESPROC glGenVertexArrays = NULL;
static PFNGLBINDVERTEXARRAYOESPROC glBindVertexArray = NULL;
static PFNGLDELETEVERTEXARRAYSOESPROC glDeleteVertexArrays = NULL;
// NOTE: Instancing functionality could also be available through extension
static PFNGLDRAWARRAYSINSTANCEDEXTPROC glDrawArraysInstanced = NULL;
static PFNGLDRAWELEMENTSINSTANCEDEXTPROC glDrawElementsInstanced = NULL;
static PFNGLVERTEXATTRIBDIVISOREXTPROC glVertexAttribDivisor = NULL;
#endif
RLGL_EXTERN_C_BEGIN
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
static void load_shader_default(void); // Load default shader
static void unload_shader_default(void); // Unload default shader
#if defined(RLGL_SHOW_GL_DETAILS_INFO)
static const char *GetCompressedFormatName(int format); // Get compressed format official GL identifier name
#endif // RLGL_SHOW_GL_DETAILS_INFO
#endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2
static int internal_get_pixel_data_size(int width, int height, int format); // Get pixel data size in bytes (image or texture)
#if !defined(RAYMATH_H)
// Auxiliar matrix math functions
static Matrix internal_matrix_identity(void); // Get identity matrix
static Matrix internal_matrix_multiply(Matrix left, Matrix right); // Multiply two matrices
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition - Matrix operations
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_11)
// Fallback to OpenGL 1.1 function calls
//---------------------------------------
void matrix_mode(int mode)
{
switch (mode)
{
case RL_PROJECTION: glMatrixMode(GL_PROJECTION); break;
case RL_MODELVIEW: glMatrixMode(GL_MODELVIEW); break;
case RL_TEXTURE: glMatrixMode(GL_TEXTURE); break;
default: break;
}
}
void frustum(double left, double right, double bottom, double top, double znear, double zfar)
{
glFrustum(left, right, bottom, top, znear, zfar);
}
void ortho(double left, double right, double bottom, double top, double znear, double zfar)
{
glOrtho(left, right, bottom, top, znear, zfar);
}
void push_matrix(void) { glPushMatrix(); }
void pop_matrix(void) { glPopMatrix(); }
void load_identity(void) { glLoadIdentity(); }
void translatef(float x, float y, float z) { glTranslatef(x, y, z); }
void rotatef(float angle, float x, float y, float z) { glRotatef(angle, x, y, z); }
void scalef(float x, float y, float z) { glScalef(x, y, z); }
void mult_matrixf(const float *matf) { glMultMatrixf(matf); }
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Choose the current matrix to be transformed
void matrix_mode(int mode)
{
if (mode == RL_PROJECTION) GLOBAL_DATA.State.currentMatrix = &GLOBAL_DATA.State.projection;
else if (mode == RL_MODELVIEW) GLOBAL_DATA.State.currentMatrix = &GLOBAL_DATA.State.modelview;
//else if (mode == RL_TEXTURE) // Not supported
GLOBAL_DATA.State.currentMatrixMode = mode;
}
// Push the current matrix into GLOBAL_DATA.State.stack
void push_matrix(void)
{
if (GLOBAL_DATA.State.stackCounter >= RL_MAX_MATRIX_STACK_SIZE) RL_TRACELOG(LOG_ERROR, "GLOBAL_DATA: Matrix stack overflow (RL_MAX_MATRIX_STACK_SIZE)");
if (GLOBAL_DATA.State.currentMatrixMode == RL_MODELVIEW)
{
GLOBAL_DATA.State.transformRequired = true;
GLOBAL_DATA.State.currentMatrix = &GLOBAL_DATA.State.transform;
}
GLOBAL_DATA.State.stack[GLOBAL_DATA.State.stackCounter] = *GLOBAL_DATA.State.currentMatrix;
GLOBAL_DATA.State.stackCounter++;
}
// Pop lattest inserted matrix from GLOBAL_DATA.State.stack
void pop_matrix(void)
{
if (GLOBAL_DATA.State.stackCounter > 0)
{
Matrix mat = GLOBAL_DATA.State.stack[GLOBAL_DATA.State.stackCounter - 1];
*GLOBAL_DATA.State.currentMatrix = mat;
GLOBAL_DATA.State.stackCounter--;
}
if ((GLOBAL_DATA.State.stackCounter == 0) && (GLOBAL_DATA.State.currentMatrixMode == RL_MODELVIEW))
{
GLOBAL_DATA.State.currentMatrix = &GLOBAL_DATA.State.modelview;
GLOBAL_DATA.State.transformRequired = false;
}
}
// Reset current matrix to identity matrix
void load_identity(void)
{
*GLOBAL_DATA.State.currentMatrix = internal_matrix_identity();
}
// Multiply the current matrix by a translation matrix
void translatef(float x, float y, float z)
{
Matrix matTranslation = {
1.0f, 0.0f, 0.0f, x,
0.0f, 1.0f, 0.0f, y,
0.0f, 0.0f, 1.0f, z,
0.0f, 0.0f, 0.0f, 1.0f
};
// NOTE: We transpose matrix with multiplication order
*GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(matTranslation, *GLOBAL_DATA.State.currentMatrix);
}
// Multiply the current matrix by a rotation matrix
// NOTE: The provided angle must be in degrees
void rotatef(float angle, float x, float y, float z)
{
Matrix matRotation = internal_matrix_identity();
// Axis vector (x, y, z) normalization
float lengthSquared = x*x + y*y + z*z;
if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f))
{
float inverseLength = 1.0f/sqrtf(lengthSquared);
x *= inverseLength;
y *= inverseLength;
z *= inverseLength;
}
// Rotation matrix generation
float sinres = sinf(DEG2RAD*angle);
float cosres = cosf(DEG2RAD*angle);
float t = 1.0f - cosres;
matRotation.m0 = x*x*t + cosres;
matRotation.m1 = y*x*t + z*sinres;
matRotation.m2 = z*x*t - y*sinres;
matRotation.m3 = 0.0f;
matRotation.m4 = x*y*t - z*sinres;
matRotation.m5 = y*y*t + cosres;
matRotation.m6 = z*y*t + x*sinres;
matRotation.m7 = 0.0f;
matRotation.m8 = x*z*t + y*sinres;
matRotation.m9 = y*z*t - x*sinres;
matRotation.m10 = z*z*t + cosres;
matRotation.m11 = 0.0f;
matRotation.m12 = 0.0f;
matRotation.m13 = 0.0f;
matRotation.m14 = 0.0f;
matRotation.m15 = 1.0f;
// NOTE: We transpose matrix with multiplication order
*GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(matRotation, *GLOBAL_DATA.State.currentMatrix);
}
// Multiply the current matrix by a scaling matrix
void scalef(float x, float y, float z)
{
Matrix matScale = {
x, 0.0f, 0.0f, 0.0f,
0.0f, y, 0.0f, 0.0f,
0.0f, 0.0f, z, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
// NOTE: We transpose matrix with multiplication order
*GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(matScale, *GLOBAL_DATA.State.currentMatrix);
}
// Multiply the current matrix by another matrix
void mult_matrixf(const float *matf)
{
// Matrix creation from array
Matrix mat = { matf[0], matf[4], matf[8], matf[12],
matf[1], matf[5], matf[9], matf[13],
matf[2], matf[6], matf[10], matf[14],
matf[3], matf[7], matf[11], matf[15] };
*GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(*GLOBAL_DATA.State.currentMatrix, mat);
}
// Multiply the current matrix by a perspective matrix generated by parameters
void frustum(double left, double right, double bottom, double top, double znear, double zfar)
{
Matrix matFrustum = { 0 };
float rl = (float)(right - left);
float tb = (float)(top - bottom);
float fn = (float)(zfar - znear);
matFrustum.m0 = ((float) znear*2.0f)/rl;
matFrustum.m1 = 0.0f;
matFrustum.m2 = 0.0f;
matFrustum.m3 = 0.0f;
matFrustum.m4 = 0.0f;
matFrustum.m5 = ((float) znear*2.0f)/tb;
matFrustum.m6 = 0.0f;
matFrustum.m7 = 0.0f;
matFrustum.m8 = ((float)right + (float)left)/rl;
matFrustum.m9 = ((float)top + (float)bottom)/tb;
matFrustum.m10 = -((float)zfar + (float)znear)/fn;
matFrustum.m11 = -1.0f;
matFrustum.m12 = 0.0f;
matFrustum.m13 = 0.0f;
matFrustum.m14 = -((float)zfar*(float)znear*2.0f)/fn;
matFrustum.m15 = 0.0f;
*GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(*GLOBAL_DATA.State.currentMatrix, matFrustum);
}
// Multiply the current matrix by an orthographic matrix generated by parameters
void ortho(double left, double right, double bottom, double top, double znear, double zfar)
{
// NOTE: If left-right and top-botton values are equal it could create a division by zero,
// response to it is platform/compiler dependant
Matrix matOrtho = { 0 };
float rl = (float)(right - left);
float tb = (float)(top - bottom);
float fn = (float)(zfar - znear);
matOrtho.m0 = 2.0f/rl;
matOrtho.m1 = 0.0f;
matOrtho.m2 = 0.0f;
matOrtho.m3 = 0.0f;
matOrtho.m4 = 0.0f;
matOrtho.m5 = 2.0f/tb;
matOrtho.m6 = 0.0f;
matOrtho.m7 = 0.0f;
matOrtho.m8 = 0.0f;
matOrtho.m9 = 0.0f;
matOrtho.m10 = -2.0f/fn;
matOrtho.m11 = 0.0f;
matOrtho.m12 = -((float)left + (float)right)/rl;
matOrtho.m13 = -((float)top + (float)bottom)/tb;
matOrtho.m14 = -((float)zfar + (float)znear)/fn;
matOrtho.m15 = 1.0f;
*GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(*GLOBAL_DATA.State.currentMatrix, matOrtho);
}
#endif
// Set the viewport area (transformation from normalized device coordinates to window coordinates)
// NOTE: We store current viewport dimensions
void viewport(int x, int y, int width, int height)
{
glViewport(x, y, width, height);
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Vertex level operations
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_11)
// Fallback to OpenGL 1.1 function calls
//---------------------------------------
void begin(int mode)
{
switch (mode)
{
case RL_LINES: glBegin(GL_LINES); break;
case RL_TRIANGLES: glBegin(GL_TRIANGLES); break;
case RL_QUADS: glBegin(GL_QUADS); break;
default: break;
}
}
void end() { glEnd(); }
void vertex2i(int x, int y) { glVertex2i(x, y); }
void vertex2f(float x, float y) { glVertex2f(x, y); }
void vertex3f(float x, float y, float z) { glVertex3f(x, y, z); }
void tex_coord2f(float x, float y) { glTexCoord2f(x, y); }
void normal3f(float x, float y, float z) { glNormal3f(x, y, z); }
void color4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { glColor4ub(r, g, b, a); }
void color3f(float x, float y, float z) { glColor3f(x, y, z); }
void color4f(float x, float y, float z, float w) { glColor4f(x, y, z, w); }
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Initialize drawing mode (how to organize vertex)
void begin(int mode)
{
// Draw mode can be RL_LINES, RL_TRIANGLES and RL_QUADS
// NOTE: In all three cases, vertex are accumulated over default internal vertex buffer
if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode != mode)
{
if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount > 0)
{
// Make sure current GLOBAL_DATA.currentBatch->draws[i].vertexCount is aligned a multiple of 4,
// that way, following QUADS drawing will keep aligned with index processing
// It implies adding some extra alignment vertex at the end of the draw,
// those vertex are not processed but they are considered as an additional offset
// for the next set of vertex to be drawn
if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_LINES) GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount < 4)? GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount : GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%4);
else if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_TRIANGLES) GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount < 4)? 1 : (4 - (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%4)));
else GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = 0;
if (!check_render_batch_limit(GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment))
{
GLOBAL_DATA.State.vertexCounter += GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment;
GLOBAL_DATA.currentBatch->drawCounter++;
}
}
if (GLOBAL_DATA.currentBatch->drawCounter >= RL_DEFAULT_BATCH_DRAWCALLS) draw_render_batch(GLOBAL_DATA.currentBatch);
GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode = mode;
GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount = 0;
GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].textureId = GLOBAL_DATA.State.defaultTextureId;
}
}
// Finish vertex providing
void end(void)
{
// NOTE: Depth increment is dependant on ortho(): z-near and z-far values,
// as well as depth buffer bit-depth (16bit or 24bit or 32bit)
// Correct increment formula would be: depthInc = (zfar - znear)/pow(2, bits)
GLOBAL_DATA.currentBatch->currentDepth += (1.0f/20000.0f);
}
// Define one vertex (position)
// NOTE: Vertex position data is the basic information required for drawing
void vertex3f(float x, float y, float z)
{
float tx = x;
float ty = y;
float tz = z;
// Transform provided vector if required
if (GLOBAL_DATA.State.transformRequired)
{
tx = GLOBAL_DATA.State.transform.m0*x + GLOBAL_DATA.State.transform.m4*y + GLOBAL_DATA.State.transform.m8*z + GLOBAL_DATA.State.transform.m12;
ty = GLOBAL_DATA.State.transform.m1*x + GLOBAL_DATA.State.transform.m5*y + GLOBAL_DATA.State.transform.m9*z + GLOBAL_DATA.State.transform.m13;
tz = GLOBAL_DATA.State.transform.m2*x + GLOBAL_DATA.State.transform.m6*y + GLOBAL_DATA.State.transform.m10*z + GLOBAL_DATA.State.transform.m14;
}
// WARNING: We can't break primitives when launching a new batch.
// RL_LINES comes in pairs, RL_TRIANGLES come in groups of 3 vertices and RL_QUADS come in groups of 4 vertices.
// We must check current draw.mode when a new vertex is required and finish the batch only if the draw.mode draw.vertexCount is %2, %3 or %4
if (GLOBAL_DATA.State.vertexCounter > (GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].elementCount*4 - 4))
{
if ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_LINES) &&
(GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%2 == 0))
{
// Reached the maximum number of vertices for RL_LINES drawing
// Launch a draw call but keep current state for next vertices comming
// NOTE: We add +1 vertex to the check for security
check_render_batch_limit(2 + 1);
}
else if ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_TRIANGLES) &&
(GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%3 == 0))
{
check_render_batch_limit(3 + 1);
}
else if ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_QUADS) &&
(GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%4 == 0))
{
check_render_batch_limit(4 + 1);
}
}
// Add vertices
GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].vertices[3*GLOBAL_DATA.State.vertexCounter] = tx;
GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].vertices[3*GLOBAL_DATA.State.vertexCounter + 1] = ty;
GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].vertices[3*GLOBAL_DATA.State.vertexCounter + 2] = tz;
// Add current texcoord
GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].texcoords[2*GLOBAL_DATA.State.vertexCounter] = GLOBAL_DATA.State.texcoordx;
GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].texcoords[2*GLOBAL_DATA.State.vertexCounter + 1] = GLOBAL_DATA.State.texcoordy;
// WARNING: By default vertex_buffer struct does not store normals
// Add current color
GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].colors[4*GLOBAL_DATA.State.vertexCounter] = GLOBAL_DATA.State.colorr;
GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].colors[4*GLOBAL_DATA.State.vertexCounter + 1] = GLOBAL_DATA.State.colorg;
GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].colors[4*GLOBAL_DATA.State.vertexCounter + 2] = GLOBAL_DATA.State.colorb;
GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].colors[4*GLOBAL_DATA.State.vertexCounter + 3] = GLOBAL_DATA.State.colora;
GLOBAL_DATA.State.vertexCounter++;
GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount++;
}
// Define one vertex (position)
void vertex2f(float x, float y)
{
vertex3f(x, y, GLOBAL_DATA.currentBatch->currentDepth);
}
// Define one vertex (position)
void vertex2i(int x, int y)
{
vertex3f((float)x, (float)y, GLOBAL_DATA.currentBatch->currentDepth);
}
// Define one vertex (texture coordinate)
// NOTE: Texture coordinates are limited to QUADS only
void tex_coord2f(float x, float y)
{
GLOBAL_DATA.State.texcoordx = x;
GLOBAL_DATA.State.texcoordy = y;
}
// Define one vertex (normal)
// NOTE: Normals limited to TRIANGLES only?
void normal3f(float x, float y, float z)
{
GLOBAL_DATA.State.normalx = x;
GLOBAL_DATA.State.normaly = y;
GLOBAL_DATA.State.normalz = z;
}
// Define one vertex (color)
void color4ub(unsigned char x, unsigned char y, unsigned char z, unsigned char w)
{
GLOBAL_DATA.State.colorr = x;
GLOBAL_DATA.State.colorg = y;
GLOBAL_DATA.State.colorb = z;
GLOBAL_DATA.State.colora = w;
}
// Define one vertex (color)
void color4f(float r, float g, float b, float a)
{
color4ub((unsigned char)(r*255), (unsigned char)(g*255), (unsigned char)(b*255), (unsigned char)(a*255));
}
// Define one vertex (color)
void color3f(float x, float y, float z)
{
color4ub((unsigned char)(x*255), (unsigned char)(y*255), (unsigned char)(z*255), 255);
}
#endif
//--------------------------------------------------------------------------------------
// Module Functions Definition - OpenGL style functions (common to 1.1, 3.3+, ES2)
//--------------------------------------------------------------------------------------
// Set current texture to use
void set_texture(unsigned int id)
{
if (id == 0)
{
#if defined(GRAPHICS_API_OPENGL_11)
disable_texture();
#else
// NOTE: If quads batch limit is reached, we force a draw call and next batch starts
if (GLOBAL_DATA.State.vertexCounter >=
GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].elementCount*4)
{
draw_render_batch(GLOBAL_DATA.currentBatch);
}
#endif
}
else
{
#if defined(GRAPHICS_API_OPENGL_11)
enable_texture(id);
#else
if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].textureId != id)
{
if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount > 0)
{
// Make sure current GLOBAL_DATA.currentBatch->draws[i].vertexCount is aligned a multiple of 4,
// that way, following QUADS drawing will keep aligned with index processing
// It implies adding some extra alignment vertex at the end of the draw,
// those vertex are not processed but they are considered as an additional offset
// for the next set of vertex to be drawn
if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_LINES) GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount < 4)? GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount : GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%4);
else if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_TRIANGLES) GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount < 4)? 1 : (4 - (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%4)));
else GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = 0;
if (!check_render_batch_limit(GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment))
{
GLOBAL_DATA.State.vertexCounter += GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment;
GLOBAL_DATA.currentBatch->drawCounter++;
}
}
if (GLOBAL_DATA.currentBatch->drawCounter >= RL_DEFAULT_BATCH_DRAWCALLS) draw_render_batch(GLOBAL_DATA.currentBatch);
GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].textureId = id;
GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount = 0;
}
#endif
}
}
// Select and active a texture slot
void active_texture_slot(int slot)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glActiveTexture(GL_TEXTURE0 + slot);
#endif
}
// Enable texture
void enable_texture(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_11)
glEnable(GL_TEXTURE_2D);
#endif
glBindTexture(GL_TEXTURE_2D, id);
}
// Disable texture
void disable_texture(void)
{
#if defined(GRAPHICS_API_OPENGL_11)
glDisable(GL_TEXTURE_2D);
#endif
glBindTexture(GL_TEXTURE_2D, 0);
}
// Enable texture cubemap
void enable_texture_cubemap(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindTexture(GL_TEXTURE_CUBE_MAP, id);
#endif
}
// Disable texture cubemap
void disable_texture_cubemap(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
#endif
}
// Set texture parameters (wrap mode/filter mode)
void texture_parameters(unsigned int id, int param, int value)
{
glBindTexture(GL_TEXTURE_2D, id);
#if !defined(GRAPHICS_API_OPENGL_11)
// Reset anisotropy filter, in case it was set
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f);
#endif
switch (param)
{
case TEXTURE_WRAP_S:
case TEXTURE_WRAP_T:
{
if (value == TEXTURE_WRAP_MIRROR_CLAMP)
{
#if !defined(GRAPHICS_API_OPENGL_11)
if (GLOBAL_DATA.ExtSupported.texMirrorClamp) glTexParameteri(GL_TEXTURE_2D, param, value);
else RL_TRACELOG(LOG_WARNING, "GL: Clamp mirror wrap mode not supported (GL_MIRROR_CLAMP_EXT)");
#endif
}
else glTexParameteri(GL_TEXTURE_2D, param, value);
} break;
case TEXTURE_MAG_FILTER:
case TEXTURE_MIN_FILTER: glTexParameteri(GL_TEXTURE_2D, param, value); break;
case TEXTURE_FILTER_ANISOTROPIC:
{
#if !defined(GRAPHICS_API_OPENGL_11)
if (value <= GLOBAL_DATA.ExtSupported.maxAnisotropyLevel) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value);
else if (GLOBAL_DATA.ExtSupported.maxAnisotropyLevel > 0.0f)
{
RL_TRACELOG(LOG_WARNING, "GL: Maximum anisotropic filter level supported is %iX", id, (int)GLOBAL_DATA.ExtSupported.maxAnisotropyLevel);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value);
}
else RL_TRACELOG(LOG_WARNING, "GL: Anisotropic filtering not supported");
#endif
} break;
#if defined(GRAPHICS_API_OPENGL_33)
case TEXTURE_MIPMAP_BIAS_RATIO: glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_LOD_BIAS, value/100.0f);
#endif
default: break;
}
glBindTexture(GL_TEXTURE_2D, 0);
}
// Set cubemap parameters (wrap mode/filter mode)
void cubemap_parameters(unsigned int id, int param, int value)
{
#if !defined(GRAPHICS_API_OPENGL_11)
glBindTexture(GL_TEXTURE_CUBE_MAP, id);
// Reset anisotropy filter, in case it was set
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f);
switch (param)
{
case TEXTURE_WRAP_S:
case TEXTURE_WRAP_T:
{
if (value == TEXTURE_WRAP_MIRROR_CLAMP)
{
if (GLOBAL_DATA.ExtSupported.texMirrorClamp) glTexParameteri(GL_TEXTURE_CUBE_MAP, param, value);
else RL_TRACELOG(LOG_WARNING, "GL: Clamp mirror wrap mode not supported (GL_MIRROR_CLAMP_EXT)");
}
else glTexParameteri(GL_TEXTURE_CUBE_MAP, param, value);
} break;
case TEXTURE_MAG_FILTER:
case TEXTURE_MIN_FILTER: glTexParameteri(GL_TEXTURE_CUBE_MAP, param, value); break;
case TEXTURE_FILTER_ANISOTROPIC:
{
if (value <= GLOBAL_DATA.ExtSupported.maxAnisotropyLevel) glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value);
else if (GLOBAL_DATA.ExtSupported.maxAnisotropyLevel > 0.0f)
{
RL_TRACELOG(LOG_WARNING, "GL: Maximum anisotropic filter level supported is %iX", id, (int)GLOBAL_DATA.ExtSupported.maxAnisotropyLevel);
glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value);
}
else RL_TRACELOG(LOG_WARNING, "GL: Anisotropic filtering not supported");
} break;
#if defined(GRAPHICS_API_OPENGL_33)
case TEXTURE_MIPMAP_BIAS_RATIO: glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_LOD_BIAS, value/100.0f);
#endif
default: break;
}
glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
#endif
}
// Enable shader program
void enable_shader(unsigned int id)
{
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2))
glUseProgram(id);
#endif
}
// Disable shader program
void disable_shader(void)
{
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2))
glUseProgram(0);
#endif
}
// Enable rendering to texture (fbo)
void enable_framebuffer(unsigned int id)
{
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT)
glBindFramebuffer(GL_FRAMEBUFFER, id);
#endif
}
// Disable rendering to texture
void disable_framebuffer(void)
{
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT)
glBindFramebuffer(GL_FRAMEBUFFER, 0);
#endif
}
// Blit active framebuffer to main framebuffer
void blit_framebuffer(int srcX, int srcY, int srcWidth, int srcHeight, int dstX, int dstY, int dstWidth, int dstHeight, int bufferMask)
{
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES3)) && defined(RLGL_RENDER_TEXTURES_HINT)
glBlitFramebuffer(srcX, srcY, srcWidth, srcHeight, dstX, dstY, dstWidth, dstHeight, bufferMask, GL_NEAREST);
#endif
}
// Activate multiple draw color buffers
// NOTE: One color buffer is always active by default
void active_draw_buffers(int count)
{
#if ((defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES3)) && defined(RLGL_RENDER_TEXTURES_HINT))
// NOTE: Maximum number of draw buffers supported is implementation dependant,
// it can be queried with glGet*() but it must be at least 8
//GLint maxDrawBuffers = 0;
//glGetIntegerv(GL_MAX_DRAW_BUFFERS, &maxDrawBuffers);
if (count > 0)
{
if (count > 8) RL_TRACELOG(LOG_WARNING, "GL: Max color buffers limited to 8");
else
{
unsigned int buffers[8] = {
#if defined(GRAPHICS_API_OPENGL_ES3)
GL_COLOR_ATTACHMENT0_EXT,
GL_COLOR_ATTACHMENT1_EXT,
GL_COLOR_ATTACHMENT2_EXT,
GL_COLOR_ATTACHMENT3_EXT,
GL_COLOR_ATTACHMENT4_EXT,
GL_COLOR_ATTACHMENT5_EXT,
GL_COLOR_ATTACHMENT6_EXT,
GL_COLOR_ATTACHMENT7_EXT,
#else
GL_COLOR_ATTACHMENT0,
GL_COLOR_ATTACHMENT1,
GL_COLOR_ATTACHMENT2,
GL_COLOR_ATTACHMENT3,
GL_COLOR_ATTACHMENT4,
GL_COLOR_ATTACHMENT5,
GL_COLOR_ATTACHMENT6,
GL_COLOR_ATTACHMENT7,
#endif
};
#if defined(GRAPHICS_API_OPENGL_ES3)
glDrawBuffersEXT(count, buffers);
#else
glDrawBuffers(count, buffers);
#endif
}
}
else RL_TRACELOG(LOG_WARNING, "GL: One color buffer active by default");
#endif
}
//----------------------------------------------------------------------------------
// General render state configuration
//----------------------------------------------------------------------------------
// Enable color blending
void enable_color_blend(void) { glEnable(GL_BLEND); }
// Disable color blending
void disable_color_blend(void) { glDisable(GL_BLEND); }
// Enable depth test
void enable_depth_test(void) { glEnable(GL_DEPTH_TEST); }
// Disable depth test
void disable_depth_test(void) { glDisable(GL_DEPTH_TEST); }
// Enable depth write
void enable_depth_mask(void) { glDepthMask(GL_TRUE); }
// Disable depth write
void disable_depth_mask(void) { glDepthMask(GL_FALSE); }
// Enable backface culling
void enable_backface_culling(void) { glEnable(GL_CULL_FACE); }
// Disable backface culling
void disable_backface_culling(void) { glDisable(GL_CULL_FACE); }
// Set face culling mode
void set_cull_face(int mode)
{
switch (mode)
{
case CULL_FACE_BACK: glCullFace(GL_BACK); break;
case CULL_FACE_FRONT: glCullFace(GL_FRONT); break;
default: break;
}
}
// Enable scissor test
void enable_scissor_test(void) { glEnable(GL_SCISSOR_TEST); }
// Disable scissor test
void disable_scissor_test(void) { glDisable(GL_SCISSOR_TEST); }
// Scissor test
void scissor(int x, int y, int width, int height) { glScissor(x, y, width, height); }
// Enable wire mode
void enable_wire_mode(void)
{
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
// NOTE: glPolygonMode() not available on OpenGL ES
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
#endif
}
void enable_point_mode(void)
{
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
// NOTE: glPolygonMode() not available on OpenGL ES
glPolygonMode(GL_FRONT_AND_BACK, GL_POINT);
glEnable(GL_PROGRAM_POINT_SIZE);
#endif
}
// Disable wire mode
void disable_wire_mode(void)
{
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
// NOTE: glPolygonMode() not available on OpenGL ES
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
#endif
}
// Set the line drawing width
void set_line_width(float width) { glLineWidth(width); }
// Get the line drawing width
float get_line_width(void)
{
float width = 0;
glGetFloatv(GL_LINE_WIDTH, &width);
return width;
}
// Enable line aliasing
void enable_smooth_lines(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_11)
glEnable(GL_LINE_SMOOTH);
#endif
}
// Disable line aliasing
void disable_smooth_lines(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_11)
glDisable(GL_LINE_SMOOTH);
#endif
}
// Enable stereo rendering
void enable_stereo_render(void)
{
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2))
GLOBAL_DATA.State.stereoRender = true;
#endif
}
// Disable stereo rendering
void disable_stereo_render(void)
{
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2))
GLOBAL_DATA.State.stereoRender = false;
#endif
}
// Check if stereo render is enabled
bool is_stereo_render_enabled(void)
{
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2))
return GLOBAL_DATA.State.stereoRender;
#else
return false;
#endif
}
// Clear color buffer with color
void clear_color(unsigned char r, unsigned char g, unsigned char b, unsigned char a)
{
// Color values clamp to 0.0f(0) and 1.0f(255)
float cr = (float)r/255;
float cg = (float)g/255;
float cb = (float)b/255;
float ca = (float)a/255;
glClearColor(cr, cg, cb, ca);
}
// Clear used screen buffers (color and depth)
void clear_screen_buffers(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers: Color and Depth (Depth is used for 3D)
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); // Stencil buffer not used...
}
// Check and log OpenGL error codes
void check_errors()
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
int check = 1;
while (check)
{
const GLenum err = glGetError();
switch (err)
{
case GL_NO_ERROR: check = 0; break;
case 0x0500: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_ENUM"); break;
case 0x0501: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_VALUE"); break;
case 0x0502: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_OPERATION"); break;
case 0x0503: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_STACK_OVERFLOW"); break;
case 0x0504: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_STACK_UNDERFLOW"); break;
case 0x0505: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_OUT_OF_MEMORY"); break;
case 0x0506: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_FRAMEBUFFER_OPERATION"); break;
default: RL_TRACELOG(LOG_WARNING, "GL: Error detected: Unknown error code: %x", err); break;
}
}
#endif
}
// Set blend mode
void set_blend_mode(int mode)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if ((GLOBAL_DATA.State.currentBlendMode != mode) || ((mode == BLEND_CUSTOM || mode == BLEND_CUSTOM_SEPARATE) && GLOBAL_DATA.State.glCustomBlendModeModified))
{
draw_render_batch(GLOBAL_DATA.currentBatch);
switch (mode)
{
case BLEND_ALPHA: glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glBlendEquation(GL_FUNC_ADD); break;
case BLEND_ADDITIVE: glBlendFunc(GL_SRC_ALPHA, GL_ONE); glBlendEquation(GL_FUNC_ADD); break;
case BLEND_MULTIPLIED: glBlendFunc(GL_DST_COLOR, GL_ONE_MINUS_SRC_ALPHA); glBlendEquation(GL_FUNC_ADD); break;
case BLEND_ADD_COLORS: glBlendFunc(GL_ONE, GL_ONE); glBlendEquation(GL_FUNC_ADD); break;
case BLEND_SUBTRACT_COLORS: glBlendFunc(GL_ONE, GL_ONE); glBlendEquation(GL_FUNC_SUBTRACT); break;
case BLEND_ALPHA_PREMULTIPLY: glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); glBlendEquation(GL_FUNC_ADD); break;
case BLEND_CUSTOM:
{
// NOTE: Using GL blend src/dst factors and GL equation configured with set_blend_factors()
glBlendFunc(GLOBAL_DATA.State.glBlendSrcFactor, GLOBAL_DATA.State.glBlendDstFactor); glBlendEquation(GLOBAL_DATA.State.glBlendEquation);
} break;
case BLEND_CUSTOM_SEPARATE:
{
// NOTE: Using GL blend src/dst factors and GL equation configured with set_blend_factors_separate()
glBlendFuncSeparate(GLOBAL_DATA.State.glBlendSrcFactorRGB, GLOBAL_DATA.State.glBlendDestFactorRGB, GLOBAL_DATA.State.glBlendSrcFactorAlpha, GLOBAL_DATA.State.glBlendDestFactorAlpha);
glBlendEquationSeparate(GLOBAL_DATA.State.glBlendEquationRGB, GLOBAL_DATA.State.glBlendEquationAlpha);
} break;
default: break;
}
GLOBAL_DATA.State.currentBlendMode = mode;
GLOBAL_DATA.State.glCustomBlendModeModified = false;
}
#endif
}
// Set blending mode factor and equation
void set_blend_factors(int glSrcFactor, int glDstFactor, int glEquation)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if ((GLOBAL_DATA.State.glBlendSrcFactor != glSrcFactor) ||
(GLOBAL_DATA.State.glBlendDstFactor != glDstFactor) ||
(GLOBAL_DATA.State.glBlendEquation != glEquation))
{
GLOBAL_DATA.State.glBlendSrcFactor = glSrcFactor;
GLOBAL_DATA.State.glBlendDstFactor = glDstFactor;
GLOBAL_DATA.State.glBlendEquation = glEquation;
GLOBAL_DATA.State.glCustomBlendModeModified = true;
}
#endif
}
// Set blending mode factor and equation separately for RGB and alpha
void set_blend_factors_separate(int glSrcRGB, int glDstRGB, int glSrcAlpha, int glDstAlpha, int glEqRGB, int glEqAlpha)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if ((GLOBAL_DATA.State.glBlendSrcFactorRGB != glSrcRGB) ||
(GLOBAL_DATA.State.glBlendDestFactorRGB != glDstRGB) ||
(GLOBAL_DATA.State.glBlendSrcFactorAlpha != glSrcAlpha) ||
(GLOBAL_DATA.State.glBlendDestFactorAlpha != glDstAlpha) ||
(GLOBAL_DATA.State.glBlendEquationRGB != glEqRGB) ||
(GLOBAL_DATA.State.glBlendEquationAlpha != glEqAlpha))
{
GLOBAL_DATA.State.glBlendSrcFactorRGB = glSrcRGB;
GLOBAL_DATA.State.glBlendDestFactorRGB = glDstRGB;
GLOBAL_DATA.State.glBlendSrcFactorAlpha = glSrcAlpha;
GLOBAL_DATA.State.glBlendDestFactorAlpha = glDstAlpha;
GLOBAL_DATA.State.glBlendEquationRGB = glEqRGB;
GLOBAL_DATA.State.glBlendEquationAlpha = glEqAlpha;
GLOBAL_DATA.State.glCustomBlendModeModified = true;
}
#endif
}
//----------------------------------------------------------------------------------
// Module Functions Definition - OpenGL Debug
//----------------------------------------------------------------------------------
#if defined(RLGL_ENABLE_OPENGL_DEBUG_CONTEXT) && defined(GRAPHICS_API_OPENGL_43)
static void GLAPIENTRY DebugMessageCallback(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message, const void *userParam)
{
// Ignore non-significant error/warning codes (NVidia drivers)
// NOTE: Here there are the details with a sample output:
// - #131169 - Framebuffer detailed info: The driver allocated storage for renderbuffer 2. (severity: low)
// - #131185 - Buffer detailed info: Buffer object 1 (bound to GL_ELEMENT_ARRAY_BUFFER_ARB, usage hint is GL_ENUM_88e4)
// will use VIDEO memory as the source for buffer object operations. (severity: low)
// - #131218 - Program/shader state performance warning: Vertex shader in program 7 is being recompiled based on GL state. (severity: medium)
// - #131204 - Texture state usage warning: The texture object (0) bound to texture image unit 0 does not have
// a defined base level and cannot be used for texture mapping. (severity: low)
if ((id == 131169) || (id == 131185) || (id == 131218) || (id == 131204)) return;
const char *msgSource = NULL;
switch (source)
{
case GL_DEBUG_SOURCE_API: msgSource = "API"; break;
case GL_DEBUG_SOURCE_WINDOW_SYSTEM: msgSource = "WINDOW_SYSTEM"; break;
case GL_DEBUG_SOURCE_SHADER_COMPILER: msgSource = "SHADER_COMPILER"; break;
case GL_DEBUG_SOURCE_THIRD_PARTY: msgSource = "THIRD_PARTY"; break;
case GL_DEBUG_SOURCE_APPLICATION: msgSource = "APPLICATION"; break;
case GL_DEBUG_SOURCE_OTHER: msgSource = "OTHER"; break;
default: break;
}
const char *msgType = NULL;
switch (type)
{
case GL_DEBUG_TYPE_ERROR: msgType = "ERROR"; break;
case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR: msgType = "DEPRECATED_BEHAVIOR"; break;
case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR: msgType = "UNDEFINED_BEHAVIOR"; break;
case GL_DEBUG_TYPE_PORTABILITY: msgType = "PORTABILITY"; break;
case GL_DEBUG_TYPE_PERFORMANCE: msgType = "PERFORMANCE"; break;
case GL_DEBUG_TYPE_MARKER: msgType = "MARKER"; break;
case GL_DEBUG_TYPE_PUSH_GROUP: msgType = "PUSH_GROUP"; break;
case GL_DEBUG_TYPE_POP_GROUP: msgType = "POP_GROUP"; break;
case GL_DEBUG_TYPE_OTHER: msgType = "OTHER"; break;
default: break;
}
const char *msgSeverity = "DEFAULT";
switch (severity)
{
case GL_DEBUG_SEVERITY_LOW: msgSeverity = "LOW"; break;
case GL_DEBUG_SEVERITY_MEDIUM: msgSeverity = "MEDIUM"; break;
case GL_DEBUG_SEVERITY_HIGH: msgSeverity = "HIGH"; break;
case GL_DEBUG_SEVERITY_NOTIFICATION: msgSeverity = "NOTIFICATION"; break;
default: break;
}
RL_TRACELOG(LOG_WARNING, "GL: OpenGL debug message: %s", message);
RL_TRACELOG(LOG_WARNING, " > Type: %s", msgType);
RL_TRACELOG(LOG_WARNING, " > Source = %s", msgSource);
RL_TRACELOG(LOG_WARNING, " > Severity = %s", msgSeverity);
}
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition - rlgl functionality
//----------------------------------------------------------------------------------
// Initialize rlgl: OpenGL extensions, default buffers/shaders/textures, OpenGL states
void init(int width, int height)
{
// Enable OpenGL debug context if required
#if defined(RLGL_ENABLE_OPENGL_DEBUG_CONTEXT) && defined(GRAPHICS_API_OPENGL_43)
if ((glDebugMessageCallback != NULL) && (glDebugMessageControl != NULL))
{
glDebugMessageCallback(DebugMessageCallback, 0);
// glDebugMessageControl(GL_DEBUG_SOURCE_API, GL_DEBUG_TYPE_ERROR, GL_DEBUG_SEVERITY_HIGH, 0, 0, GL_TRUE);
// Debug context options:
// - GL_DEBUG_OUTPUT - Faster version but not useful for breakpoints
// - GL_DEBUG_OUTPUT_SYNCHRONUS - Callback is in sync with errors, so a breakpoint can be placed on the callback in order to get a stacktrace for the GL error
glEnable(GL_DEBUG_OUTPUT);
glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS);
}
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Init default white texture
unsigned char pixels[4] = { 255, 255, 255, 255 }; // 1 pixel RGBA (4 bytes)
GLOBAL_DATA.State.defaultTextureId = load_texture(pixels, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8, 1);
if (GLOBAL_DATA.State.defaultTextureId != 0) RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Default texture loaded successfully", GLOBAL_DATA.State.defaultTextureId);
else RL_TRACELOG(LOG_WARNING, "TEXTURE: Failed to load default texture");
// Init default Shader (customized for GL 3.3 and ES2)
// Loaded: GLOBAL_DATA.State.defaultShaderId + GLOBAL_DATA.State.defaultShaderLocs
load_shader_default();
GLOBAL_DATA.State.currentShaderId = GLOBAL_DATA.State.defaultShaderId;
GLOBAL_DATA.State.currentShaderLocs = GLOBAL_DATA.State.defaultShaderLocs;
// Init default vertex arrays buffers
GLOBAL_DATA.defaultBatch = load_render_batch(RL_DEFAULT_BATCH_BUFFERS, RL_DEFAULT_BATCH_BUFFER_ELEMENTS);
GLOBAL_DATA.currentBatch = &GLOBAL_DATA.defaultBatch;
// Init stack matrices (emulating OpenGL 1.1)
for (int i = 0; i < RL_MAX_MATRIX_STACK_SIZE; i++) GLOBAL_DATA.State.stack[i] = internal_matrix_identity();
// Init internal matrices
GLOBAL_DATA.State.transform = internal_matrix_identity();
GLOBAL_DATA.State.projection = internal_matrix_identity();
GLOBAL_DATA.State.modelview = internal_matrix_identity();
GLOBAL_DATA.State.currentMatrix = &GLOBAL_DATA.State.modelview;
#endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2
// Initialize OpenGL default states
//----------------------------------------------------------
// Init state: Depth test
glDepthFunc(GL_LEQUAL); // Type of depth testing to apply
glDisable(GL_DEPTH_TEST); // Disable depth testing for 2D (only used for 3D)
// Init state: Blending mode
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Color blending function (how colors are mixed)
glEnable(GL_BLEND); // Enable color blending (required to work with transparencies)
// Init state: Culling
// NOTE: All shapes/models triangles are drawn CCW
glCullFace(GL_BACK); // Cull the back face (default)
glFrontFace(GL_CCW); // Front face are defined counter clockwise (default)
glEnable(GL_CULL_FACE); // Enable backface culling
// Init state: Cubemap seamless
#if defined(GRAPHICS_API_OPENGL_33)
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); // Seamless cubemaps (not supported on OpenGL ES 2.0)
#endif
#if defined(GRAPHICS_API_OPENGL_11)
// Init state: Color hints (deprecated in OpenGL 3.0+)
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Improve quality of color and texture coordinate interpolation
glShadeModel(GL_SMOOTH); // Smooth shading between vertex (vertex colors interpolation)
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Store screen size into global variables
GLOBAL_DATA.State.framebufferWidth = width;
GLOBAL_DATA.State.framebufferHeight = height;
RL_TRACELOG(LOG_INFO, "GLOBAL_DATA: Default OpenGL state initialized successfully");
//----------------------------------------------------------
#endif
// Init state: Color/Depth buffers clear
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set clear color (black)
glClearDepth(1.0f); // Set clear depth value (default)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear color and depth buffers (depth buffer required for 3D)
}
// Vertex Buffer Object deinitialization (memory free)
void close(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
unload_render_batch(GLOBAL_DATA.defaultBatch);
unload_shader_default(); // Unload default shader
glDeleteTextures(1, &GLOBAL_DATA.State.defaultTextureId); // Unload default texture
RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Default texture unloaded successfully", GLOBAL_DATA.State.defaultTextureId);
#endif
}
// Load OpenGL extensions
// NOTE: External loader function must be provided
void load_extensions(void *loader)
{
#if defined(GRAPHICS_API_OPENGL_33) // Also defined for GRAPHICS_API_OPENGL_21
// NOTE: glad is generated and contains only required OpenGL 3.3 Core extensions (and lower versions)
if (gladLoadGL((GLADloadfunc)loader) == 0) RL_TRACELOG(LOG_WARNING, "GLAD: Cannot load OpenGL extensions");
else RL_TRACELOG(LOG_INFO, "GLAD: OpenGL extensions loaded successfully");
// Get number of supported extensions
GLint numExt = 0;
glGetIntegerv(GL_NUM_EXTENSIONS, &numExt);
RL_TRACELOG(LOG_INFO, "GL: Supported extensions count: %i", numExt);
#if defined(RLGL_SHOW_GL_DETAILS_INFO)
// Get supported extensions list
// WARNING: glGetStringi() not available on OpenGL 2.1
RL_TRACELOG(LOG_INFO, "GL: OpenGL extensions:");
for (int i = 0; i < numExt; i++) RL_TRACELOG(LOG_INFO, " %s", glGetStringi(GL_EXTENSIONS, i));
#endif
#if defined(GRAPHICS_API_OPENGL_21)
// Register supported extensions flags
// Optional OpenGL 2.1 extensions
GLOBAL_DATA.ExtSupported.vao = GLAD_GL_ARB_vertex_array_object;
GLOBAL_DATA.ExtSupported.instancing = (GLAD_GL_EXT_draw_instanced && GLAD_GL_ARB_instanced_arrays);
GLOBAL_DATA.ExtSupported.texNPOT = GLAD_GL_ARB_texture_non_power_of_two;
GLOBAL_DATA.ExtSupported.texFloat32 = GLAD_GL_ARB_texture_float;
GLOBAL_DATA.ExtSupported.texFloat16 = GLAD_GL_ARB_texture_float;
GLOBAL_DATA.ExtSupported.texDepth = GLAD_GL_ARB_depth_texture;
GLOBAL_DATA.ExtSupported.maxDepthBits = 32;
GLOBAL_DATA.ExtSupported.texAnisoFilter = GLAD_GL_EXT_texture_filter_anisotropic;
GLOBAL_DATA.ExtSupported.texMirrorClamp = GLAD_GL_EXT_texture_mirror_clamp;
#else
// Register supported extensions flags
// OpenGL 3.3 extensions supported by default (core)
GLOBAL_DATA.ExtSupported.vao = true;
GLOBAL_DATA.ExtSupported.instancing = true;
GLOBAL_DATA.ExtSupported.texNPOT = true;
GLOBAL_DATA.ExtSupported.texFloat32 = true;
GLOBAL_DATA.ExtSupported.texFloat16 = true;
GLOBAL_DATA.ExtSupported.texDepth = true;
GLOBAL_DATA.ExtSupported.maxDepthBits = 32;
GLOBAL_DATA.ExtSupported.texAnisoFilter = true;
GLOBAL_DATA.ExtSupported.texMirrorClamp = true;
#endif
// Optional OpenGL 3.3 extensions
GLOBAL_DATA.ExtSupported.texCompASTC = GLAD_GL_KHR_texture_compression_astc_hdr && GLAD_GL_KHR_texture_compression_astc_ldr;
GLOBAL_DATA.ExtSupported.texCompDXT = GLAD_GL_EXT_texture_compression_s3tc; // Texture compression: DXT
GLOBAL_DATA.ExtSupported.texCompETC2 = GLAD_GL_ARB_ES3_compatibility; // Texture compression: ETC2/EAC
#if defined(GRAPHICS_API_OPENGL_43)
GLOBAL_DATA.ExtSupported.computeShader = GLAD_GL_ARB_compute_shader;
GLOBAL_DATA.ExtSupported.ssbo = GLAD_GL_ARB_shader_storage_buffer_object;
#endif
#endif // GRAPHICS_API_OPENGL_33
#if defined(GRAPHICS_API_OPENGL_ES3)
// Register supported extensions flags
// OpenGL ES 3.0 extensions supported by default (or it should be)
GLOBAL_DATA.ExtSupported.vao = true;
GLOBAL_DATA.ExtSupported.instancing = true;
GLOBAL_DATA.ExtSupported.texNPOT = true;
GLOBAL_DATA.ExtSupported.texFloat32 = true;
GLOBAL_DATA.ExtSupported.texFloat16 = true;
GLOBAL_DATA.ExtSupported.texDepth = true;
GLOBAL_DATA.ExtSupported.texDepthWebGL = true;
GLOBAL_DATA.ExtSupported.maxDepthBits = 24;
GLOBAL_DATA.ExtSupported.texAnisoFilter = true;
GLOBAL_DATA.ExtSupported.texMirrorClamp = true;
// TODO: Check for additional OpenGL ES 3.0 supported extensions:
//GLOBAL_DATA.ExtSupported.texCompDXT = true;
//GLOBAL_DATA.ExtSupported.texCompETC1 = true;
//GLOBAL_DATA.ExtSupported.texCompETC2 = true;
//GLOBAL_DATA.ExtSupported.texCompPVRT = true;
//GLOBAL_DATA.ExtSupported.texCompASTC = true;
//GLOBAL_DATA.ExtSupported.maxAnisotropyLevel = true;
//GLOBAL_DATA.ExtSupported.computeShader = true;
//GLOBAL_DATA.ExtSupported.ssbo = true;
#elif defined(GRAPHICS_API_OPENGL_ES2)
#if defined(PLATFORM_DESKTOP) || defined(PLATFORM_DESKTOP_SDL)
// TODO: Support GLAD loader for OpenGL ES 3.0
if (gladLoadGLES2((GLADloadfunc)loader) == 0) RL_TRACELOG(LOG_WARNING, "GLAD: Cannot load OpenGL ES2.0 functions");
else RL_TRACELOG(LOG_INFO, "GLAD: OpenGL ES 2.0 loaded successfully");
#endif
// Get supported extensions list
GLint numExt = 0;
const char **extList = RL_MALLOC(512*sizeof(const char *)); // Allocate 512 strings pointers (2 KB)
const char *extensions = (const char *)glGetString(GL_EXTENSIONS); // One big const string
// NOTE: We have to duplicate string because glGetString() returns a const string
int size = strlen(extensions) + 1; // Get extensions string size in bytes
char *extensionsDup = (char *)RL_CALLOC(size, sizeof(char));
strcpy(extensionsDup, extensions);
extList[numExt] = extensionsDup;
for (int i = 0; i < size; i++)
{
if (extensionsDup[i] == ' ')
{
extensionsDup[i] = '\0';
numExt++;
extList[numExt] = &extensionsDup[i + 1];
}
}
RL_TRACELOG(LOG_INFO, "GL: Supported extensions count: %i", numExt);
#if defined(RLGL_SHOW_GL_DETAILS_INFO)
RL_TRACELOG(LOG_INFO, "GL: OpenGL extensions:");
for (int i = 0; i < numExt; i++) RL_TRACELOG(LOG_INFO, " %s", extList[i]);
#endif
// Check required extensions
for (int i = 0; i < numExt; i++)
{
// Check VAO support
// NOTE: Only check on OpenGL ES, OpenGL 3.3 has VAO support as core feature
if (strcmp(extList[i], (const char *)"GL_OES_vertex_array_object") == 0)
{
// The extension is supported by our hardware and driver, try to get related functions pointers
// NOTE: emscripten does not support VAOs natively, it uses emulation and it reduces overall performance...
glGenVertexArrays = (PFNGLGENVERTEXARRAYSOESPROC)((glLoadProc)loader)("glGenVertexArraysOES");
glBindVertexArray = (PFNGLBINDVERTEXARRAYOESPROC)((glLoadProc)loader)("glBindVertexArrayOES");
glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSOESPROC)((glLoadProc)loader)("glDeleteVertexArraysOES");
//glIsVertexArray = (PFNGLISVERTEXARRAYOESPROC)loader("glIsVertexArrayOES"); // NOTE: Fails in WebGL, omitted
if ((glGenVertexArrays != NULL) && (glBindVertexArray != NULL) && (glDeleteVertexArrays != NULL)) GLOBAL_DATA.ExtSupported.vao = true;
}
// Check instanced rendering support
if (strcmp(extList[i], (const char *)"GL_ANGLE_instanced_arrays") == 0) // Web ANGLE
{
glDrawArraysInstanced = (PFNGLDRAWARRAYSINSTANCEDEXTPROC)((glLoadProc)loader)("glDrawArraysInstancedANGLE");
glDrawElementsInstanced = (PFNGLDRAWELEMENTSINSTANCEDEXTPROC)((glLoadProc)loader)("glDrawElementsInstancedANGLE");
glVertexAttribDivisor = (PFNGLVERTEXATTRIBDIVISOREXTPROC)((glLoadProc)loader)("glVertexAttribDivisorANGLE");
if ((glDrawArraysInstanced != NULL) && (glDrawElementsInstanced != NULL) && (glVertexAttribDivisor != NULL)) GLOBAL_DATA.ExtSupported.instancing = true;
}
else
{
if ((strcmp(extList[i], (const char *)"GL_EXT_draw_instanced") == 0) && // Standard EXT
(strcmp(extList[i], (const char *)"GL_EXT_instanced_arrays") == 0))
{
glDrawArraysInstanced = (PFNGLDRAWARRAYSINSTANCEDEXTPROC)((glLoadProc)loader)("glDrawArraysInstancedEXT");
glDrawElementsInstanced = (PFNGLDRAWELEMENTSINSTANCEDEXTPROC)((glLoadProc)loader)("glDrawElementsInstancedEXT");
glVertexAttribDivisor = (PFNGLVERTEXATTRIBDIVISOREXTPROC)((glLoadProc)loader)("glVertexAttribDivisorEXT");
if ((glDrawArraysInstanced != NULL) && (glDrawElementsInstanced != NULL) && (glVertexAttribDivisor != NULL)) GLOBAL_DATA.ExtSupported.instancing = true;
}
}
// Check NPOT textures support
// NOTE: Only check on OpenGL ES, OpenGL 3.3 has NPOT textures full support as core feature
if (strcmp(extList[i], (const char *)"GL_OES_texture_npot") == 0) GLOBAL_DATA.ExtSupported.texNPOT = true;
// Check texture float support
if (strcmp(extList[i], (const char *)"GL_OES_texture_float") == 0) GLOBAL_DATA.ExtSupported.texFloat32 = true;
if (strcmp(extList[i], (const char *)"GL_OES_texture_half_float") == 0) GLOBAL_DATA.ExtSupported.texFloat16 = true;
// Check depth texture support
if (strcmp(extList[i], (const char *)"GL_OES_depth_texture") == 0) GLOBAL_DATA.ExtSupported.texDepth = true;
if (strcmp(extList[i], (const char *)"GL_WEBGL_depth_texture") == 0) GLOBAL_DATA.ExtSupported.texDepthWebGL = true; // WebGL requires unsized internal format
if (GLOBAL_DATA.ExtSupported.texDepthWebGL) GLOBAL_DATA.ExtSupported.texDepth = true;
if (strcmp(extList[i], (const char *)"GL_OES_depth24") == 0) GLOBAL_DATA.ExtSupported.maxDepthBits = 24; // Not available on WebGL
if (strcmp(extList[i], (const char *)"GL_OES_depth32") == 0) GLOBAL_DATA.ExtSupported.maxDepthBits = 32; // Not available on WebGL
// Check texture compression support: DXT
if ((strcmp(extList[i], (const char *)"GL_EXT_texture_compression_s3tc") == 0) ||
(strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_s3tc") == 0) ||
(strcmp(extList[i], (const char *)"GL_WEBKIT_WEBGL_compressed_texture_s3tc") == 0)) GLOBAL_DATA.ExtSupported.texCompDXT = true;
// Check texture compression support: ETC1
if ((strcmp(extList[i], (const char *)"GL_OES_compressed_ETC1_RGB8_texture") == 0) ||
(strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_etc1") == 0)) GLOBAL_DATA.ExtSupported.texCompETC1 = true;
// Check texture compression support: ETC2/EAC
if (strcmp(extList[i], (const char *)"GL_ARB_ES3_compatibility") == 0) GLOBAL_DATA.ExtSupported.texCompETC2 = true;
// Check texture compression support: PVR
if (strcmp(extList[i], (const char *)"GL_IMG_texture_compression_pvrtc") == 0) GLOBAL_DATA.ExtSupported.texCompPVRT = true;
// Check texture compression support: ASTC
if (strcmp(extList[i], (const char *)"GL_KHR_texture_compression_astc_hdr") == 0) GLOBAL_DATA.ExtSupported.texCompASTC = true;
// Check anisotropic texture filter support
if (strcmp(extList[i], (const char *)"GL_EXT_texture_filter_anisotropic") == 0) GLOBAL_DATA.ExtSupported.texAnisoFilter = true;
// Check clamp mirror wrap mode support
if (strcmp(extList[i], (const char *)"GL_EXT_texture_mirror_clamp") == 0) GLOBAL_DATA.ExtSupported.texMirrorClamp = true;
}
// Free extensions pointers
RL_FREE(extList);
RL_FREE(extensionsDup); // Duplicated string must be deallocated
#endif // GRAPHICS_API_OPENGL_ES2
// Check OpenGL information and capabilities
//------------------------------------------------------------------------------
// Show current OpenGL and GLSL version
RL_TRACELOG(LOG_INFO, "GL: OpenGL device information:");
RL_TRACELOG(LOG_INFO, " > Vendor: %s", glGetString(GL_VENDOR));
RL_TRACELOG(LOG_INFO, " > Renderer: %s", glGetString(GL_RENDERER));
RL_TRACELOG(LOG_INFO, " > Version: %s", glGetString(GL_VERSION));
RL_TRACELOG(LOG_INFO, " > GLSL: %s", glGetString(GL_SHADING_LANGUAGE_VERSION));
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: Anisotropy levels capability is an extension
#ifndef GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT
#define GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF
#endif
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &GLOBAL_DATA.ExtSupported.maxAnisotropyLevel);
#if defined(RLGL_SHOW_GL_DETAILS_INFO)
// Show some OpenGL GPU capabilities
RL_TRACELOG(LOG_INFO, "GL: OpenGL capabilities:");
GLint capability = 0;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &capability);
RL_TRACELOG(LOG_INFO, " GL_MAX_TEXTURE_SIZE: %i", capability);
glGetIntegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE, &capability);
RL_TRACELOG(LOG_INFO, " GL_MAX_CUBE_MAP_TEXTURE_SIZE: %i", capability);
glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &capability);
RL_TRACELOG(LOG_INFO, " GL_MAX_TEXTURE_IMAGE_UNITS: %i", capability);
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &capability);
RL_TRACELOG(LOG_INFO, " GL_MAX_VERTEX_ATTRIBS: %i", capability);
#if !defined(GRAPHICS_API_OPENGL_ES2)
glGetIntegerv(GL_MAX_UNIFORM_BLOCK_SIZE, &capability);
RL_TRACELOG(LOG_INFO, " GL_MAX_UNIFORM_BLOCK_SIZE: %i", capability);
glGetIntegerv(GL_MAX_DRAW_BUFFERS, &capability);
RL_TRACELOG(LOG_INFO, " GL_MAX_DRAW_BUFFERS: %i", capability);
if (GLOBAL_DATA.ExtSupported.texAnisoFilter) RL_TRACELOG(LOG_INFO, " GL_MAX_TEXTURE_MAX_ANISOTROPY: %.0f", GLOBAL_DATA.ExtSupported.maxAnisotropyLevel);
#endif
glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &capability);
RL_TRACELOG(LOG_INFO, " GL_NUM_COMPRESSED_TEXTURE_FORMATS: %i", capability);
GLint *compFormats = (GLint *)RL_CALLOC(capability, sizeof(GLint));
glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, compFormats);
for (int i = 0; i < capability; i++) RL_TRACELOG(LOG_INFO, " %s", GetCompressedFormatName(compFormats[i]));
RL_FREE(compFormats);
#if defined(GRAPHICS_API_OPENGL_43)
glGetIntegerv(GL_MAX_VERTEX_ATTRIB_BINDINGS, &capability);
RL_TRACELOG(LOG_INFO, " GL_MAX_VERTEX_ATTRIB_BINDINGS: %i", capability);
glGetIntegerv(GL_MAX_UNIFORM_LOCATIONS, &capability);
RL_TRACELOG(LOG_INFO, " GL_MAX_UNIFORM_LOCATIONS: %i", capability);
#endif // GRAPHICS_API_OPENGL_43
#else // RLGL_SHOW_GL_DETAILS_INFO
// Show some basic info about GL supported features
if (GLOBAL_DATA.ExtSupported.vao) RL_TRACELOG(LOG_INFO, "GL: VAO extension detected, VAO functions loaded successfully");
else RL_TRACELOG(LOG_WARNING, "GL: VAO extension not found, VAO not supported");
if (GLOBAL_DATA.ExtSupported.texNPOT) RL_TRACELOG(LOG_INFO, "GL: NPOT textures extension detected, full NPOT textures supported");
else RL_TRACELOG(LOG_WARNING, "GL: NPOT textures extension not found, limited NPOT support (no-mipmaps, no-repeat)");
if (GLOBAL_DATA.ExtSupported.texCompDXT) RL_TRACELOG(LOG_INFO, "GL: DXT compressed textures supported");
if (GLOBAL_DATA.ExtSupported.texCompETC1) RL_TRACELOG(LOG_INFO, "GL: ETC1 compressed textures supported");
if (GLOBAL_DATA.ExtSupported.texCompETC2) RL_TRACELOG(LOG_INFO, "GL: ETC2/EAC compressed textures supported");
if (GLOBAL_DATA.ExtSupported.texCompPVRT) RL_TRACELOG(LOG_INFO, "GL: PVRT compressed textures supported");
if (GLOBAL_DATA.ExtSupported.texCompASTC) RL_TRACELOG(LOG_INFO, "GL: ASTC compressed textures supported");
if (GLOBAL_DATA.ExtSupported.computeShader) RL_TRACELOG(LOG_INFO, "GL: Compute shaders supported");
if (GLOBAL_DATA.ExtSupported.ssbo) RL_TRACELOG(LOG_INFO, "GL: Shader storage buffer objects supported");
#endif // RLGL_SHOW_GL_DETAILS_INFO
#endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2
}
// Get current OpenGL version
int get_version(void)
{
int glVersion = 0;
#if defined(GRAPHICS_API_OPENGL_11)
glVersion = RL_OPENGL_11;
#endif
#if defined(GRAPHICS_API_OPENGL_21)
glVersion = RL_OPENGL_21;
#elif defined(GRAPHICS_API_OPENGL_43)
glVersion = RL_OPENGL_43;
#elif defined(GRAPHICS_API_OPENGL_33)
glVersion = RL_OPENGL_33;
#endif
#if defined(GRAPHICS_API_OPENGL_ES3)
glVersion = RL_OPENGL_ES_30;
#elif defined(GRAPHICS_API_OPENGL_ES2)
glVersion = RL_OPENGL_ES_20;
#endif
return glVersion;
}
// Set current framebuffer width
void set_framebuffer_width(int width)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
GLOBAL_DATA.State.framebufferWidth = width;
#endif
}
// Set current framebuffer height
void set_framebuffer_height(int height)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
GLOBAL_DATA.State.framebufferHeight = height;
#endif
}
// Get default framebuffer width
int get_framebuffer_width(void)
{
int width = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
width = GLOBAL_DATA.State.framebufferWidth;
#endif
return width;
}
// Get default framebuffer height
int get_framebuffer_height(void)
{
int height = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
height = GLOBAL_DATA.State.framebufferHeight;
#endif
return height;
}
// Get default internal texture (white texture)
// NOTE: Default texture is a 1x1 pixel UNCOMPRESSED_R8G8B8A8
unsigned int get_texture_id_default(void)
{
unsigned int id = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
id = GLOBAL_DATA.State.defaultTextureId;
#endif
return id;
}
// Get default shader id
unsigned int get_shader_id_default(void)
{
unsigned int id = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
id = GLOBAL_DATA.State.defaultShaderId;
#endif
return id;
}
// Get default shader locs
int *get_shader_locs_default(void)
{
int *locs = NULL;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
locs = GLOBAL_DATA.State.defaultShaderLocs;
#endif
return locs;
}
// Render batch management
//------------------------------------------------------------------------------------------------
// Load render batch
render_batch load_render_batch(int numBuffers, int bufferElements)
{
render_batch batch = { 0 };
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Initialize CPU (RAM) vertex buffers (position, texcoord, color data and indexes)
//--------------------------------------------------------------------------------------------
batch.vertexBuffer = (vertex_buffer *)RL_MALLOC(numBuffers*sizeof(vertex_buffer));
for (int i = 0; i < numBuffers; i++)
{
batch.vertexBuffer[i].elementCount = bufferElements;
batch.vertexBuffer[i].vertices = (float *)RL_MALLOC(bufferElements*3*4*sizeof(float)); // 3 float by vertex, 4 vertex by quad
batch.vertexBuffer[i].texcoords = (float *)RL_MALLOC(bufferElements*2*4*sizeof(float)); // 2 float by texcoord, 4 texcoord by quad
batch.vertexBuffer[i].colors = (unsigned char *)RL_MALLOC(bufferElements*4*4*sizeof(unsigned char)); // 4 float by color, 4 colors by quad
#if defined(GRAPHICS_API_OPENGL_33)
batch.vertexBuffer[i].indices = (unsigned int *)RL_MALLOC(bufferElements*6*sizeof(unsigned int)); // 6 int by quad (indices)
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
batch.vertexBuffer[i].indices = (unsigned short *)RL_MALLOC(bufferElements*6*sizeof(unsigned short)); // 6 int by quad (indices)
#endif
for (int j = 0; j < (3*4*bufferElements); j++) batch.vertexBuffer[i].vertices[j] = 0.0f;
for (int j = 0; j < (2*4*bufferElements); j++) batch.vertexBuffer[i].texcoords[j] = 0.0f;
for (int j = 0; j < (4*4*bufferElements); j++) batch.vertexBuffer[i].colors[j] = 0;
int k = 0;
// Indices can be initialized right now
for (int j = 0; j < (6*bufferElements); j += 6)
{
batch.vertexBuffer[i].indices[j] = 4*k;
batch.vertexBuffer[i].indices[j + 1] = 4*k + 1;
batch.vertexBuffer[i].indices[j + 2] = 4*k + 2;
batch.vertexBuffer[i].indices[j + 3] = 4*k;
batch.vertexBuffer[i].indices[j + 4] = 4*k + 2;
batch.vertexBuffer[i].indices[j + 5] = 4*k + 3;
k++;
}
GLOBAL_DATA.State.vertexCounter = 0;
}
RL_TRACELOG(LOG_INFO, "GLOBAL_DATA: Render batch vertex buffers loaded successfully in RAM (CPU)");
//--------------------------------------------------------------------------------------------
// Upload to GPU (VRAM) vertex data and initialize VAOs/VBOs
//--------------------------------------------------------------------------------------------
for (int i = 0; i < numBuffers; i++)
{
if (GLOBAL_DATA.ExtSupported.vao)
{
// Initialize Quads VAO
glGenVertexArrays(1, &batch.vertexBuffer[i].vaoId);
glBindVertexArray(batch.vertexBuffer[i].vaoId);
}
// Quads - Vertex buffers binding and attributes enable
// Vertex position buffer (shader-location = 0)
glGenBuffers(1, &batch.vertexBuffer[i].vboId[0]);
glBindBuffer(GL_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[0]);
glBufferData(GL_ARRAY_BUFFER, bufferElements*3*4*sizeof(float), batch.vertexBuffer[i].vertices, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_POSITION]);
glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0);
// Vertex texcoord buffer (shader-location = 1)
glGenBuffers(1, &batch.vertexBuffer[i].vboId[1]);
glBindBuffer(GL_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[1]);
glBufferData(GL_ARRAY_BUFFER, bufferElements*2*4*sizeof(float), batch.vertexBuffer[i].texcoords, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_TEXCOORD01]);
glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0);
// Vertex color buffer (shader-location = 3)
glGenBuffers(1, &batch.vertexBuffer[i].vboId[2]);
glBindBuffer(GL_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[2]);
glBufferData(GL_ARRAY_BUFFER, bufferElements*4*4*sizeof(unsigned char), batch.vertexBuffer[i].colors, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_COLOR]);
glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
// Fill index buffer
glGenBuffers(1, &batch.vertexBuffer[i].vboId[3]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[3]);
#if defined(GRAPHICS_API_OPENGL_33)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, bufferElements*6*sizeof(int), batch.vertexBuffer[i].indices, GL_STATIC_DRAW);
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, bufferElements*6*sizeof(short), batch.vertexBuffer[i].indices, GL_STATIC_DRAW);
#endif
}
RL_TRACELOG(LOG_INFO, "GLOBAL_DATA: Render batch vertex buffers loaded successfully in VRAM (GPU)");
// Unbind the current VAO
if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(0);
//--------------------------------------------------------------------------------------------
// Init draw calls tracking system
//--------------------------------------------------------------------------------------------
batch.draws = (draw_call *)RL_MALLOC(RL_DEFAULT_BATCH_DRAWCALLS*sizeof(draw_call));
for (int i = 0; i < RL_DEFAULT_BATCH_DRAWCALLS; i++)
{
batch.draws[i].mode = RL_QUADS;
batch.draws[i].vertexCount = 0;
batch.draws[i].vertexAlignment = 0;
//batch.draws[i].vaoId = 0;
//batch.draws[i].shaderId = 0;
batch.draws[i].textureId = GLOBAL_DATA.State.defaultTextureId;
//batch.draws[i].GLOBAL_DATA.State.projection = internal_matrix_identity();
//batch.draws[i].GLOBAL_DATA.State.modelview = internal_matrix_identity();
}
batch.bufferCount = numBuffers; // Record buffer count
batch.drawCounter = 1; // Reset draws counter
batch.currentDepth = -1.0f; // Reset depth value
//--------------------------------------------------------------------------------------------
#endif
return batch;
}
// Unload default internal buffers vertex data from CPU and GPU
void unload_render_batch(render_batch batch)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Unbind everything
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
// Unload all vertex buffers data
for (int i = 0; i < batch.bufferCount; i++)
{
// Unbind VAO attribs data
if (GLOBAL_DATA.ExtSupported.vao)
{
glBindVertexArray(batch.vertexBuffer[i].vaoId);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(2);
glDisableVertexAttribArray(3);
glBindVertexArray(0);
}
// Delete VBOs from GPU (VRAM)
glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[0]);
glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[1]);
glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[2]);
glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[3]);
// Delete VAOs from GPU (VRAM)
if (GLOBAL_DATA.ExtSupported.vao) glDeleteVertexArrays(1, &batch.vertexBuffer[i].vaoId);
// Free vertex arrays memory from CPU (RAM)
RL_FREE(batch.vertexBuffer[i].vertices);
RL_FREE(batch.vertexBuffer[i].texcoords);
RL_FREE(batch.vertexBuffer[i].colors);
RL_FREE(batch.vertexBuffer[i].indices);
}
// Unload arrays
RL_FREE(batch.vertexBuffer);
RL_FREE(batch.draws);
#endif
}
// Draw render batch
// NOTE: We require a pointer to reset batch and increase current buffer (multi-buffer)
void draw_render_batch(render_batch *batch)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Update batch vertex buffers
//------------------------------------------------------------------------------------------------------------
// NOTE: If there is not vertex data, buffers doesn't need to be updated (vertexCount > 0)
// TODO: If no data changed on the CPU arrays --> No need to re-update GPU arrays (use a change detector flag?)
if (GLOBAL_DATA.State.vertexCounter > 0)
{
// Activate elements VAO
if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(batch->vertexBuffer[batch->currentBuffer].vaoId);
// Vertex positions buffer
glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[0]);
glBufferSubData(GL_ARRAY_BUFFER, 0, GLOBAL_DATA.State.vertexCounter*3*sizeof(float), batch->vertexBuffer[batch->currentBuffer].vertices);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*batch->vertexBuffer[batch->currentBuffer].elementCount, batch->vertexBuffer[batch->currentBuffer].vertices, GL_DYNAMIC_DRAW); // Update all buffer
// Texture coordinates buffer
glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[1]);
glBufferSubData(GL_ARRAY_BUFFER, 0, GLOBAL_DATA.State.vertexCounter*2*sizeof(float), batch->vertexBuffer[batch->currentBuffer].texcoords);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*batch->vertexBuffer[batch->currentBuffer].elementCount, batch->vertexBuffer[batch->currentBuffer].texcoords, GL_DYNAMIC_DRAW); // Update all buffer
// Colors buffer
glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[2]);
glBufferSubData(GL_ARRAY_BUFFER, 0, GLOBAL_DATA.State.vertexCounter*4*sizeof(unsigned char), batch->vertexBuffer[batch->currentBuffer].colors);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*4*batch->vertexBuffer[batch->currentBuffer].elementCount, batch->vertexBuffer[batch->currentBuffer].colors, GL_DYNAMIC_DRAW); // Update all buffer
// NOTE: glMapBuffer() causes sync issue.
// If GPU is working with this buffer, glMapBuffer() will wait(stall) until GPU to finish its job.
// To avoid waiting (idle), you can call first glBufferData() with NULL pointer before glMapBuffer().
// If you do that, the previous data in PBO will be discarded and glMapBuffer() returns a new
// allocated pointer immediately even if GPU is still working with the previous data.
// Another option: map the buffer object into client's memory
// Probably this code could be moved somewhere else...
// batch->vertexBuffer[batch->currentBuffer].vertices = (float *)glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE);
// if (batch->vertexBuffer[batch->currentBuffer].vertices)
// {
// Update vertex data
// }
// glUnmapBuffer(GL_ARRAY_BUFFER);
// Unbind the current VAO
if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(0);
}
//------------------------------------------------------------------------------------------------------------
// Draw batch vertex buffers (considering VR stereo if required)
//------------------------------------------------------------------------------------------------------------
Matrix matProjection = GLOBAL_DATA.State.projection;
Matrix matModelView = GLOBAL_DATA.State.modelview;
int eyeCount = 1;
if (GLOBAL_DATA.State.stereoRender) eyeCount = 2;
for (int eye = 0; eye < eyeCount; eye++)
{
if (eyeCount == 2)
{
// Setup current eye viewport (half screen width)
viewport(eye*GLOBAL_DATA.State.framebufferWidth/2, 0, GLOBAL_DATA.State.framebufferWidth/2, GLOBAL_DATA.State.framebufferHeight);
// Set current eye view offset to modelview matrix
set_matrix_modelview(internal_matrix_multiply(matModelView, GLOBAL_DATA.State.viewOffsetStereo[eye]));
// Set current eye projection matrix
set_matrix_projection(GLOBAL_DATA.State.projectionStereo[eye]);
}
// Draw buffers
if (GLOBAL_DATA.State.vertexCounter > 0)
{
// Set current shader and upload current MVP matrix
glUseProgram(GLOBAL_DATA.State.currentShaderId);
// Create modelview-projection matrix and upload to shader
Matrix matMVP = internal_matrix_multiply(GLOBAL_DATA.State.modelview, GLOBAL_DATA.State.projection);
float matMVPfloat[16] = {
matMVP.m0, matMVP.m1, matMVP.m2, matMVP.m3,
matMVP.m4, matMVP.m5, matMVP.m6, matMVP.m7,
matMVP.m8, matMVP.m9, matMVP.m10, matMVP.m11,
matMVP.m12, matMVP.m13, matMVP.m14, matMVP.m15
};
glUniformMatrix4fv(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_MATRIX_MVP], 1, false, matMVPfloat);
if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(batch->vertexBuffer[batch->currentBuffer].vaoId);
else
{
// Bind vertex attrib: position (shader-location = 0)
glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[0]);
glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_POSITION]);
// Bind vertex attrib: texcoord (shader-location = 1)
glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[1]);
glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_TEXCOORD01]);
// Bind vertex attrib: color (shader-location = 3)
glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[2]);
glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_COLOR]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[3]);
}
// Setup some default shader values
glUniform4f(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_COLOR_DIFFUSE], 1.0f, 1.0f, 1.0f, 1.0f);
glUniform1i(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_MAP_DIFFUSE], 0); // Active default sampler2D: texture0
// Activate additional sampler textures
// Those additional textures will be common for all draw calls of the batch
for (int i = 0; i < RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS; i++)
{
if (GLOBAL_DATA.State.activeTextureId[i] > 0)
{
glActiveTexture(GL_TEXTURE0 + 1 + i);
glBindTexture(GL_TEXTURE_2D, GLOBAL_DATA.State.activeTextureId[i]);
}
}
// Activate default sampler2D texture0 (one texture is always active for default batch shader)
// NOTE: Batch system accumulates calls by texture0 changes, additional textures are enabled for all the draw calls
glActiveTexture(GL_TEXTURE0);
for (int i = 0, vertexOffset = 0; i < batch->drawCounter; i++)
{
// Bind current draw call texture, activated as GL_TEXTURE0 and Bound to sampler2D texture0 by default
glBindTexture(GL_TEXTURE_2D, batch->draws[i].textureId);
if ((batch->draws[i].mode == RL_LINES) || (batch->draws[i].mode == RL_TRIANGLES)) glDrawArrays(batch->draws[i].mode, vertexOffset, batch->draws[i].vertexCount);
else
{
#if defined(GRAPHICS_API_OPENGL_33)
// We need to define the number of indices to be processed: elementCount*6
// NOTE: The final parameter tells the GPU the offset in bytes from the
// start of the index buffer to the location of the first index to process
glDrawElements(GL_TRIANGLES, batch->draws[i].vertexCount/4*6, GL_UNSIGNED_INT, (GLvoid *)(vertexOffset/4*6*sizeof(GLuint)));
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
glDrawElements(GL_TRIANGLES, batch->draws[i].vertexCount/4*6, GL_UNSIGNED_SHORT, (GLvoid *)(vertexOffset/4*6*sizeof(GLushort)));
#endif
}
vertexOffset += (batch->draws[i].vertexCount + batch->draws[i].vertexAlignment);
}
if (!GLOBAL_DATA.ExtSupported.vao)
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures
}
if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(0); // Unbind VAO
glUseProgram(0); // Unbind shader program
}
// Restore viewport to default measures
if (eyeCount == 2) viewport(0, 0, GLOBAL_DATA.State.framebufferWidth, GLOBAL_DATA.State.framebufferHeight);
//------------------------------------------------------------------------------------------------------------
// Reset batch buffers
//------------------------------------------------------------------------------------------------------------
// Reset vertex counter for next frame
GLOBAL_DATA.State.vertexCounter = 0;
// Reset depth for next draw
batch->currentDepth = -1.0f;
// Restore projection/modelview matrices
GLOBAL_DATA.State.projection = matProjection;
GLOBAL_DATA.State.modelview = matModelView;
// Reset GLOBAL_DATA.currentBatch->draws array
for (int i = 0; i < RL_DEFAULT_BATCH_DRAWCALLS; i++)
{
batch->draws[i].mode = RL_QUADS;
batch->draws[i].vertexCount = 0;
batch->draws[i].textureId = GLOBAL_DATA.State.defaultTextureId;
}
// Reset active texture units for next batch
for (int i = 0; i < RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS; i++) GLOBAL_DATA.State.activeTextureId[i] = 0;
// Reset draws counter to one draw for the batch
batch->drawCounter = 1;
//------------------------------------------------------------------------------------------------------------
// Change to next buffer in the list (in case of multi-buffering)
batch->currentBuffer++;
if (batch->currentBuffer >= batch->bufferCount) batch->currentBuffer = 0;
#endif
}
// Set the active render batch for rlgl
void set_render_batch_active(render_batch *batch)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
draw_render_batch(GLOBAL_DATA.currentBatch);
if (batch != NULL) GLOBAL_DATA.currentBatch = batch;
else GLOBAL_DATA.currentBatch = &GLOBAL_DATA.defaultBatch;
#endif
}
// Update and draw internal render batch
void draw_render_batch_active(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
draw_render_batch(GLOBAL_DATA.currentBatch); // NOTE: Stereo rendering is checked inside
#endif
}
// Check internal buffer overflow for a given number of vertex
// and force a render_batch draw call if required
bool check_render_batch_limit(int vCount)
{
bool overflow = false;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if ((GLOBAL_DATA.State.vertexCounter + vCount) >=
(GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].elementCount*4))
{
overflow = true;
// Store current primitive drawing mode and texture id
int currentMode = GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode;
int currentTexture = GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].textureId;
draw_render_batch(GLOBAL_DATA.currentBatch); // NOTE: Stereo rendering is checked inside
// Restore state of last batch so we can continue adding vertices
GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode = currentMode;
GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].textureId = currentTexture;
}
#endif
return overflow;
}
// Textures data management
//-----------------------------------------------------------------------------------------
// Convert image data to OpenGL texture (returns OpenGL valid Id)
unsigned int load_texture(const void *data, int width, int height, int format, int mipmapCount)
{
unsigned int id = 0;
glBindTexture(GL_TEXTURE_2D, 0); // Free any old binding
// Check texture format support by OpenGL 1.1 (compressed textures not supported)
#if defined(GRAPHICS_API_OPENGL_11)
if (format >= PIXELFORMAT_COMPRESSED_DXT1_RGB)
{
RL_TRACELOG(LOG_WARNING, "GL: OpenGL 1.1 does not support GPU compressed texture formats");
return id;
}
#else
if ((!GLOBAL_DATA.ExtSupported.texCompDXT) && ((format == PIXELFORMAT_COMPRESSED_DXT1_RGB) || (format == PIXELFORMAT_COMPRESSED_DXT1_RGBA) ||
(format == PIXELFORMAT_COMPRESSED_DXT3_RGBA) || (format == PIXELFORMAT_COMPRESSED_DXT5_RGBA)))
{
RL_TRACELOG(LOG_WARNING, "GL: DXT compressed texture format not supported");
return id;
}
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if ((!GLOBAL_DATA.ExtSupported.texCompETC1) && (format == PIXELFORMAT_COMPRESSED_ETC1_RGB))
{
RL_TRACELOG(LOG_WARNING, "GL: ETC1 compressed texture format not supported");
return id;
}
if ((!GLOBAL_DATA.ExtSupported.texCompETC2) && ((format == PIXELFORMAT_COMPRESSED_ETC2_RGB) || (format == PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA)))
{
RL_TRACELOG(LOG_WARNING, "GL: ETC2 compressed texture format not supported");
return id;
}
if ((!GLOBAL_DATA.ExtSupported.texCompPVRT) && ((format == PIXELFORMAT_COMPRESSED_PVRT_RGB) || (format == PIXELFORMAT_COMPRESSED_PVRT_RGBA)))
{
RL_TRACELOG(LOG_WARNING, "GL: PVRT compressed texture format not supported");
return id;
}
if ((!GLOBAL_DATA.ExtSupported.texCompASTC) && ((format == PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA) || (format == PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA)))
{
RL_TRACELOG(LOG_WARNING, "GL: ASTC compressed texture format not supported");
return id;
}
#endif
#endif // GRAPHICS_API_OPENGL_11
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glGenTextures(1, &id); // Generate texture id
glBindTexture(GL_TEXTURE_2D, id);
int mipWidth = width;
int mipHeight = height;
int mipOffset = 0; // Mipmap data offset, only used for tracelog
// NOTE: Added pointer math separately from function to avoid UBSAN complaining
unsigned char *dataPtr = NULL;
if (data != NULL) dataPtr = (unsigned char *)data;
// Load the different mipmap levels
for (int i = 0; i < mipmapCount; i++)
{
unsigned int mipSize = internal_get_pixel_data_size(mipWidth, mipHeight, format);
unsigned int glInternalFormat, glFormat, glType;
get_gl_texture_formats(format, &glInternalFormat, &glFormat, &glType);
TRACELOGD("TEXTURE: Load mipmap level %i (%i x %i), size: %i, offset: %i", i, mipWidth, mipHeight, mipSize, mipOffset);
if (glInternalFormat != 0)
{
if (format < PIXELFORMAT_COMPRESSED_DXT1_RGB) glTexImage2D(GL_TEXTURE_2D, i, glInternalFormat, mipWidth, mipHeight, 0, glFormat, glType, dataPtr);
#if !defined(GRAPHICS_API_OPENGL_11)
else glCompressedTexImage2D(GL_TEXTURE_2D, i, glInternalFormat, mipWidth, mipHeight, 0, mipSize, dataPtr);
#endif
#if defined(GRAPHICS_API_OPENGL_33)
if (format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE)
{
GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ONE };
glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask);
}
else if (format == PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA)
{
#if defined(GRAPHICS_API_OPENGL_21)
GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ALPHA };
#elif defined(GRAPHICS_API_OPENGL_33)
GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_GREEN };
#endif
glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask);
}
#endif
}
mipWidth /= 2;
mipHeight /= 2;
mipOffset += mipSize; // Increment offset position to next mipmap
if (data != NULL) dataPtr += mipSize; // Increment data pointer to next mipmap
// Security check for NPOT textures
if (mipWidth < 1) mipWidth = 1;
if (mipHeight < 1) mipHeight = 1;
}
// Texture parameters configuration
// NOTE: glTexParameteri does NOT affect texture uploading, just the way it's used
#if defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: OpenGL ES 2.0 with no GL_OES_texture_npot support (i.e. WebGL) has limited NPOT support, so CLAMP_TO_EDGE must be used
if (GLOBAL_DATA.ExtSupported.texNPOT)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis
}
else
{
// NOTE: If using negative texture coordinates (LoadOBJ()), it does not work!
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // Set texture to clamp on x-axis
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // Set texture to clamp on y-axis
}
#else
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis
#endif
// Magnification and minification filters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Alternative: GL_LINEAR
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Alternative: GL_LINEAR
#if defined(GRAPHICS_API_OPENGL_33)
if (mipmapCount > 1)
{
// Activate Trilinear filtering if mipmaps are available
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
}
#endif
// At this point we have the texture loaded in GPU and texture parameters configured
// NOTE: If mipmaps were not in data, they are not generated automatically
// Unbind current texture
glBindTexture(GL_TEXTURE_2D, 0);
if (id > 0) RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Texture loaded successfully (%ix%i | %s | %i mipmaps)", id, width, height, get_pixel_format_name(format), mipmapCount);
else RL_TRACELOG(LOG_WARNING, "TEXTURE: Failed to load texture");
return id;
}
// Load depth texture/renderbuffer (to be attached to fbo)
// WARNING: OpenGL ES 2.0 requires GL_OES_depth_texture and WebGL requires WEBGL_depth_texture extensions
unsigned int load_texture_depth(int width, int height, bool useRenderBuffer)
{
unsigned int id = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// In case depth textures not supported, we force renderbuffer usage
if (!GLOBAL_DATA.ExtSupported.texDepth) useRenderBuffer = true;
// NOTE: We let the implementation to choose the best bit-depth
// Possible formats: GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32 and GL_DEPTH_COMPONENT32F
unsigned int glInternalFormat = GL_DEPTH_COMPONENT;
#if (defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_ES3))
// WARNING: WebGL platform requires unsized internal format definition (GL_DEPTH_COMPONENT)
// while other platforms using OpenGL ES 2.0 require/support sized internal formats depending on the GPU capabilities
if (!GLOBAL_DATA.ExtSupported.texDepthWebGL || useRenderBuffer)
{
if (GLOBAL_DATA.ExtSupported.maxDepthBits == 32) glInternalFormat = GL_DEPTH_COMPONENT32_OES;
else if (GLOBAL_DATA.ExtSupported.maxDepthBits == 24) glInternalFormat = GL_DEPTH_COMPONENT24_OES;
else glInternalFormat = GL_DEPTH_COMPONENT16;
}
#endif
if (!useRenderBuffer && GLOBAL_DATA.ExtSupported.texDepth)
{
glGenTextures(1, &id);
glBindTexture(GL_TEXTURE_2D, id);
glTexImage2D(GL_TEXTURE_2D, 0, glInternalFormat, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glBindTexture(GL_TEXTURE_2D, 0);
RL_TRACELOG(LOG_INFO, "TEXTURE: Depth texture loaded successfully");
}
else
{
// Create the renderbuffer that will serve as the depth attachment for the framebuffer
// NOTE: A renderbuffer is simpler than a texture and could offer better performance on embedded devices
glGenRenderbuffers(1, &id);
glBindRenderbuffer(GL_RENDERBUFFER, id);
glRenderbufferStorage(GL_RENDERBUFFER, glInternalFormat, width, height);
glBindRenderbuffer(GL_RENDERBUFFER, 0);
RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Depth renderbuffer loaded successfully (%i bits)", id, (GLOBAL_DATA.ExtSupported.maxDepthBits >= 24)? GLOBAL_DATA.ExtSupported.maxDepthBits : 16);
}
#endif
return id;
}
// Load texture cubemap
// NOTE: Cubemap data is expected to be 6 images in a single data array (one after the other),
// expected the following convention: +X, -X, +Y, -Y, +Z, -Z
unsigned int load_texture_cubemap(const void *data, int size, int format)
{
unsigned int id = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
unsigned int dataSize = internal_get_pixel_data_size(size, size, format);
glGenTextures(1, &id);
glBindTexture(GL_TEXTURE_CUBE_MAP, id);
unsigned int glInternalFormat, glFormat, glType;
get_gl_texture_formats(format, &glInternalFormat, &glFormat, &glType);
if (glInternalFormat != 0)
{
// Load cubemap faces
for (unsigned int i = 0; i < 6; i++)
{
if (data == NULL)
{
if (format < PIXELFORMAT_COMPRESSED_DXT1_RGB)
{
if ((format == PIXELFORMAT_UNCOMPRESSED_R32) || (format == PIXELFORMAT_UNCOMPRESSED_R32G32B32A32)
|| (format == PIXELFORMAT_UNCOMPRESSED_R16) || (format == PIXELFORMAT_UNCOMPRESSED_R16G16B16A16))
RL_TRACELOG(LOG_WARNING, "TEXTURES: Cubemap requested format not supported");
else glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, size, size, 0, glFormat, glType, NULL);
}
else RL_TRACELOG(LOG_WARNING, "TEXTURES: Empty cubemap creation does not support compressed format");
}
else
{
if (format < PIXELFORMAT_COMPRESSED_DXT1_RGB) glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, size, size, 0, glFormat, glType, (unsigned char *)data + i*dataSize);
else glCompressedTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, size, size, 0, dataSize, (unsigned char *)data + i*dataSize);
}
#if defined(GRAPHICS_API_OPENGL_33)
if (format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE)
{
GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ONE };
glTexParameteriv(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask);
}
else if (format == PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA)
{
#if defined(GRAPHICS_API_OPENGL_21)
GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ALPHA };
#elif defined(GRAPHICS_API_OPENGL_33)
GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_GREEN };
#endif
glTexParameteriv(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask);
}
#endif
}
}
// Set cubemap texture sampling parameters
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
#if defined(GRAPHICS_API_OPENGL_33)
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); // Flag not supported on OpenGL ES 2.0
#endif
glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
#endif
if (id > 0) RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Cubemap texture loaded successfully (%ix%i)", id, size, size);
else RL_TRACELOG(LOG_WARNING, "TEXTURE: Failed to load cubemap texture");
return id;
}
// Update already loaded texture in GPU with new data
// NOTE: We don't know safely if internal texture format is the expected one...
void update_texture(unsigned int id, int offsetX, int offsetY, int width, int height, int format, const void *data)
{
glBindTexture(GL_TEXTURE_2D, id);
unsigned int glInternalFormat, glFormat, glType;
get_gl_texture_formats(format, &glInternalFormat, &glFormat, &glType);
if ((glInternalFormat != 0) && (format < PIXELFORMAT_COMPRESSED_DXT1_RGB))
{
glTexSubImage2D(GL_TEXTURE_2D, 0, offsetX, offsetY, width, height, glFormat, glType, data);
}
else RL_TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to update for current texture format (%i)", id, format);
}
// Get OpenGL internal formats and data type from raylib PixelFormat
void get_gl_texture_formats(int format, unsigned int *glInternalFormat, unsigned int *glFormat, unsigned int *glType)
{
*glInternalFormat = 0;
*glFormat = 0;
*glType = 0;
switch (format)
{
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_21) || defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: on OpenGL ES 2.0 (WebGL), internalFormat must match format and options allowed are: GL_LUMINANCE, GL_RGB, GL_RGBA
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_UNSIGNED_BYTE; break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: *glInternalFormat = GL_LUMINANCE_ALPHA; *glFormat = GL_LUMINANCE_ALPHA; *glType = GL_UNSIGNED_BYTE; break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5: *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_UNSIGNED_SHORT_5_6_5; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8: *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_UNSIGNED_BYTE; break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_5_5_5_1; break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_4_4_4_4; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_BYTE; break;
#if !defined(GRAPHICS_API_OPENGL_11)
#if defined(GRAPHICS_API_OPENGL_ES3)
case PIXELFORMAT_UNCOMPRESSED_R32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_R32F_EXT; *glFormat = GL_RED_EXT; *glType = GL_FLOAT; break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGB32F_EXT; *glFormat = GL_RGB; *glType = GL_FLOAT; break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGBA32F_EXT; *glFormat = GL_RGBA; *glType = GL_FLOAT; break;
case PIXELFORMAT_UNCOMPRESSED_R16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_R16F_EXT; *glFormat = GL_RED_EXT; *glType = GL_HALF_FLOAT; break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGB16F_EXT; *glFormat = GL_RGB; *glType = GL_HALF_FLOAT; break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGBA16F_EXT; *glFormat = GL_RGBA; *glType = GL_HALF_FLOAT; break;
#else
case PIXELFORMAT_UNCOMPRESSED_R32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float
case PIXELFORMAT_UNCOMPRESSED_R32G32B32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float
#if defined(GRAPHICS_API_OPENGL_21)
case PIXELFORMAT_UNCOMPRESSED_R16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_HALF_FLOAT_ARB; break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_HALF_FLOAT_ARB; break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_HALF_FLOAT_ARB; break;
#else // defined(GRAPHICS_API_OPENGL_ES2)
case PIXELFORMAT_UNCOMPRESSED_R16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_HALF_FLOAT_OES; break; // NOTE: Requires extension OES_texture_half_float
case PIXELFORMAT_UNCOMPRESSED_R16G16B16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_HALF_FLOAT_OES; break; // NOTE: Requires extension OES_texture_half_float
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_HALF_FLOAT_OES; break; // NOTE: Requires extension OES_texture_half_float
#endif
#endif
#endif
#elif defined(GRAPHICS_API_OPENGL_33)
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: *glInternalFormat = GL_R8; *glFormat = GL_RED; *glType = GL_UNSIGNED_BYTE; break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: *glInternalFormat = GL_RG8; *glFormat = GL_RG; *glType = GL_UNSIGNED_BYTE; break;
case PIXELFORMAT_UNCOMPRESSED_R5G6B5: *glInternalFormat = GL_RGB565; *glFormat = GL_RGB; *glType = GL_UNSIGNED_SHORT_5_6_5; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8: *glInternalFormat = GL_RGB8; *glFormat = GL_RGB; *glType = GL_UNSIGNED_BYTE; break;
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1: *glInternalFormat = GL_RGB5_A1; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_5_5_5_1; break;
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: *glInternalFormat = GL_RGBA4; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_4_4_4_4; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: *glInternalFormat = GL_RGBA8; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_BYTE; break;
case PIXELFORMAT_UNCOMPRESSED_R32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_R32F; *glFormat = GL_RED; *glType = GL_FLOAT; break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGB32F; *glFormat = GL_RGB; *glType = GL_FLOAT; break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGBA32F; *glFormat = GL_RGBA; *glType = GL_FLOAT; break;
case PIXELFORMAT_UNCOMPRESSED_R16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_R16F; *glFormat = GL_RED; *glType = GL_HALF_FLOAT; break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGB16F; *glFormat = GL_RGB; *glType = GL_HALF_FLOAT; break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGBA16F; *glFormat = GL_RGBA; *glType = GL_HALF_FLOAT; break;
#endif
#if !defined(GRAPHICS_API_OPENGL_11)
case PIXELFORMAT_COMPRESSED_DXT1_RGB: if (GLOBAL_DATA.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; break;
case PIXELFORMAT_COMPRESSED_DXT1_RGBA: if (GLOBAL_DATA.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; break;
case PIXELFORMAT_COMPRESSED_DXT3_RGBA: if (GLOBAL_DATA.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break;
case PIXELFORMAT_COMPRESSED_DXT5_RGBA: if (GLOBAL_DATA.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break;
case PIXELFORMAT_COMPRESSED_ETC1_RGB: if (GLOBAL_DATA.ExtSupported.texCompETC1) *glInternalFormat = GL_ETC1_RGB8_OES; break; // NOTE: Requires OpenGL ES 2.0 or OpenGL 4.3
case PIXELFORMAT_COMPRESSED_ETC2_RGB: if (GLOBAL_DATA.ExtSupported.texCompETC2) *glInternalFormat = GL_COMPRESSED_RGB8_ETC2; break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3
case PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA: if (GLOBAL_DATA.ExtSupported.texCompETC2) *glInternalFormat = GL_COMPRESSED_RGBA8_ETC2_EAC; break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3
case PIXELFORMAT_COMPRESSED_PVRT_RGB: if (GLOBAL_DATA.ExtSupported.texCompPVRT) *glInternalFormat = GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG; break; // NOTE: Requires PowerVR GPU
case PIXELFORMAT_COMPRESSED_PVRT_RGBA: if (GLOBAL_DATA.ExtSupported.texCompPVRT) *glInternalFormat = GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; break; // NOTE: Requires PowerVR GPU
case PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA: if (GLOBAL_DATA.ExtSupported.texCompASTC) *glInternalFormat = GL_COMPRESSED_RGBA_ASTC_4x4_KHR; break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3
case PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA: if (GLOBAL_DATA.ExtSupported.texCompASTC) *glInternalFormat = GL_COMPRESSED_RGBA_ASTC_8x8_KHR; break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3
#endif
default: RL_TRACELOG(LOG_WARNING, "TEXTURE: Current format not supported (%i)", format); break;
}
}
// Unload texture from GPU memory
void unload_texture(unsigned int id)
{
glDeleteTextures(1, &id);
}
// Generate mipmap data for selected texture
// NOTE: Only supports GPU mipmap generation
void gen_texture_mipmaps(unsigned int id, int width, int height, int format, int *mipmaps)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindTexture(GL_TEXTURE_2D, id);
// Check if texture is power-of-two (POT)
bool texIsPOT = false;
if (((width > 0) && ((width & (width - 1)) == 0)) &&
((height > 0) && ((height & (height - 1)) == 0))) texIsPOT = true;
if ((texIsPOT) || (GLOBAL_DATA.ExtSupported.texNPOT))
{
//glHint(GL_GENERATE_MIPMAP_HINT, GL_DONT_CARE); // Hint for mipmaps generation algorithm: GL_FASTEST, GL_NICEST, GL_DONT_CARE
glGenerateMipmap(GL_TEXTURE_2D); // Generate mipmaps automatically
#define MIN(a,b) (((a)<(b))? (a):(b))
#define MAX(a,b) (((a)>(b))? (a):(b))
*mipmaps = 1 + (int)floor(log(MAX(width, height))/log(2));
RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Mipmaps generated automatically, total: %i", id, *mipmaps);
}
else RL_TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to generate mipmaps", id);
glBindTexture(GL_TEXTURE_2D, 0);
#else
RL_TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] GPU mipmap generation not supported", id);
#endif
}
// Read texture pixel data
void *read_texture_pixels(unsigned int id, int width, int height, int format)
{
void *pixels = NULL;
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
glBindTexture(GL_TEXTURE_2D, id);
// NOTE: Using texture id, we can retrieve some texture info (but not on OpenGL ES 2.0)
// Possible texture info: GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE
//int width, height, format;
//glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, &width);
//glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, &height);
//glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_INTERNAL_FORMAT, &format);
// NOTE: Each row written to or read from by OpenGL pixel operations like glGetTexImage are aligned to a 4 byte boundary by default, which may add some padding.
// Use glPixelStorei to modify padding with the GL_[UN]PACK_ALIGNMENT setting.
// GL_PACK_ALIGNMENT affects operations that read from OpenGL memory (glReadPixels, glGetTexImage, etc.)
// GL_UNPACK_ALIGNMENT affects operations that write to OpenGL memory (glTexImage, etc.)
glPixelStorei(GL_PACK_ALIGNMENT, 1);
unsigned int glInternalFormat, glFormat, glType;
get_gl_texture_formats(format, &glInternalFormat, &glFormat, &glType);
unsigned int size = internal_get_pixel_data_size(width, height, format);
if ((glInternalFormat != 0) && (format < PIXELFORMAT_COMPRESSED_DXT1_RGB))
{
pixels = RL_MALLOC(size);
glGetTexImage(GL_TEXTURE_2D, 0, glFormat, glType, pixels);
}
else RL_TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Data retrieval not suported for pixel format (%i)", id, format);
glBindTexture(GL_TEXTURE_2D, 0);
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
// glGetTexImage() is not available on OpenGL ES 2.0
// Texture width and height are required on OpenGL ES 2.0. There is no way to get it from texture id.
// Two possible Options:
// 1 - Bind texture to color fbo attachment and glReadPixels()
// 2 - Create an fbo, activate it, render quad with texture, glReadPixels()
// We are using Option 1, just need to care for texture format on retrieval
// NOTE: This behaviour could be conditioned by graphic driver...
unsigned int fboId = load_framebuffer(width, height);
glBindFramebuffer(GL_FRAMEBUFFER, fboId);
glBindTexture(GL_TEXTURE_2D, 0);
// Attach our texture to FBO
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, id, 0);
// We read data as RGBA because FBO texture is configured as RGBA, despite binding another texture format
pixels = (unsigned char *)RL_MALLOC(internal_get_pixel_data_size(width, height, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8));
glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Clean up temporal fbo
unload_framebuffer(fboId);
#endif
return pixels;
}
// Read screen pixel data (color buffer)
unsigned char *read_screen_pixels(int width, int height)
{
unsigned char *screenData = (unsigned char *)RL_CALLOC(width*height*4, sizeof(unsigned char));
// NOTE 1: glReadPixels returns image flipped vertically -> (0,0) is the bottom left corner of the framebuffer
// NOTE 2: We are getting alpha channel! Be careful, it can be transparent if not cleared properly!
glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, screenData);
// Flip image vertically!
unsigned char *imgData = (unsigned char *)RL_MALLOC(width*height*4*sizeof(unsigned char));
for (int y = height - 1; y >= 0; y--)
{
for (int x = 0; x < (width*4); x++)
{
imgData[((height - 1) - y)*width*4 + x] = screenData[(y*width*4) + x]; // Flip line
// Set alpha component value to 255 (no trasparent image retrieval)
// NOTE: Alpha value has already been applied to RGB in framebuffer, we don't need it!
if (((x + 1)%4) == 0) imgData[((height - 1) - y)*width*4 + x] = 255;
}
}
RL_FREE(screenData);
return imgData; // NOTE: image data should be freed
}
// Framebuffer management (fbo)
//-----------------------------------------------------------------------------------------
// Load a framebuffer to be used for rendering
// NOTE: No textures attached
unsigned int load_framebuffer(int width, int height)
{
unsigned int fboId = 0;
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT)
glGenFramebuffers(1, &fboId); // Create the framebuffer object
glBindFramebuffer(GL_FRAMEBUFFER, 0); // Unbind any framebuffer
#endif
return fboId;
}
// Attach color buffer texture to an fbo (unloads previous attachment)
// NOTE: Attach type: 0-Color, 1-Depth renderbuffer, 2-Depth texture
void framebuffer_attach(unsigned int fboId, unsigned int texId, int attachType, int texType, int mipLevel)
{
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT)
glBindFramebuffer(GL_FRAMEBUFFER, fboId);
switch (attachType)
{
case ATTACHMENT_COLOR_CHANNEL0:
case ATTACHMENT_COLOR_CHANNEL1:
case ATTACHMENT_COLOR_CHANNEL2:
case ATTACHMENT_COLOR_CHANNEL3:
case ATTACHMENT_COLOR_CHANNEL4:
case ATTACHMENT_COLOR_CHANNEL5:
case ATTACHMENT_COLOR_CHANNEL6:
case ATTACHMENT_COLOR_CHANNEL7:
{
if (texType == ATTACHMENT_TEXTURE2D) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + attachType, GL_TEXTURE_2D, texId, mipLevel);
else if (texType == ATTACHMENT_RENDERBUFFER) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + attachType, GL_RENDERBUFFER, texId);
else if (texType >= ATTACHMENT_CUBEMAP_POSITIVE_X) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + attachType, GL_TEXTURE_CUBE_MAP_POSITIVE_X + texType, texId, mipLevel);
} break;
case ATTACHMENT_DEPTH:
{
if (texType == ATTACHMENT_TEXTURE2D) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, texId, mipLevel);
else if (texType == ATTACHMENT_RENDERBUFFER) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, texId);
} break;
case ATTACHMENT_STENCIL:
{
if (texType == ATTACHMENT_TEXTURE2D) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, texId, mipLevel);
else if (texType == ATTACHMENT_RENDERBUFFER) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, texId);
} break;
default: break;
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
#endif
}
// Verify render texture is complete
bool framebuffer_complete(unsigned int id)
{
bool result = false;
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT)
glBindFramebuffer(GL_FRAMEBUFFER, id);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE)
{
switch (status)
{
case GL_FRAMEBUFFER_UNSUPPORTED: RL_TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer is unsupported", id); break;
case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: RL_TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has incomplete attachment", id); break;
#if defined(GRAPHICS_API_OPENGL_ES2)
case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: RL_TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has incomplete dimensions", id); break;
#endif
case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: RL_TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has a missing attachment", id); break;
default: break;
}
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
result = (status == GL_FRAMEBUFFER_COMPLETE);
#endif
return result;
}
// Unload framebuffer from GPU memory
// NOTE: All attached textures/cubemaps/renderbuffers are also deleted
void unload_framebuffer(unsigned int id)
{
#if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT)
// Query depth attachment to automatically delete texture/renderbuffer
int depthType = 0, depthId = 0;
glBindFramebuffer(GL_FRAMEBUFFER, id); // Bind framebuffer to query depth texture type
glGetFramebufferAttachmentParameteriv(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, &depthType);
// TODO: Review warning retrieving object name in WebGL
// WARNING: WebGL: INVALID_ENUM: getFramebufferAttachmentParameter: invalid parameter name
// https://registry.khronos.org/webgl/specs/latest/1.0/
glGetFramebufferAttachmentParameteriv(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, &depthId);
unsigned int depthIdU = (unsigned int)depthId;
if (depthType == GL_RENDERBUFFER) glDeleteRenderbuffers(1, &depthIdU);
else if (depthType == GL_TEXTURE) glDeleteTextures(1, &depthIdU);
// NOTE: If a texture object is deleted while its image is attached to the *currently bound* framebuffer,
// the texture image is automatically detached from the currently bound framebuffer.
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDeleteFramebuffers(1, &id);
RL_TRACELOG(LOG_INFO, "FBO: [ID %i] Unloaded framebuffer from VRAM (GPU)", id);
#endif
}
// Vertex data management
//-----------------------------------------------------------------------------------------
// Load a new attributes buffer
unsigned int load_vertex_buffer(const void *buffer, int size, bool dynamic)
{
unsigned int id = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glGenBuffers(1, &id);
glBindBuffer(GL_ARRAY_BUFFER, id);
glBufferData(GL_ARRAY_BUFFER, size, buffer, dynamic? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
#endif
return id;
}
// Load a new attributes element buffer
unsigned int load_vertex_buffer_element(const void *buffer, int size, bool dynamic)
{
unsigned int id = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glGenBuffers(1, &id);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, size, buffer, dynamic? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
#endif
return id;
}
// Enable vertex buffer (VBO)
void enable_vertex_buffer(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindBuffer(GL_ARRAY_BUFFER, id);
#endif
}
// Disable vertex buffer (VBO)
void disable_vertex_buffer(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindBuffer(GL_ARRAY_BUFFER, 0);
#endif
}
// Enable vertex buffer element (VBO element)
void enable_vertex_buffer_element(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, id);
#endif
}
// Disable vertex buffer element (VBO element)
void disable_vertex_buffer_element(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
#endif
}
// Update vertex buffer with new data
// NOTE: dataSize and offset must be provided in bytes
void update_vertex_buffer(unsigned int id, const void *data, int dataSize, int offset)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindBuffer(GL_ARRAY_BUFFER, id);
glBufferSubData(GL_ARRAY_BUFFER, offset, dataSize, data);
#endif
}
// Update vertex buffer elements with new data
// NOTE: dataSize and offset must be provided in bytes
void update_vertex_buffer_elements(unsigned int id, const void *data, int dataSize, int offset)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, id);
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, offset, dataSize, data);
#endif
}
// Enable vertex array object (VAO)
bool enable_vertex_array(unsigned int vaoId)
{
bool result = false;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (GLOBAL_DATA.ExtSupported.vao)
{
glBindVertexArray(vaoId);
result = true;
}
#endif
return result;
}
// Disable vertex array object (VAO)
void disable_vertex_array(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(0);
#endif
}
// Enable vertex attribute index
void enable_vertex_attribute(unsigned int index)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glEnableVertexAttribArray(index);
#endif
}
// Disable vertex attribute index
void disable_vertex_attribute(unsigned int index)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glDisableVertexAttribArray(index);
#endif
}
// Draw vertex array
void draw_vertex_array(int offset, int count)
{
glDrawArrays(GL_TRIANGLES, offset, count);
}
// Draw vertex array elements
void draw_vertex_array_elements(int offset, int count, const void *buffer)
{
// NOTE: Added pointer math separately from function to avoid UBSAN complaining
unsigned short *bufferPtr = (unsigned short *)buffer;
if (offset > 0) bufferPtr += offset;
glDrawElements(GL_TRIANGLES, count, GL_UNSIGNED_SHORT, (const unsigned short *)bufferPtr);
}
// Draw vertex array instanced
void draw_vertex_array_instanced(int offset, int count, int instances)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glDrawArraysInstanced(GL_TRIANGLES, 0, count, instances);
#endif
}
// Draw vertex array elements instanced
void draw_vertex_array_elements_instanced(int offset, int count, const void *buffer, int instances)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: Added pointer math separately from function to avoid UBSAN complaining
unsigned short *bufferPtr = (unsigned short *)buffer;
if (offset > 0) bufferPtr += offset;
glDrawElementsInstanced(GL_TRIANGLES, count, GL_UNSIGNED_SHORT, (const unsigned short *)bufferPtr, instances);
#endif
}
#if defined(GRAPHICS_API_OPENGL_11)
// Enable vertex state pointer
void enable_state_pointer(int vertexAttribType, void *buffer)
{
if (buffer != NULL) glEnableClientState(vertexAttribType);
switch (vertexAttribType)
{
case GL_VERTEX_ARRAY: glVertexPointer(3, GL_FLOAT, 0, buffer); break;
case GL_TEXTURE_COORD_ARRAY: glTexCoordPointer(2, GL_FLOAT, 0, buffer); break;
case GL_NORMAL_ARRAY: if (buffer != NULL) glNormalPointer(GL_FLOAT, 0, buffer); break;
case GL_COLOR_ARRAY: if (buffer != NULL) glColorPointer(4, GL_UNSIGNED_BYTE, 0, buffer); break;
//case GL_INDEX_ARRAY: if (buffer != NULL) glIndexPointer(GL_SHORT, 0, buffer); break; // Indexed colors
default: break;
}
}
// Disable vertex state pointer
void disable_state_pointer(int vertexAttribType)
{
glDisableClientState(vertexAttribType);
}
#endif
// Load vertex array object (VAO)
unsigned int load_vertex_array(void)
{
unsigned int vaoId = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (GLOBAL_DATA.ExtSupported.vao)
{
glGenVertexArrays(1, &vaoId);
}
#endif
return vaoId;
}
// Set vertex attribute
void set_vertex_attribute(unsigned int index, int compSize, int type, bool normalized, int stride, const void *pointer)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glVertexAttribPointer(index, compSize, type, normalized, stride, pointer);
#endif
}
// Set vertex attribute divisor
void set_vertex_attribute_divisor(unsigned int index, int divisor)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glVertexAttribDivisor(index, divisor);
#endif
}
// Unload vertex array object (VAO)
void unload_vertex_array(unsigned int vaoId)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (GLOBAL_DATA.ExtSupported.vao)
{
glBindVertexArray(0);
glDeleteVertexArrays(1, &vaoId);
RL_TRACELOG(LOG_INFO, "VAO: [ID %i] Unloaded vertex array data from VRAM (GPU)", vaoId);
}
#endif
}
// Unload vertex buffer (VBO)
void unload_vertex_buffer(unsigned int vboId)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glDeleteBuffers(1, &vboId);
//RL_TRACELOG(LOG_INFO, "VBO: Unloaded vertex data from VRAM (GPU)");
#endif
}
// Shaders management
//-----------------------------------------------------------------------------------------------
// Load shader from code strings
// NOTE: If shader string is NULL, using default vertex/fragment shaders
unsigned int load_shader_code(const char *vsCode, const char *fsCode)
{
unsigned int id = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
unsigned int vertexShaderId = 0;
unsigned int fragmentShaderId = 0;
// Compile vertex shader (if provided)
if (vsCode != NULL) vertexShaderId = compile_shader(vsCode, GL_VERTEX_SHADER);
// In case no vertex shader was provided or compilation failed, we use default vertex shader
if (vertexShaderId == 0) vertexShaderId = GLOBAL_DATA.State.defaultVShaderId;
// Compile fragment shader (if provided)
if (fsCode != NULL) fragmentShaderId = compile_shader(fsCode, GL_FRAGMENT_SHADER);
// In case no fragment shader was provided or compilation failed, we use default fragment shader
if (fragmentShaderId == 0) fragmentShaderId = GLOBAL_DATA.State.defaultFShaderId;
// In case vertex and fragment shader are the default ones, no need to recompile, we can just assign the default shader program id
if ((vertexShaderId == GLOBAL_DATA.State.defaultVShaderId) && (fragmentShaderId == GLOBAL_DATA.State.defaultFShaderId)) id = GLOBAL_DATA.State.defaultShaderId;
else
{
// One of or both shader are new, we need to compile a new shader program
id = load_shader_program(vertexShaderId, fragmentShaderId);
// We can detach and delete vertex/fragment shaders (if not default ones)
// NOTE: We detach shader before deletion to make sure memory is freed
if (vertexShaderId != GLOBAL_DATA.State.defaultVShaderId)
{
// WARNING: Shader program linkage could fail and returned id is 0
if (id > 0) glDetachShader(id, vertexShaderId);
glDeleteShader(vertexShaderId);
}
if (fragmentShaderId != GLOBAL_DATA.State.defaultFShaderId)
{
// WARNING: Shader program linkage could fail and returned id is 0
if (id > 0) glDetachShader(id, fragmentShaderId);
glDeleteShader(fragmentShaderId);
}
// In case shader program loading failed, we assign default shader
if (id == 0)
{
// In case shader loading fails, we return the default shader
RL_TRACELOG(LOG_WARNING, "SHADER: Failed to load custom shader code, using default shader");
id = GLOBAL_DATA.State.defaultShaderId;
}
/*
else
{
// Get available shader uniforms
// NOTE: This information is useful for debug...
int uniformCount = -1;
glGetProgramiv(id, GL_ACTIVE_UNIFORMS, &uniformCount);
for (int i = 0; i < uniformCount; i++)
{
int namelen = -1;
int num = -1;
char name[256] = { 0 }; // Assume no variable names longer than 256
GLenum type = GL_ZERO;
// Get the name of the uniforms
glGetActiveUniform(id, i, sizeof(name) - 1, &namelen, &num, &type, name);
name[namelen] = 0;
TRACELOGD("SHADER: [ID %i] Active uniform (%s) set at location: %i", id, name, glGetUniformLocation(id, name));
}
}
*/
}
#endif
return id;
}
// Compile custom shader and return shader id
unsigned int compile_shader(const char *shaderCode, int type)
{
unsigned int shader = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
shader = glCreateShader(type);
glShaderSource(shader, 1, &shaderCode, NULL);
GLint success = 0;
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if (success == GL_FALSE)
{
switch (type)
{
case GL_VERTEX_SHADER: RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to compile vertex shader code", shader); break;
case GL_FRAGMENT_SHADER: RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to compile fragment shader code", shader); break;
//case GL_GEOMETRY_SHADER:
#if defined(GRAPHICS_API_OPENGL_43)
case GL_COMPUTE_SHADER: RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to compile compute shader code", shader); break;
#endif
default: break;
}
int maxLength = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength);
if (maxLength > 0)
{
int length = 0;
char *log = (char *)RL_CALLOC(maxLength, sizeof(char));
glGetShaderInfoLog(shader, maxLength, &length, log);
RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Compile error: %s", shader, log);
RL_FREE(log);
}
}
else
{
switch (type)
{
case GL_VERTEX_SHADER: RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Vertex shader compiled successfully", shader); break;
case GL_FRAGMENT_SHADER: RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Fragment shader compiled successfully", shader); break;
//case GL_GEOMETRY_SHADER:
#if defined(GRAPHICS_API_OPENGL_43)
case GL_COMPUTE_SHADER: RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Compute shader compiled successfully", shader); break;
#endif
default: break;
}
}
#endif
return shader;
}
// Load custom shader strings and return program id
unsigned int load_shader_program(unsigned int vShaderId, unsigned int fShaderId)
{
unsigned int program = 0;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
GLint success = 0;
program = glCreateProgram();
glAttachShader(program, vShaderId);
glAttachShader(program, fShaderId);
// NOTE: Default attribute shader locations must be Bound before linking
glBindAttribLocation(program, 0, RL_DEFAULT_SHADER_ATTRIB_NAME_POSITION);
glBindAttribLocation(program, 1, RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD);
glBindAttribLocation(program, 2, RL_DEFAULT_SHADER_ATTRIB_NAME_NORMAL);
glBindAttribLocation(program, 3, RL_DEFAULT_SHADER_ATTRIB_NAME_COLOR);
glBindAttribLocation(program, 4, RL_DEFAULT_SHADER_ATTRIB_NAME_TANGENT);
glBindAttribLocation(program, 5, RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2);
// NOTE: If some attrib name is no found on the shader, it locations becomes -1
glLinkProgram(program);
// NOTE: All uniform variables are intitialised to 0 when a program links
glGetProgramiv(program, GL_LINK_STATUS, &success);
if (success == GL_FALSE)
{
RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to link shader program", program);
int maxLength = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength);
if (maxLength > 0)
{
int length = 0;
char *log = (char *)RL_CALLOC(maxLength, sizeof(char));
glGetProgramInfoLog(program, maxLength, &length, log);
RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Link error: %s", program, log);
RL_FREE(log);
}
glDeleteProgram(program);
program = 0;
}
else
{
// Get the size of compiled shader program (not available on OpenGL ES 2.0)
// NOTE: If GL_LINK_STATUS is GL_FALSE, program binary length is zero.
//GLint binarySize = 0;
//glGetProgramiv(id, GL_PROGRAM_BINARY_LENGTH, &binarySize);
RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Program shader loaded successfully", program);
}
#endif
return program;
}
// Unload shader program
void unload_shader_program(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glDeleteProgram(id);
RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Unloaded shader program data from VRAM (GPU)", id);
#endif
}
// Get shader location uniform
int get_location_uniform(unsigned int shaderId, const char *uniformName)
{
int location = -1;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
location = glGetUniformLocation(shaderId, uniformName);
//if (location == -1) RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to find shader uniform: %s", shaderId, uniformName);
//else RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Shader uniform (%s) set at location: %i", shaderId, uniformName, location);
#endif
return location;
}
// Get shader location attribute
int get_location_attrib(unsigned int shaderId, const char *attribName)
{
int location = -1;
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
location = glGetAttribLocation(shaderId, attribName);
//if (location == -1) RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to find shader attribute: %s", shaderId, attribName);
//else RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Shader attribute (%s) set at location: %i", shaderId, attribName, location);
#endif
return location;
}
// Set shader value uniform
void set_uniform(int locIndex, const void *value, int uniformType, int count)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
switch (uniformType)
{
case SHADER_UNIFORM_FLOAT: glUniform1fv(locIndex, count, (float *)value); break;
case SHADER_UNIFORM_VEC2: glUniform2fv(locIndex, count, (float *)value); break;
case SHADER_UNIFORM_VEC3: glUniform3fv(locIndex, count, (float *)value); break;
case SHADER_UNIFORM_VEC4: glUniform4fv(locIndex, count, (float *)value); break;
case SHADER_UNIFORM_INT: glUniform1iv(locIndex, count, (int *)value); break;
case SHADER_UNIFORM_IVEC2: glUniform2iv(locIndex, count, (int *)value); break;
case SHADER_UNIFORM_IVEC3: glUniform3iv(locIndex, count, (int *)value); break;
case SHADER_UNIFORM_IVEC4: glUniform4iv(locIndex, count, (int *)value); break;
case SHADER_UNIFORM_SAMPLER2D: glUniform1iv(locIndex, count, (int *)value); break;
default: RL_TRACELOG(LOG_WARNING, "SHADER: Failed to set uniform value, data type not recognized");
}
#endif
}
// Set shader value attribute
void set_vertex_attribute_default(int locIndex, const void *value, int attribType, int count)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
switch (attribType)
{
case SHADER_ATTRIB_FLOAT: if (count == 1) glVertexAttrib1fv(locIndex, (float *)value); break;
case SHADER_ATTRIB_VEC2: if (count == 2) glVertexAttrib2fv(locIndex, (float *)value); break;
case SHADER_ATTRIB_VEC3: if (count == 3) glVertexAttrib3fv(locIndex, (float *)value); break;
case SHADER_ATTRIB_VEC4: if (count == 4) glVertexAttrib4fv(locIndex, (float *)value); break;
default: RL_TRACELOG(LOG_WARNING, "SHADER: Failed to set attrib default value, data type not recognized");
}
#endif
}
// Set shader value uniform matrix
void set_uniform_matrix(int locIndex, Matrix mat)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
float matfloat[16] = {
mat.m0, mat.m1, mat.m2, mat.m3,
mat.m4, mat.m5, mat.m6, mat.m7,
mat.m8, mat.m9, mat.m10, mat.m11,
mat.m12, mat.m13, mat.m14, mat.m15
};
glUniformMatrix4fv(locIndex, 1, false, matfloat);
#endif
}
// Set shader value uniform sampler
void set_uniform_sampler(int locIndex, unsigned int textureId)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Check if texture is already active
for (int i = 0; i < RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS; i++) if (GLOBAL_DATA.State.activeTextureId[i] == textureId) return;
// Register a new active texture for the internal batch system
// NOTE: Default texture is always activated as GL_TEXTURE0
for (int i = 0; i < RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS; i++)
{
if (GLOBAL_DATA.State.activeTextureId[i] == 0)
{
glUniform1i(locIndex, 1 + i); // Activate new texture unit
GLOBAL_DATA.State.activeTextureId[i] = textureId; // Save texture id for binding on drawing
break;
}
}
#endif
}
// Set shader currently active (id and locations)
void set_shader(unsigned int id, int *locs)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (GLOBAL_DATA.State.currentShaderId != id)
{
draw_render_batch(GLOBAL_DATA.currentBatch);
GLOBAL_DATA.State.currentShaderId = id;
GLOBAL_DATA.State.currentShaderLocs = locs;
}
#endif
}
// Load compute shader program
unsigned int load_compute_shader_program(unsigned int shaderId)
{
unsigned int program = 0;
#if defined(GRAPHICS_API_OPENGL_43)
GLint success = 0;
program = glCreateProgram();
glAttachShader(program, shaderId);
glLinkProgram(program);
// NOTE: All uniform variables are intitialised to 0 when a program links
glGetProgramiv(program, GL_LINK_STATUS, &success);
if (success == GL_FALSE)
{
RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to link compute shader program", program);
int maxLength = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength);
if (maxLength > 0)
{
int length = 0;
char *log = (char *)RL_CALLOC(maxLength, sizeof(char));
glGetProgramInfoLog(program, maxLength, &length, log);
RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Link error: %s", program, log);
RL_FREE(log);
}
glDeleteProgram(program);
program = 0;
}
else
{
// Get the size of compiled shader program (not available on OpenGL ES 2.0)
// NOTE: If GL_LINK_STATUS is GL_FALSE, program binary length is zero.
//GLint binarySize = 0;
//glGetProgramiv(id, GL_PROGRAM_BINARY_LENGTH, &binarySize);
RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Compute shader program loaded successfully", program);
}
#endif
return program;
}
// Dispatch compute shader (equivalent to *draw* for graphics pilepine)
void compute_shader_dispatch(unsigned int groupX, unsigned int groupY, unsigned int groupZ)
{
#if defined(GRAPHICS_API_OPENGL_43)
glDispatchCompute(groupX, groupY, groupZ);
#endif
}
// Load shader storage buffer object (SSBO)
unsigned int load_shader_buffer(unsigned int size, const void *data, int usageHint)
{
unsigned int ssbo = 0;
#if defined(GRAPHICS_API_OPENGL_43)
glGenBuffers(1, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, size, data, usageHint? usageHint : RL_STREAM_COPY);
if (data == NULL) glClearBufferData(GL_SHADER_STORAGE_BUFFER, GL_R8UI, GL_RED_INTEGER, GL_UNSIGNED_BYTE, NULL); // Clear buffer data to 0
glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0);
#endif
return ssbo;
}
// Unload shader storage buffer object (SSBO)
void unload_shader_buffer(unsigned int ssboId)
{
#if defined(GRAPHICS_API_OPENGL_43)
glDeleteBuffers(1, &ssboId);
#endif
}
// Update SSBO buffer data
void update_shader_buffer(unsigned int id, const void *data, unsigned int dataSize, unsigned int offset)
{
#if defined(GRAPHICS_API_OPENGL_43)
glBindBuffer(GL_SHADER_STORAGE_BUFFER, id);
glBufferSubData(GL_SHADER_STORAGE_BUFFER, offset, dataSize, data);
#endif
}
// Get SSBO buffer size
unsigned int get_shader_buffer_size(unsigned int id)
{
long long size = 0;
#if defined(GRAPHICS_API_OPENGL_43)
glBindBuffer(GL_SHADER_STORAGE_BUFFER, id);
glGetInteger64v(GL_SHADER_STORAGE_BUFFER_SIZE, &size);
#endif
return (size > 0)? (unsigned int)size : 0;
}
// Read SSBO buffer data (GPU->CPU)
void read_shader_buffer(unsigned int id, void *dest, unsigned int count, unsigned int offset)
{
#if defined(GRAPHICS_API_OPENGL_43)
glBindBuffer(GL_SHADER_STORAGE_BUFFER, id);
glGetBufferSubData(GL_SHADER_STORAGE_BUFFER, offset, count, dest);
#endif
}
// Bind SSBO buffer
void bind_shader_buffer(unsigned int id, unsigned int index)
{
#if defined(GRAPHICS_API_OPENGL_43)
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, index, id);
#endif
}
// Copy SSBO buffer data
void copy_shader_buffer(unsigned int destId, unsigned int srcId, unsigned int destOffset, unsigned int srcOffset, unsigned int count)
{
#if defined(GRAPHICS_API_OPENGL_43)
glBindBuffer(GL_COPY_READ_BUFFER, srcId);
glBindBuffer(GL_COPY_WRITE_BUFFER, destId);
glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, srcOffset, destOffset, count);
#endif
}
// Bind image texture
void bind_image_texture(unsigned int id, unsigned int index, int format, bool readonly)
{
#if defined(GRAPHICS_API_OPENGL_43)
unsigned int glInternalFormat = 0, glFormat = 0, glType = 0;
get_gl_texture_formats(format, &glInternalFormat, &glFormat, &glType);
glBindImageTexture(index, id, 0, 0, 0, readonly? GL_READ_ONLY : GL_READ_WRITE, glInternalFormat);
#endif
}
// Matrix state management
//-----------------------------------------------------------------------------------------
// Get internal modelview matrix
Matrix get_matrix_modelview(void)
{
Matrix matrix = internal_matrix_identity();
#if defined(GRAPHICS_API_OPENGL_11)
float mat[16];
glGetFloatv(GL_MODELVIEW_MATRIX, mat);
matrix.m0 = mat[0];
matrix.m1 = mat[1];
matrix.m2 = mat[2];
matrix.m3 = mat[3];
matrix.m4 = mat[4];
matrix.m5 = mat[5];
matrix.m6 = mat[6];
matrix.m7 = mat[7];
matrix.m8 = mat[8];
matrix.m9 = mat[9];
matrix.m10 = mat[10];
matrix.m11 = mat[11];
matrix.m12 = mat[12];
matrix.m13 = mat[13];
matrix.m14 = mat[14];
matrix.m15 = mat[15];
#else
matrix = GLOBAL_DATA.State.modelview;
#endif
return matrix;
}
// Get internal projection matrix
Matrix get_matrix_projection(void)
{
#if defined(GRAPHICS_API_OPENGL_11)
float mat[16];
glGetFloatv(GL_PROJECTION_MATRIX,mat);
Matrix m;
m.m0 = mat[0];
m.m1 = mat[1];
m.m2 = mat[2];
m.m3 = mat[3];
m.m4 = mat[4];
m.m5 = mat[5];
m.m6 = mat[6];
m.m7 = mat[7];
m.m8 = mat[8];
m.m9 = mat[9];
m.m10 = mat[10];
m.m11 = mat[11];
m.m12 = mat[12];
m.m13 = mat[13];
m.m14 = mat[14];
m.m15 = mat[15];
return m;
#else
return GLOBAL_DATA.State.projection;
#endif
}
// Get internal accumulated transform matrix
Matrix get_matrix_transform(void)
{
Matrix mat = internal_matrix_identity();
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// TODO: Consider possible transform matrices in the GLOBAL_DATA.State.stack
// Is this the right order? or should we start with the first stored matrix instead of the last one?
//Matrix matStackTransform = internal_matrix_identity();
//for (int i = GLOBAL_DATA.State.stackCounter; i > 0; i--) matStackTransform = internal_matrix_multiply(GLOBAL_DATA.State.stack[i], matStackTransform);
mat = GLOBAL_DATA.State.transform;
#endif
return mat;
}
// Get internal projection matrix for stereo render (selected eye)
RLAPI Matrix get_matrix_projection_stereo(int eye)
{
Matrix mat = internal_matrix_identity();
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
mat = GLOBAL_DATA.State.projectionStereo[eye];
#endif
return mat;
}
// Get internal view offset matrix for stereo render (selected eye)
RLAPI Matrix get_matrix_view_offset_stereo(int eye)
{
Matrix mat = internal_matrix_identity();
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
mat = GLOBAL_DATA.State.viewOffsetStereo[eye];
#endif
return mat;
}
// Set a custom modelview matrix (replaces internal modelview matrix)
void set_matrix_modelview(Matrix view)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
GLOBAL_DATA.State.modelview = view;
#endif
}
// Set a custom projection matrix (replaces internal projection matrix)
void set_matrix_projection(Matrix projection)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
GLOBAL_DATA.State.projection = projection;
#endif
}
// Set eyes projection matrices for stereo rendering
void set_matrix_projection_stereo(Matrix right, Matrix left)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
GLOBAL_DATA.State.projectionStereo[0] = right;
GLOBAL_DATA.State.projectionStereo[1] = left;
#endif
}
// Set eyes view offsets matrices for stereo rendering
void set_matrix_view_offset_stereo(Matrix right, Matrix left)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
GLOBAL_DATA.State.viewOffsetStereo[0] = right;
GLOBAL_DATA.State.viewOffsetStereo[1] = left;
#endif
}
// Load and draw a quad in NDC
void load_draw_quad(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
unsigned int quadVAO = 0;
unsigned int quadVBO = 0;
float vertices[] = {
// Positions Texcoords
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
};
// Gen VAO to contain VBO
glGenVertexArrays(1, &quadVAO);
glBindVertexArray(quadVAO);
// Gen and fill vertex buffer (VBO)
glGenBuffers(1, &quadVBO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), &vertices, GL_STATIC_DRAW);
// Bind vertex attributes (position, texcoords)
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5*sizeof(float), (void *)0); // Positions
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5*sizeof(float), (void *)(3*sizeof(float))); // Texcoords
// Draw quad
glBindVertexArray(quadVAO);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindVertexArray(0);
// Delete buffers (VBO and VAO)
glDeleteBuffers(1, &quadVBO);
glDeleteVertexArrays(1, &quadVAO);
#endif
}
// Load and draw a cube in NDC
void load_draw_cube(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
unsigned int cubeVAO = 0;
unsigned int cubeVBO = 0;
float vertices[] = {
// Positions Normals Texcoords
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f,
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f
};
// Gen VAO to contain VBO
glGenVertexArrays(1, &cubeVAO);
glBindVertexArray(cubeVAO);
// Gen and fill vertex buffer (VBO)
glGenBuffers(1, &cubeVBO);
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// Bind vertex attributes (position, normals, texcoords)
glBindVertexArray(cubeVAO);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)0); // Positions
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)(3*sizeof(float))); // Normals
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)(6*sizeof(float))); // Texcoords
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
// Draw cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
// Delete VBO and VAO
glDeleteBuffers(1, &cubeVBO);
glDeleteVertexArrays(1, &cubeVAO);
#endif
}
// Get name string for pixel format
const char *get_pixel_format_name(unsigned int format)
{
switch (format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: return "GRAYSCALE"; break; // 8 bit per pixel (no alpha)
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: return "GRAY_ALPHA"; break; // 8*2 bpp (2 channels)
case PIXELFORMAT_UNCOMPRESSED_R5G6B5: return "R5G6B5"; break; // 16 bpp
case PIXELFORMAT_UNCOMPRESSED_R8G8B8: return "R8G8B8"; break; // 24 bpp
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1: return "R5G5B5A1"; break; // 16 bpp (1 bit alpha)
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: return "R4G4B4A4"; break; // 16 bpp (4 bit alpha)
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: return "R8G8B8A8"; break; // 32 bpp
case PIXELFORMAT_UNCOMPRESSED_R32: return "R32"; break; // 32 bpp (1 channel - float)
case PIXELFORMAT_UNCOMPRESSED_R32G32B32: return "R32G32B32"; break; // 32*3 bpp (3 channels - float)
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: return "R32G32B32A32"; break; // 32*4 bpp (4 channels - float)
case PIXELFORMAT_UNCOMPRESSED_R16: return "R16"; break; // 16 bpp (1 channel - half float)
case PIXELFORMAT_UNCOMPRESSED_R16G16B16: return "R16G16B16"; break; // 16*3 bpp (3 channels - half float)
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: return "R16G16B16A16"; break; // 16*4 bpp (4 channels - half float)
case PIXELFORMAT_COMPRESSED_DXT1_RGB: return "DXT1_RGB"; break; // 4 bpp (no alpha)
case PIXELFORMAT_COMPRESSED_DXT1_RGBA: return "DXT1_RGBA"; break; // 4 bpp (1 bit alpha)
case PIXELFORMAT_COMPRESSED_DXT3_RGBA: return "DXT3_RGBA"; break; // 8 bpp
case PIXELFORMAT_COMPRESSED_DXT5_RGBA: return "DXT5_RGBA"; break; // 8 bpp
case PIXELFORMAT_COMPRESSED_ETC1_RGB: return "ETC1_RGB"; break; // 4 bpp
case PIXELFORMAT_COMPRESSED_ETC2_RGB: return "ETC2_RGB"; break; // 4 bpp
case PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA: return "ETC2_RGBA"; break; // 8 bpp
case PIXELFORMAT_COMPRESSED_PVRT_RGB: return "PVRT_RGB"; break; // 4 bpp
case PIXELFORMAT_COMPRESSED_PVRT_RGBA: return "PVRT_RGBA"; break; // 4 bpp
case PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA: return "ASTC_4x4_RGBA"; break; // 8 bpp
case PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA: return "ASTC_8x8_RGBA"; break; // 2 bpp
default: return "UNKNOWN"; break;
}
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Load default shader (just vertex positioning and texture coloring)
// NOTE: This shader program is used for internal buffers
// NOTE: Loaded: GLOBAL_DATA.State.defaultShaderId, GLOBAL_DATA.State.defaultShaderLocs
static void load_shader_default(void)
{
GLOBAL_DATA.State.defaultShaderLocs = (int *)RL_CALLOC(RL_MAX_SHADER_LOCATIONS, sizeof(int));
// NOTE: All locations must be reseted to -1 (no location)
for (int i = 0; i < RL_MAX_SHADER_LOCATIONS; i++) GLOBAL_DATA.State.defaultShaderLocs[i] = -1;
// Vertex shader directly defined, no external file required
const char *defaultVShaderCode =
#if defined(GRAPHICS_API_OPENGL_21)
"#version 120 \n"
"attribute vec3 vertexPosition; \n"
"attribute vec2 vertexTexCoord; \n"
"attribute vec4 vertexColor; \n"
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
#elif defined(GRAPHICS_API_OPENGL_33)
"#version 330 \n"
"in vec3 vertexPosition; \n"
"in vec2 vertexTexCoord; \n"
"in vec4 vertexColor; \n"
"out vec2 fragTexCoord; \n"
"out vec4 fragColor; \n"
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
"#version 100 \n"
"precision mediump float; \n" // Precision required for OpenGL ES2 (WebGL) (on some browsers)
"attribute vec3 vertexPosition; \n"
"attribute vec2 vertexTexCoord; \n"
"attribute vec4 vertexColor; \n"
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
#endif
"uniform mat4 mvp; \n"
"void main() \n"
"{ \n"
" fragTexCoord = vertexTexCoord; \n"
" fragColor = vertexColor; \n"
" gl_Position = mvp*vec4(vertexPosition, 1.0); \n"
"} \n";
// Fragment shader directly defined, no external file required
const char *defaultFShaderCode =
#if defined(GRAPHICS_API_OPENGL_21)
"#version 120 \n"
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
"uniform sampler2D texture0; \n"
"uniform vec4 colDiffuse; \n"
"void main() \n"
"{ \n"
" vec4 texelColor = texture2D(texture0, fragTexCoord); \n"
" gl_FragColor = texelColor*colDiffuse*fragColor; \n"
"} \n";
#elif defined(GRAPHICS_API_OPENGL_33)
"#version 330 \n"
"in vec2 fragTexCoord; \n"
"in vec4 fragColor; \n"
"out vec4 finalColor; \n"
"uniform sampler2D texture0; \n"
"uniform vec4 colDiffuse; \n"
"void main() \n"
"{ \n"
" vec4 texelColor = texture(texture0, fragTexCoord); \n"
" finalColor = texelColor*colDiffuse*fragColor; \n"
"} \n";
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
"#version 100 \n"
"precision mediump float; \n" // Precision required for OpenGL ES2 (WebGL)
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
"uniform sampler2D texture0; \n"
"uniform vec4 colDiffuse; \n"
"void main() \n"
"{ \n"
" vec4 texelColor = texture2D(texture0, fragTexCoord); \n"
" gl_FragColor = texelColor*colDiffuse*fragColor; \n"
"} \n";
#endif
// NOTE: Compiled vertex/fragment shaders are not deleted,
// they are kept for re-use as default shaders in case some shader loading fails
GLOBAL_DATA.State.defaultVShaderId = compile_shader(defaultVShaderCode, GL_VERTEX_SHADER); // Compile default vertex shader
GLOBAL_DATA.State.defaultFShaderId = compile_shader(defaultFShaderCode, GL_FRAGMENT_SHADER); // Compile default fragment shader
GLOBAL_DATA.State.defaultShaderId = load_shader_program(GLOBAL_DATA.State.defaultVShaderId, GLOBAL_DATA.State.defaultFShaderId);
if (GLOBAL_DATA.State.defaultShaderId > 0)
{
RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Default shader loaded successfully", GLOBAL_DATA.State.defaultShaderId);
// Set default shader locations: attributes locations
GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_VERTEX_POSITION] = glGetAttribLocation(GLOBAL_DATA.State.defaultShaderId, "vertexPosition");
GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_VERTEX_TEXCOORD01] = glGetAttribLocation(GLOBAL_DATA.State.defaultShaderId, "vertexTexCoord");
GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_VERTEX_COLOR] = glGetAttribLocation(GLOBAL_DATA.State.defaultShaderId, "vertexColor");
// Set default shader locations: uniform locations
GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_MATRIX_MVP] = glGetUniformLocation(GLOBAL_DATA.State.defaultShaderId, "mvp");
GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_COLOR_DIFFUSE] = glGetUniformLocation(GLOBAL_DATA.State.defaultShaderId, "colDiffuse");
GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_MAP_DIFFUSE] = glGetUniformLocation(GLOBAL_DATA.State.defaultShaderId, "texture0");
}
else RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to load default shader", GLOBAL_DATA.State.defaultShaderId);
}
// Unload default shader
// NOTE: Unloads: GLOBAL_DATA.State.defaultShaderId, GLOBAL_DATA.State.defaultShaderLocs
static void unload_shader_default(void)
{
glUseProgram(0);
glDetachShader(GLOBAL_DATA.State.defaultShaderId, GLOBAL_DATA.State.defaultVShaderId);
glDetachShader(GLOBAL_DATA.State.defaultShaderId, GLOBAL_DATA.State.defaultFShaderId);
glDeleteShader(GLOBAL_DATA.State.defaultVShaderId);
glDeleteShader(GLOBAL_DATA.State.defaultFShaderId);
glDeleteProgram(GLOBAL_DATA.State.defaultShaderId);
RL_FREE(GLOBAL_DATA.State.defaultShaderLocs);
RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Default shader unloaded successfully", GLOBAL_DATA.State.defaultShaderId);
}
#if defined(RLGL_SHOW_GL_DETAILS_INFO)
// Get compressed format official GL identifier name
static const char *GetCompressedFormatName(int format)
{
switch (format)
{
// GL_EXT_texture_compression_s3tc
case 0x83F0: return "GL_COMPRESSED_RGB_S3TC_DXT1_EXT"; break;
case 0x83F1: return "GL_COMPRESSED_RGBA_S3TC_DXT1_EXT"; break;
case 0x83F2: return "GL_COMPRESSED_RGBA_S3TC_DXT3_EXT"; break;
case 0x83F3: return "GL_COMPRESSED_RGBA_S3TC_DXT5_EXT"; break;
// GL_3DFX_texture_compression_FXT1
case 0x86B0: return "GL_COMPRESSED_RGB_FXT1_3DFX"; break;
case 0x86B1: return "GL_COMPRESSED_RGBA_FXT1_3DFX"; break;
// GL_IMG_texture_compression_pvrtc
case 0x8C00: return "GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG"; break;
case 0x8C01: return "GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG"; break;
case 0x8C02: return "GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG"; break;
case 0x8C03: return "GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG"; break;
// GL_OES_compressed_ETC1_RGB8_texture
case 0x8D64: return "GL_ETC1_RGB8_OES"; break;
// GL_ARB_texture_compression_rgtc
case 0x8DBB: return "GL_COMPRESSED_RED_RGTC1"; break;
case 0x8DBC: return "GL_COMPRESSED_SIGNED_RED_RGTC1"; break;
case 0x8DBD: return "GL_COMPRESSED_RG_RGTC2"; break;
case 0x8DBE: return "GL_COMPRESSED_SIGNED_RG_RGTC2"; break;
// GL_ARB_texture_compression_bptc
case 0x8E8C: return "GL_COMPRESSED_RGBA_BPTC_UNORM_ARB"; break;
case 0x8E8D: return "GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB"; break;
case 0x8E8E: return "GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB"; break;
case 0x8E8F: return "GL_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB"; break;
// GL_ARB_ES3_compatibility
case 0x9274: return "GL_COMPRESSED_RGB8_ETC2"; break;
case 0x9275: return "GL_COMPRESSED_SRGB8_ETC2"; break;
case 0x9276: return "GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2"; break;
case 0x9277: return "GL_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2"; break;
case 0x9278: return "GL_COMPRESSED_RGBA8_ETC2_EAC"; break;
case 0x9279: return "GL_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC"; break;
case 0x9270: return "GL_COMPRESSED_R11_EAC"; break;
case 0x9271: return "GL_COMPRESSED_SIGNED_R11_EAC"; break;
case 0x9272: return "GL_COMPRESSED_RG11_EAC"; break;
case 0x9273: return "GL_COMPRESSED_SIGNED_RG11_EAC"; break;
// GL_KHR_texture_compression_astc_hdr
case 0x93B0: return "GL_COMPRESSED_RGBA_ASTC_4x4_KHR"; break;
case 0x93B1: return "GL_COMPRESSED_RGBA_ASTC_5x4_KHR"; break;
case 0x93B2: return "GL_COMPRESSED_RGBA_ASTC_5x5_KHR"; break;
case 0x93B3: return "GL_COMPRESSED_RGBA_ASTC_6x5_KHR"; break;
case 0x93B4: return "GL_COMPRESSED_RGBA_ASTC_6x6_KHR"; break;
case 0x93B5: return "GL_COMPRESSED_RGBA_ASTC_8x5_KHR"; break;
case 0x93B6: return "GL_COMPRESSED_RGBA_ASTC_8x6_KHR"; break;
case 0x93B7: return "GL_COMPRESSED_RGBA_ASTC_8x8_KHR"; break;
case 0x93B8: return "GL_COMPRESSED_RGBA_ASTC_10x5_KHR"; break;
case 0x93B9: return "GL_COMPRESSED_RGBA_ASTC_10x6_KHR"; break;
case 0x93BA: return "GL_COMPRESSED_RGBA_ASTC_10x8_KHR"; break;
case 0x93BB: return "GL_COMPRESSED_RGBA_ASTC_10x10_KHR"; break;
case 0x93BC: return "GL_COMPRESSED_RGBA_ASTC_12x10_KHR"; break;
case 0x93BD: return "GL_COMPRESSED_RGBA_ASTC_12x12_KHR"; break;
case 0x93D0: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR"; break;
case 0x93D1: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR"; break;
case 0x93D2: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR"; break;
case 0x93D3: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR"; break;
case 0x93D4: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR"; break;
case 0x93D5: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR"; break;
case 0x93D6: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR"; break;
case 0x93D7: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR"; break;
case 0x93D8: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR"; break;
case 0x93D9: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR"; break;
case 0x93DA: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR"; break;
case 0x93DB: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR"; break;
case 0x93DC: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR"; break;
case 0x93DD: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR"; break;
default: return "GL_COMPRESSED_UNKNOWN"; break;
}
}
#endif // RLGL_SHOW_GL_DETAILS_INFO
#endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2
// Get pixel data size in bytes (image or texture)
// NOTE: Size depends on pixel format
static int internal_get_pixel_data_size(int width, int height, int format)
{
int dataSize = 0; // Size in bytes
int bpp = 0; // Bits per pixel
switch (format)
{
case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: bpp = 8; break;
case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA:
case PIXELFORMAT_UNCOMPRESSED_R5G6B5:
case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1:
case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: bpp = 16; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: bpp = 32; break;
case PIXELFORMAT_UNCOMPRESSED_R8G8B8: bpp = 24; break;
case PIXELFORMAT_UNCOMPRESSED_R32: bpp = 32; break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32: bpp = 32*3; break;
case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: bpp = 32*4; break;
case PIXELFORMAT_UNCOMPRESSED_R16: bpp = 16; break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16: bpp = 16*3; break;
case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: bpp = 16*4; break;
case PIXELFORMAT_COMPRESSED_DXT1_RGB:
case PIXELFORMAT_COMPRESSED_DXT1_RGBA:
case PIXELFORMAT_COMPRESSED_ETC1_RGB:
case PIXELFORMAT_COMPRESSED_ETC2_RGB:
case PIXELFORMAT_COMPRESSED_PVRT_RGB:
case PIXELFORMAT_COMPRESSED_PVRT_RGBA: bpp = 4; break;
case PIXELFORMAT_COMPRESSED_DXT3_RGBA:
case PIXELFORMAT_COMPRESSED_DXT5_RGBA:
case PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA:
case PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA: bpp = 8; break;
case PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA: bpp = 2; break;
default: break;
}
dataSize = width*height*bpp/8; // Total data size in bytes
// Most compressed formats works on 4x4 blocks,
// if texture is smaller, minimum dataSize is 8 or 16
if ((width < 4) && (height < 4))
{
if ((format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) && (format < PIXELFORMAT_COMPRESSED_DXT3_RGBA)) dataSize = 8;
else if ((format >= PIXELFORMAT_COMPRESSED_DXT3_RGBA) && (format < PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA)) dataSize = 16;
}
return dataSize;
}
// Auxiliar math functions
// #if !defined(RAYMATH_H) && !defined(RL_REFACTORED_C) && !defined(RL_REFACTORED_CPP)
// Get identity matrix
static Matrix internal_matrix_identity(void)
{
Matrix result = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
return result;
}
// Get two matrix multiplication
// NOTE: When multiplying matrices... the order matters!
static Matrix internal_matrix_multiply(Matrix left, Matrix right)
{
Matrix result = { 0 };
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
return result;
}
// #endif
RLGL_EXTERN_C_END
RLGL_NS_END
#endif // RLGL_IMPLEMENTATION