/********************************************************************************************** * * rlgl v4.5 - A multi-OpenGL abstraction layer with an immediate-mode style API * * DESCRIPTION: * An abstraction layer for multiple OpenGL versions (1.1, 2.1, 3.3 Core, 4.3 Core, ES 2.0) * that provides a pseudo-OpenGL 1.1 immediate-mode style API (Vertex, Translate, Rotate...) * * ADDITIONAL NOTES: * When choosing an OpenGL backend different than OpenGL 1.1, some internal buffer are * initialized on init() to accumulate vertex data. * * When an internal state change is required all the stored vertex data is renderer in batch, * additionally, draw_render_batch_active() could be called to force flushing of the batch. * * Some resources are also loaded for convenience, here the complete list: * - Default batch (GLOBAL_DATA.defaultBatch): RenderBatch system to accumulate vertex data * - Default texture (GLOBAL_DATA.defaultTextureId): 1x1 white pixel R8G8B8A8 * - Default shader (GLOBAL_DATA.State.defaultShaderId, GLOBAL_DATA.State.defaultShaderLocs) * * Internal buffer (and resources) must be manually unloaded calling close(). * * CONFIGURATION: * #define GRAPHICS_API_OPENGL_11 * #define GRAPHICS_API_OPENGL_21 * #define GRAPHICS_API_OPENGL_33 * #define GRAPHICS_API_OPENGL_43 * #define GRAPHICS_API_OPENGL_ES2 * #define GRAPHICS_API_OPENGL_ES3 * Use selected OpenGL graphics backend, should be supported by platform * Those preprocessor defines are only used on rlgl module, if OpenGL version is * required by any other module, use get_version() to check it * * #define RLGL_IMPLEMENTATION * Generates the implementation of the library into the included file. * If not defined, the library is in header only mode and can be included in other headers * or source files without problems. But only ONE file should hold the implementation. * * #define RLGL_RENDER_TEXTURES_HINT * Enable framebuffer objects (fbo) support (enabled by default) * Some GPUs could not support them despite the OpenGL version * * #define RLGL_SHOW_GL_DETAILS_INFO * Show OpenGL extensions and capabilities detailed logs on init * * #define RLGL_ENABLE_OPENGL_DEBUG_CONTEXT * Enable debug context (only available on OpenGL 4.3) * * rlgl capabilities could be customized just defining some internal * values before library inclusion (default values listed): * * #define RL_DEFAULT_BATCH_BUFFER_ELEMENTS 8192 // Default internal render batch elements limits * #define RL_DEFAULT_BATCH_BUFFERS 1 // Default number of batch buffers (multi-buffering) * #define RL_DEFAULT_BATCH_DRAWCALLS 256 // Default number of batch draw calls (by state changes: mode, texture) * #define RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS 4 // Maximum number of textures units that can be activated on batch drawing (SetShaderValueTexture()) * * #define RL_MAX_MATRIX_STACK_SIZE 32 // Maximum size of internal Matrix stack * #define RL_MAX_SHADER_LOCATIONS 32 // Maximum number of shader locations supported * #define CULL_DISTANCE_NEAR 0.01 // Default projection matrix near cull distance * #define CULL_DISTANCE_FAR 1000.0 // Default projection matrix far cull distance * * When loading a shader, the following vertex attributes and uniform * location names are tried to be set automatically: * * #define RL_DEFAULT_SHADER_ATTRIB_NAME_POSITION "vertexPosition" // Bound by default to shader location: 0 * #define RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD "vertexTexCoord" // Bound by default to shader location: 1 * #define RL_DEFAULT_SHADER_ATTRIB_NAME_NORMAL "vertexNormal" // Bound by default to shader location: 2 * #define RL_DEFAULT_SHADER_ATTRIB_NAME_COLOR "vertexColor" // Bound by default to shader location: 3 * #define RL_DEFAULT_SHADER_ATTRIB_NAME_TANGENT "vertexTangent" // Bound by default to shader location: 4 * #define RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2 "vertexTexCoord2" // Bound by default to shader location: 5 * #define RL_DEFAULT_SHADER_UNIFORM_NAME_MVP "mvp" // model-view-projection matrix * #define RL_DEFAULT_SHADER_UNIFORM_NAME_VIEW "matView" // view matrix * #define RL_DEFAULT_SHADER_UNIFORM_NAME_PROJECTION "matProjection" // projection matrix * #define RL_DEFAULT_SHADER_UNIFORM_NAME_MODEL "matModel" // model matrix * #define RL_DEFAULT_SHADER_UNIFORM_NAME_NORMAL "matNormal" // normal matrix (transpose(inverse(matModelView)) * #define RL_DEFAULT_SHADER_UNIFORM_NAME_COLOR "colDiffuse" // color diffuse (base tint color, multiplied by texture color) * #define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE0 "texture0" // texture0 (texture slot active 0) * #define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE1 "texture1" // texture1 (texture slot active 1) * #define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE2 "texture2" // texture2 (texture slot active 2) * * DEPENDENCIES: * - OpenGL libraries (depending on platform and OpenGL version selected) * - GLAD OpenGL extensions loading library (only for OpenGL 3.3 Core, 4.3 Core) * * * LICENSE: zlib/libpng * * Copyright (c) 2014-2023 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #ifndef RLGL_H #define RLGL_H #define RLGL_VERSION "4.5" #ifndef RAYLIB_H // Function specifiers in case library is build/used as a shared library (Windows) // NOTE: Microsoft specifiers to tell compiler that symbols are imported/exported from a .dll #if defined(_WIN32) #if defined(BUILD_LIBTYPE_SHARED) #define RLAPI __declspec(dllexport) // We are building the library as a Win32 shared library (.dll) #elif defined(USE_LIBTYPE_SHARED) #define RLAPI __declspec(dllimport) // We are using the library as a Win32 shared library (.dll) #endif #endif // Function specifiers definition #ifndef RLAPI #define RLAPI // Functions defined as 'extern' by default (implicit specifiers) #endif #endif // Indicates of raylib has been refactored #ifndef RL_REFACTORED_CPP #define RL_REFACTORED_CPP #endif #define RLGL_USE_CPP_NAMESPACE 1 #define RLGL_USE_CPP_MANGLING 1 #if RLGL_USE_CPP_NAMESPACE && defined(__cplusplus) #pragma message("USING CPP MANGLING") #define RLGL_NS_BEGIN namespace rl { #define RLGL_NS_END } #else #define RLGL_NS_BEGIN #define RLGL_NS_END #endif #if RLGL_USE_CPP_MANGLING && defined(__cplusplus) #pragma message("USING CPP MANGALING") #define RLGL_EXTERN_C_BEGIN #define RLGL_EXTERN_C_END #else #ifdef __cplusplus #define RLGL_EXTERN_C_BEGIN extern "C" { #define RLGL_EXTERN_C_END } #else #define RLGL_EXTERN_C_BEGIN #define RLGL_EXTERN_C_END #endif #endif // Support RL_TRACELOG macros #ifndef RL_TRACELOG #define RL_TRACELOG(level, ...) (void)0 #define TRACELOGD(...) (void)0 #endif // Allow custom memory allocators #ifndef RL_MALLOC #define RL_MALLOC(sz) malloc(sz) #endif #ifndef RL_CALLOC #define RL_CALLOC(n,sz) calloc(n,sz) #endif #ifndef RL_REALLOC #define RL_REALLOC(n,sz) realloc(n,sz) #endif #ifndef RL_FREE #define RL_FREE(p) free(p) #endif // Security check in case no GRAPHICS_API_OPENGL_* defined #if !defined(GRAPHICS_API_OPENGL_11) && \ !defined(GRAPHICS_API_OPENGL_21) && \ !defined(GRAPHICS_API_OPENGL_33) && \ !defined(GRAPHICS_API_OPENGL_43) && \ !defined(GRAPHICS_API_OPENGL_ES2) && \ !defined(GRAPHICS_API_OPENGL_ES3) #define GRAPHICS_API_OPENGL_33 #endif // Security check in case multiple GRAPHICS_API_OPENGL_* defined #if defined(GRAPHICS_API_OPENGL_11) #if defined(GRAPHICS_API_OPENGL_21) #undef GRAPHICS_API_OPENGL_21 #endif #if defined(GRAPHICS_API_OPENGL_33) #undef GRAPHICS_API_OPENGL_33 #endif #if defined(GRAPHICS_API_OPENGL_43) #undef GRAPHICS_API_OPENGL_43 #endif #if defined(GRAPHICS_API_OPENGL_ES2) #undef GRAPHICS_API_OPENGL_ES2 #endif #endif // OpenGL 2.1 uses most of OpenGL 3.3 Core functionality // WARNING: Specific parts are checked with #if defines #if defined(GRAPHICS_API_OPENGL_21) #define GRAPHICS_API_OPENGL_33 #endif // OpenGL 4.3 uses OpenGL 3.3 Core functionality #if defined(GRAPHICS_API_OPENGL_43) #define GRAPHICS_API_OPENGL_33 #endif // OpenGL ES 3.0 uses OpenGL ES 2.0 functionality (and more) #if defined(GRAPHICS_API_OPENGL_ES3) #define GRAPHICS_API_OPENGL_ES2 #endif // Support framebuffer objects by default // NOTE: Some driver implementation do not support it, despite they should #define RLGL_RENDER_TEXTURES_HINT //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- // Default internal render batch elements limits #ifndef RL_DEFAULT_BATCH_BUFFER_ELEMENTS #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // This is the maximum amount of elements (quads) per batch // NOTE: Be careful with text, every letter maps to a quad #define RL_DEFAULT_BATCH_BUFFER_ELEMENTS 8192 #endif #if defined(GRAPHICS_API_OPENGL_ES2) // We reduce memory sizes for embedded systems (RPI and HTML5) // NOTE: On HTML5 (emscripten) this is allocated on heap, // by default it's only 16MB!...just take care... #define RL_DEFAULT_BATCH_BUFFER_ELEMENTS 2048 #endif #endif #ifndef RL_DEFAULT_BATCH_BUFFERS #define RL_DEFAULT_BATCH_BUFFERS 1 // Default number of batch buffers (multi-buffering) #endif #ifndef RL_DEFAULT_BATCH_DRAWCALLS #define RL_DEFAULT_BATCH_DRAWCALLS 256 // Default number of batch draw calls (by state changes: mode, texture) #endif #ifndef RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS #define RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS 4 // Maximum number of textures units that can be activated on batch drawing (SetShaderValueTexture()) #endif // Internal Matrix stack #ifndef RL_MAX_MATRIX_STACK_SIZE #define RL_MAX_MATRIX_STACK_SIZE 32 // Maximum size of Matrix stack #endif // Shader limits #ifndef RL_MAX_SHADER_LOCATIONS #define RL_MAX_SHADER_LOCATIONS 32 // Maximum number of shader locations supported #endif // Projection matrix culling #ifndef CULL_DISTANCE_NEAR #define CULL_DISTANCE_NEAR 0.01 // Default near cull distance #endif #ifndef CULL_DISTANCE_FAR #define CULL_DISTANCE_FAR 1000.0 // Default far cull distance #endif // Texture parameters (equivalent to OpenGL defines) #define TEXTURE_WRAP_S 0x2802 // GL_TEXTURE_WRAP_S #define TEXTURE_WRAP_T 0x2803 // GL_TEXTURE_WRAP_T #define TEXTURE_MAG_FILTER 0x2800 // GL_TEXTURE_MAG_FILTER #define TEXTURE_MIN_FILTER 0x2801 // GL_TEXTURE_MIN_FILTER #define TEXTURE_FILTER_NEAREST 0x2600 // GL_NEAREST #define TEXTURE_FILTER_LINEAR 0x2601 // GL_LINEAR #define TEXTURE_FILTER_MIP_NEAREST 0x2700 // GL_NEAREST_MIPMAP_NEAREST #define TEXTURE_FILTER_NEAREST_MIP_LINEAR 0x2702 // GL_NEAREST_MIPMAP_LINEAR #define TEXTURE_FILTER_LINEAR_MIP_NEAREST 0x2701 // GL_LINEAR_MIPMAP_NEAREST #define TEXTURE_FILTER_MIP_LINEAR 0x2703 // GL_LINEAR_MIPMAP_LINEAR #define TEXTURE_FILTER_ANISOTROPIC 0x3000 // Anisotropic filter (custom identifier) #define TEXTURE_MIPMAP_BIAS_RATIO 0x4000 // Texture mipmap bias, percentage ratio (custom identifier) #define TEXTURE_WRAP_REPEAT 0x2901 // GL_REPEAT #define TEXTURE_WRAP_CLAMP 0x812F // GL_CLAMP_TO_EDGE #define TEXTURE_WRAP_MIRROR_REPEAT 0x8370 // GL_MIRRORED_REPEAT #define TEXTURE_WRAP_MIRROR_CLAMP 0x8742 // GL_MIRROR_CLAMP_EXT // Matrix modes (equivalent to OpenGL) #define RL_MODELVIEW 0x1700 // GL_MODELVIEW #define RL_PROJECTION 0x1701 // GL_PROJECTION #define RL_TEXTURE 0x1702 // GL_TEXTURE // Primitive assembly draw modes #define RL_LINES 0x0001 // GL_LINES #define RL_TRIANGLES 0x0004 // GL_TRIANGLES #define RL_QUADS 0x0007 // GL_QUADS // GL equivalent data types #define RL_UNSIGNED_BYTE 0x1401 // GL_UNSIGNED_BYTE #define RL_FLOAT 0x1406 // GL_FLOAT // GL buffer usage hint #define RL_STREAM_DRAW 0x88E0 // GL_STREAM_DRAW #define RL_STREAM_READ 0x88E1 // GL_STREAM_READ #define RL_STREAM_COPY 0x88E2 // GL_STREAM_COPY #define RL_STATIC_DRAW 0x88E4 // GL_STATIC_DRAW #define RL_STATIC_READ 0x88E5 // GL_STATIC_READ #define RL_STATIC_COPY 0x88E6 // GL_STATIC_COPY #define RL_DYNAMIC_DRAW 0x88E8 // GL_DYNAMIC_DRAW #define RL_DYNAMIC_READ 0x88E9 // GL_DYNAMIC_READ #define RL_DYNAMIC_COPY 0x88EA // GL_DYNAMIC_COPY // GL Shader type #define RL_FRAGMENT_SHADER 0x8B30 // GL_FRAGMENT_SHADER #define RL_VERTEX_SHADER 0x8B31 // GL_VERTEX_SHADER #define RL_COMPUTE_SHADER 0x91B9 // GL_COMPUTE_SHADER // GL blending factors #define RL_ZERO 0 // GL_ZERO #define RL_ONE 1 // GL_ONE #define RL_SRC_COLOR 0x0300 // GL_SRC_COLOR #define RL_ONE_MINUS_SRC_COLOR 0x0301 // GL_ONE_MINUS_SRC_COLOR #define RL_SRC_ALPHA 0x0302 // GL_SRC_ALPHA #define RL_ONE_MINUS_SRC_ALPHA 0x0303 // GL_ONE_MINUS_SRC_ALPHA #define RL_DST_ALPHA 0x0304 // GL_DST_ALPHA #define RL_ONE_MINUS_DST_ALPHA 0x0305 // GL_ONE_MINUS_DST_ALPHA #define RL_DST_COLOR 0x0306 // GL_DST_COLOR #define RL_ONE_MINUS_DST_COLOR 0x0307 // GL_ONE_MINUS_DST_COLOR #define RL_SRC_ALPHA_SATURATE 0x0308 // GL_SRC_ALPHA_SATURATE #define RL_CONSTANT_COLOR 0x8001 // GL_CONSTANT_COLOR #define RL_ONE_MINUS_CONSTANT_COLOR 0x8002 // GL_ONE_MINUS_CONSTANT_COLOR #define RL_CONSTANT_ALPHA 0x8003 // GL_CONSTANT_ALPHA #define RL_ONE_MINUS_CONSTANT_ALPHA 0x8004 // GL_ONE_MINUS_CONSTANT_ALPHA // GL blending functions/equations #define RL_FUNC_ADD 0x8006 // GL_FUNC_ADD #define RL_MIN 0x8007 // GL_MIN #define RL_MAX 0x8008 // GL_MAX #define RL_FUNC_SUBTRACT 0x800A // GL_FUNC_SUBTRACT #define RL_FUNC_REVERSE_SUBTRACT 0x800B // GL_FUNC_REVERSE_SUBTRACT #define BLEND_EQUATION 0x8009 // GL_BLEND_EQUATION #define BLEND_EQUATION_RGB 0x8009 // GL_BLEND_EQUATION_RGB // (Same as BLEND_EQUATION) #define BLEND_EQUATION_ALPHA 0x883D // GL_BLEND_EQUATION_ALPHA #define BLEND_DST_RGB 0x80C8 // GL_BLEND_DST_RGB #define BLEND_SRC_RGB 0x80C9 // GL_BLEND_SRC_RGB #define BLEND_DST_ALPHA 0x80CA // GL_BLEND_DST_ALPHA #define BLEND_SRC_ALPHA 0x80CB // GL_BLEND_SRC_ALPHA #define BLEND_COLOR 0x8005 // GL_BLEND_COLOR //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- #if (defined(__STDC__) && __STDC_VERSION__ >= 199901L) || (defined(_MSC_VER) && _MSC_VER >= 1800) #include <stdbool.h> #elif !defined(__cplusplus) && !defined(bool) && !defined(RL_BOOL_TYPE) // Boolean type typedef enum bool { false = 0, true = !false } bool; #endif RLGL_NS_BEGIN #if !defined(RL_MATRIX_TYPE) // Matrix, 4x4 components, column major, OpenGL style, right handed typedef struct Matrix { float m0, m4, m8, m12; // Matrix first row (4 components) float m1, m5, m9, m13; // Matrix second row (4 components) float m2, m6, m10, m14; // Matrix third row (4 components) float m3, m7, m11, m15; // Matrix fourth row (4 components) } Matrix; #define RL_MATRIX_TYPE #endif // Dynamic vertex buffers (position + texcoords + colors + indices arrays) typedef struct vertex_buffer { int elementCount; // Number of elements in the buffer (QUADS) float *vertices; // Vertex position (XYZ - 3 components per vertex) (shader-location = 0) float *texcoords; // Vertex texture coordinates (UV - 2 components per vertex) (shader-location = 1) unsigned char *colors; // Vertex colors (RGBA - 4 components per vertex) (shader-location = 3) #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) unsigned int *indices; // Vertex indices (in case vertex data comes indexed) (6 indices per quad) #endif #if defined(GRAPHICS_API_OPENGL_ES2) unsigned short *indices; // Vertex indices (in case vertex data comes indexed) (6 indices per quad) #endif unsigned int vaoId; // OpenGL Vertex Array Object id unsigned int vboId[4]; // OpenGL Vertex Buffer Objects id (4 types of vertex data) } vertex_buffer; // Draw call type // NOTE: Only texture changes register a new draw, other state-change-related elements are not // used at this moment (vaoId, shaderId, matrices), raylib just forces a batch draw call if any // of those state-change happens (this is done in core module) typedef struct draw_call { int mode; // Drawing mode: LINES, TRIANGLES, QUADS int vertexCount; // Number of vertex of the draw int vertexAlignment; // Number of vertex required for index alignment (LINES, TRIANGLES) //unsigned int vaoId; // Vertex array id to be used on the draw -> Using GLOBAL_DATA.currentBatch->vertexBuffer.vaoId //unsigned int shaderId; // Shader id to be used on the draw -> Using GLOBAL_DATA.currentShaderId unsigned int textureId; // Texture id to be used on the draw -> Use to create new draw call if changes //Matrix projection; // Projection matrix for this draw -> Using GLOBAL_DATA.projection by default //Matrix modelview; // Modelview matrix for this draw -> Using GLOBAL_DATA.modelview by default } draw_call; // render_batch type typedef struct render_batch { int bufferCount; // Number of vertex buffers (multi-buffering support) int currentBuffer; // Current buffer tracking in case of multi-buffering vertex_buffer *vertexBuffer; // Dynamic buffer(s) for vertex data draw_call *draws; // Draw calls array, depends on textureId int drawCounter; // Draw calls counter float currentDepth; // Current depth value for next draw } render_batch; // OpenGL version typedef enum { RL_OPENGL_11 = 1, // OpenGL 1.1 RL_OPENGL_21, // OpenGL 2.1 (GLSL 120) RL_OPENGL_33, // OpenGL 3.3 (GLSL 330) RL_OPENGL_43, // OpenGL 4.3 (using GLSL 330) RL_OPENGL_ES_20, // OpenGL ES 2.0 (GLSL 100) RL_OPENGL_ES_30 // OpenGL ES 3.0 (GLSL 300 es) } gl_version; // Will not define these if not built standalone OR RLAPI is defined which means this file was not refactored #if !defined(RL_REFACTORED_C) && !defined(RL_REFACTORED_CPP) // Trace log level // NOTE: Organized by priority level typedef enum { LOG_ALL = 0, // Display all logs LOG_TRACE, // Trace logging, intended for internal use only LOG_DEBUG, // Debug logging, used for internal debugging, it should be disabled on release builds LOG_INFO, // Info logging, used for program execution info LOG_WARNING, // Warning logging, used on recoverable failures LOG_ERROR, // Error logging, used on unrecoverable failures LOG_FATAL, // Fatal logging, used to abort program: exit(EXIT_FAILURE) LOG_NONE // Disable logging } trace_log_level; // Texture pixel formats // NOTE: Support depends on OpenGL version typedef enum { PIXELFORMAT_UNCOMPRESSED_GRAYSCALE = 1, // 8 bit per pixel (no alpha) PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA, // 8*2 bpp (2 channels) PIXELFORMAT_UNCOMPRESSED_R5G6B5, // 16 bpp PIXELFORMAT_UNCOMPRESSED_R8G8B8, // 24 bpp PIXELFORMAT_UNCOMPRESSED_R5G5B5A1, // 16 bpp (1 bit alpha) PIXELFORMAT_UNCOMPRESSED_R4G4B4A4, // 16 bpp (4 bit alpha) PIXELFORMAT_UNCOMPRESSED_R8G8B8A8, // 32 bpp PIXELFORMAT_UNCOMPRESSED_R32, // 32 bpp (1 channel - float) PIXELFORMAT_UNCOMPRESSED_R32G32B32, // 32*3 bpp (3 channels - float) PIXELFORMAT_UNCOMPRESSED_R32G32B32A32, // 32*4 bpp (4 channels - float) PIXELFORMAT_UNCOMPRESSED_R16, // 16 bpp (1 channel - half float) PIXELFORMAT_UNCOMPRESSED_R16G16B16, // 16*3 bpp (3 channels - half float) PIXELFORMAT_UNCOMPRESSED_R16G16B16A16, // 16*4 bpp (4 channels - half float) PIXELFORMAT_COMPRESSED_DXT1_RGB, // 4 bpp (no alpha) PIXELFORMAT_COMPRESSED_DXT1_RGBA, // 4 bpp (1 bit alpha) PIXELFORMAT_COMPRESSED_DXT3_RGBA, // 8 bpp PIXELFORMAT_COMPRESSED_DXT5_RGBA, // 8 bpp PIXELFORMAT_COMPRESSED_ETC1_RGB, // 4 bpp PIXELFORMAT_COMPRESSED_ETC2_RGB, // 4 bpp PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA, // 8 bpp PIXELFORMAT_COMPRESSED_PVRT_RGB, // 4 bpp PIXELFORMAT_COMPRESSED_PVRT_RGBA, // 4 bpp PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA, // 8 bpp PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA // 2 bpp } pixel_format; // Texture parameters: filter mode // NOTE 1: Filtering considers mipmaps if available in the texture // NOTE 2: Filter is accordingly set for minification and magnification typedef enum { TEXTURE_FILTER_POINT = 0, // No filter, just pixel approximation TEXTURE_FILTER_BILINEAR, // Linear filtering TEXTURE_FILTER_TRILINEAR, // Trilinear filtering (linear with mipmaps) TEXTURE_FILTER_ANISOTROPIC_4X, // Anisotropic filtering 4x TEXTURE_FILTER_ANISOTROPIC_8X, // Anisotropic filtering 8x TEXTURE_FILTER_ANISOTROPIC_16X, // Anisotropic filtering 16x } texture_filter; // Shader location point type typedef enum { SHADER_LOC_VERTEX_POSITION = 0, // Shader location: vertex attribute: position SHADER_LOC_VERTEX_TEXCOORD01, // Shader location: vertex attribute: texcoord01 SHADER_LOC_VERTEX_TEXCOORD02, // Shader location: vertex attribute: texcoord02 SHADER_LOC_VERTEX_NORMAL, // Shader location: vertex attribute: normal SHADER_LOC_VERTEX_TANGENT, // Shader location: vertex attribute: tangent SHADER_LOC_VERTEX_COLOR, // Shader location: vertex attribute: color SHADER_LOC_MATRIX_MVP, // Shader location: matrix uniform: model-view-projection SHADER_LOC_MATRIX_VIEW, // Shader location: matrix uniform: view (camera transform) SHADER_LOC_MATRIX_PROJECTION, // Shader location: matrix uniform: projection SHADER_LOC_MATRIX_MODEL, // Shader location: matrix uniform: model (transform) SHADER_LOC_MATRIX_NORMAL, // Shader location: matrix uniform: normal SHADER_LOC_VECTOR_VIEW, // Shader location: vector uniform: view SHADER_LOC_COLOR_DIFFUSE, // Shader location: vector uniform: diffuse color SHADER_LOC_COLOR_SPECULAR, // Shader location: vector uniform: specular color SHADER_LOC_COLOR_AMBIENT, // Shader location: vector uniform: ambient color SHADER_LOC_MAP_ALBEDO, // Shader location: sampler2d texture: albedo (same as: SHADER_LOC_MAP_DIFFUSE) SHADER_LOC_MAP_METALNESS, // Shader location: sampler2d texture: metalness (same as: SHADER_LOC_MAP_SPECULAR) SHADER_LOC_MAP_NORMAL, // Shader location: sampler2d texture: normal SHADER_LOC_MAP_ROUGHNESS, // Shader location: sampler2d texture: roughness SHADER_LOC_MAP_OCCLUSION, // Shader location: sampler2d texture: occlusion SHADER_LOC_MAP_EMISSION, // Shader location: sampler2d texture: emission SHADER_LOC_MAP_HEIGHT, // Shader location: sampler2d texture: height SHADER_LOC_MAP_CUBEMAP, // Shader location: samplerCube texture: cubemap SHADER_LOC_MAP_IRRADIANCE, // Shader location: samplerCube texture: irradiance SHADER_LOC_MAP_PREFILTER, // Shader location: samplerCube texture: prefilter SHADER_LOC_MAP_BRDF // Shader location: sampler2d texture: brdf } shader_location_index; #define SHADER_LOC_MAP_DIFFUSE RL_NS(SHADER_LOC_MAP_ALBEDO) #define SHADER_LOC_MAP_SPECULAR RL_NS(SHADER_LOC_MAP_METALNESS) // Shader uniform data type typedef enum { SHADER_UNIFORM_FLOAT = 0, // Shader uniform type: float SHADER_UNIFORM_VEC2, // Shader uniform type: vec2 (2 float) SHADER_UNIFORM_VEC3, // Shader uniform type: vec3 (3 float) SHADER_UNIFORM_VEC4, // Shader uniform type: vec4 (4 float) SHADER_UNIFORM_INT, // Shader uniform type: int SHADER_UNIFORM_IVEC2, // Shader uniform type: ivec2 (2 int) SHADER_UNIFORM_IVEC3, // Shader uniform type: ivec3 (3 int) SHADER_UNIFORM_IVEC4, // Shader uniform type: ivec4 (4 int) SHADER_UNIFORM_SAMPLER2D // Shader uniform type: sampler2d } shader_uniform_data_type; // Shader attribute data types typedef enum { SHADER_ATTRIB_FLOAT = 0, // Shader attribute type: float SHADER_ATTRIB_VEC2, // Shader attribute type: vec2 (2 float) SHADER_ATTRIB_VEC3, // Shader attribute type: vec3 (3 float) SHADER_ATTRIB_VEC4 // Shader attribute type: vec4 (4 float) } shader_attribute_data_type; // Color blending modes (pre-defined) typedef enum { BLEND_ALPHA = 0, // Blend textures considering alpha (default) BLEND_ADDITIVE, // Blend textures adding colors BLEND_MULTIPLIED, // Blend textures multiplying colors BLEND_ADD_COLORS, // Blend textures adding colors (alternative) BLEND_SUBTRACT_COLORS, // Blend textures subtracting colors (alternative) BLEND_ALPHA_PREMULTIPLY, // Blend premultiplied textures considering alpha BLEND_CUSTOM, // Blend textures using custom src/dst factors (use set_blend_factors()) BLEND_CUSTOM_SEPARATE // Blend textures using custom src/dst factors (use set_blend_factors_separate()) } blend_mode; #endif //ifndef RAYLIB_H // Framebuffer attachment type // NOTE: By default up to 8 color channels defined, but it can be more typedef enum { ATTACHMENT_COLOR_CHANNEL0 = 0, // Framebuffer attachment type: color 0 ATTACHMENT_COLOR_CHANNEL1 = 1, // Framebuffer attachment type: color 1 ATTACHMENT_COLOR_CHANNEL2 = 2, // Framebuffer attachment type: color 2 ATTACHMENT_COLOR_CHANNEL3 = 3, // Framebuffer attachment type: color 3 ATTACHMENT_COLOR_CHANNEL4 = 4, // Framebuffer attachment type: color 4 ATTACHMENT_COLOR_CHANNEL5 = 5, // Framebuffer attachment type: color 5 ATTACHMENT_COLOR_CHANNEL6 = 6, // Framebuffer attachment type: color 6 ATTACHMENT_COLOR_CHANNEL7 = 7, // Framebuffer attachment type: color 7 ATTACHMENT_DEPTH = 100, // Framebuffer attachment type: depth ATTACHMENT_STENCIL = 200, // Framebuffer attachment type: stencil } framebuffer_attach_type; // Framebuffer texture attachment type typedef enum { ATTACHMENT_CUBEMAP_POSITIVE_X = 0, // Framebuffer texture attachment type: cubemap, +X side ATTACHMENT_CUBEMAP_NEGATIVE_X = 1, // Framebuffer texture attachment type: cubemap, -X side ATTACHMENT_CUBEMAP_POSITIVE_Y = 2, // Framebuffer texture attachment type: cubemap, +Y side ATTACHMENT_CUBEMAP_NEGATIVE_Y = 3, // Framebuffer texture attachment type: cubemap, -Y side ATTACHMENT_CUBEMAP_POSITIVE_Z = 4, // Framebuffer texture attachment type: cubemap, +Z side ATTACHMENT_CUBEMAP_NEGATIVE_Z = 5, // Framebuffer texture attachment type: cubemap, -Z side ATTACHMENT_TEXTURE2D = 100, // Framebuffer texture attachment type: texture2d ATTACHMENT_RENDERBUFFER = 200, // Framebuffer texture attachment type: renderbuffer } framebuffer_attach_texture_type; // Face culling mode typedef enum { CULL_FACE_FRONT = 0, CULL_FACE_BACK } cull_mode; //------------------------------------------------------------------------------------ // Functions Declaration - Matrix operations //------------------------------------------------------------------------------------ RLGL_EXTERN_C_BEGIN RLAPI void matrix_mode(int mode); // Choose the current matrix to be transformed RLAPI void push_matrix(void); // Push the current matrix to stack RLAPI void pop_matrix(void); // Pop latest inserted matrix from stack RLAPI void load_identity(void); // Reset current matrix to identity matrix RLAPI void translatef(float x, float y, float z); // Multiply the current matrix by a translation matrix RLAPI void rotatef(float angle, float x, float y, float z); // Multiply the current matrix by a rotation matrix RLAPI void scalef(float x, float y, float z); // Multiply the current matrix by a scaling matrix RLAPI void mult_matrixf(const float *matf); // Multiply the current matrix by another matrix RLAPI void frustum(double left, double right, double bottom, double top, double znear, double zfar); RLAPI void ortho(double left, double right, double bottom, double top, double znear, double zfar); RLAPI void viewport(int x, int y, int width, int height); // Set the viewport area //------------------------------------------------------------------------------------ // Functions Declaration - Vertex level operations //------------------------------------------------------------------------------------ RLAPI void begin(int mode); // Initialize drawing mode (how to organize vertex) RLAPI void end(void); // Finish vertex providing RLAPI void vertex2i(int x, int y); // Define one vertex (position) - 2 int RLAPI void vertex2f(float x, float y); // Define one vertex (position) - 2 float RLAPI void vertex3f(float x, float y, float z); // Define one vertex (position) - 3 float RLAPI void tex_coord2f(float x, float y); // Define one vertex (texture coordinate) - 2 float RLAPI void normal3f(float x, float y, float z); // Define one vertex (normal) - 3 float RLAPI void color4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a); // Define one vertex (color) - 4 byte RLAPI void color3f(float x, float y, float z); // Define one vertex (color) - 3 float RLAPI void color4f(float x, float y, float z, float w); // Define one vertex (color) - 4 float //------------------------------------------------------------------------------------ // Functions Declaration - OpenGL style functions (common to 1.1, 3.3+, ES2) // NOTE: This functions are used to completely abstract raylib code from OpenGL layer, // some of them are direct wrappers over OpenGL calls, some others are custom //------------------------------------------------------------------------------------ // Vertex buffers state RLAPI bool enable_vertex_array(unsigned int vaoId); // Enable vertex array (VAO, if supported) RLAPI void disable_vertex_array(void); // Disable vertex array (VAO, if supported) RLAPI void enable_vertex_buffer(unsigned int id); // Enable vertex buffer (VBO) RLAPI void disable_vertex_buffer(void); // Disable vertex buffer (VBO) RLAPI void enable_vertex_buffer_element(unsigned int id);// Enable vertex buffer element (VBO element) RLAPI void disable_vertex_buffer_element(void); // Disable vertex buffer element (VBO element) RLAPI void enable_vertex_attribute(unsigned int index); // Enable vertex attribute index RLAPI void disable_vertex_attribute(unsigned int index);// Disable vertex attribute index #if defined(GRAPHICS_API_OPENGL_11) RLAPI void enable_state_pointer(int vertexAttribType, void *buffer); // Enable attribute state pointer RLAPI void disable_state_pointer(int vertexAttribType); // Disable attribute state pointer #endif // Textures state RLAPI void active_texture_slot(int slot); // Select and active a texture slot RLAPI void enable_texture(unsigned int id); // Enable texture RLAPI void disable_texture(void); // Disable texture RLAPI void enable_texture_cubemap(unsigned int id); // Enable texture cubemap RLAPI void disable_texture_cubemap(void); // Disable texture cubemap RLAPI void texture_parameters(unsigned int id, int param, int value); // Set texture parameters (filter, wrap) RLAPI void cubemap_parameters(unsigned int id, int param, int value); // Set cubemap parameters (filter, wrap) // Shader state RLAPI void enable_shader(unsigned int id); // Enable shader program RLAPI void disable_shader(void); // Disable shader program // Framebuffer state RLAPI void enable_framebuffer(unsigned int id); // Enable render texture (fbo) RLAPI void disable_framebuffer(void); // Disable render texture (fbo), return to default framebuffer RLAPI void active_draw_buffers(int count); // Activate multiple draw color buffers RLAPI void blit_framebuffer(int srcX, int srcY, int srcWidth, int srcHeight, int dstX, int dstY, int dstWidth, int dstHeight, int bufferMask); // Blit active framebuffer to main framebuffer // General render state RLAPI void enable_color_blend(void); // Enable color blending RLAPI void disable_color_blend(void); // Disable color blending RLAPI void enable_depth_test(void); // Enable depth test RLAPI void disable_depth_test(void); // Disable depth test RLAPI void enable_depth_mask(void); // Enable depth write RLAPI void disable_depth_mask(void); // Disable depth write RLAPI void enable_backface_culling(void); // Enable backface culling RLAPI void disable_backface_culling(void); // Disable backface culling RLAPI void set_cull_face(int mode); // Set face culling mode RLAPI void enable_scissor_test(void); // Enable scissor test RLAPI void disable_scissor_test(void); // Disable scissor test RLAPI void scissor(int x, int y, int width, int height); // Scissor test RLAPI void enable_wire_mode(void); // Enable wire mode RLAPI void enable_point_mode(void); // Enable point mode RLAPI void disable_wire_mode(void); // Disable wire mode ( and point ) maybe rename RLAPI void set_line_width(float width); // Set the line drawing width RLAPI float get_line_width(void); // Get the line drawing width RLAPI void enable_smooth_lines(void); // Enable line aliasing RLAPI void disable_smooth_lines(void); // Disable line aliasing RLAPI void enable_stereo_render(void); // Enable stereo rendering RLAPI void disable_stereo_render(void); // Disable stereo rendering RLAPI bool is_stereo_render_enabled(void); // Check if stereo render is enabled RLAPI void clear_color(unsigned char r, unsigned char g, unsigned char b, unsigned char a); // Clear color buffer with color RLAPI void clear_screen_buffers(void); // Clear used screen buffers (color and depth) RLAPI void check_errors(void); // Check and log OpenGL error codes RLAPI void set_blend_mode(int mode); // Set blending mode RLAPI void set_blend_factors(int glSrcFactor, int glDstFactor, int glEquation); // Set blending mode factor and equation (using OpenGL factors) RLAPI void set_blend_factors_separate(int glSrcRGB, int glDstRGB, int glSrcAlpha, int glDstAlpha, int glEqRGB, int glEqAlpha); // Set blending mode factors and equations separately (using OpenGL factors) //------------------------------------------------------------------------------------ // Functions Declaration - rlgl functionality //------------------------------------------------------------------------------------ // rlgl initialization functions RLAPI void init(int width, int height); // Initialize rlgl (buffers, shaders, textures, states) RLAPI void close(void); // De-initialize rlgl (buffers, shaders, textures) RLAPI void load_extensions(void *loader); // Load OpenGL extensions (loader function required) RLAPI int get_version(void); // Get current OpenGL version RLAPI void set_framebuffer_width(int width); // Set current framebuffer width RLAPI int get_framebuffer_width(void); // Get default framebuffer width RLAPI void set_framebuffer_height(int height); // Set current framebuffer height RLAPI int get_framebuffer_height(void); // Get default framebuffer height RLAPI unsigned int get_texture_id_default(void); // Get default texture id RLAPI unsigned int get_shader_id_default(void); // Get default shader id RLAPI int *get_shader_locs_default(void); // Get default shader locations // Render batch management // NOTE: rlgl provides a default render batch to behave like OpenGL 1.1 immediate mode // but this render batch API is exposed in case of custom batches are required RLAPI render_batch load_render_batch(int numBuffers, int bufferElements); // Load a render batch system RLAPI void unload_render_batch(render_batch batch); // Unload render batch system RLAPI void draw_render_batch(render_batch *batch); // Draw render batch data (Update->Draw->Reset) RLAPI void set_render_batch_active(render_batch *batch); // Set the active render batch for rlgl (NULL for default internal) RLAPI void draw_render_batch_active(void); // Update and draw internal render batch RLAPI bool check_render_batch_limit(int vCount); // Check internal buffer overflow for a given number of vertex RLAPI void set_texture(unsigned int id); // Set current texture for render batch and check buffers limits //------------------------------------------------------------------------------------------------------------------------ // Vertex buffers management RLAPI unsigned int load_vertex_array(void); // Load vertex array (vao) if supported RLAPI unsigned int load_vertex_buffer(const void *buffer, int size, bool dynamic); // Load a vertex buffer attribute RLAPI unsigned int load_vertex_buffer_element(const void *buffer, int size, bool dynamic); // Load a new attributes element buffer RLAPI void update_vertex_buffer(unsigned int bufferId, const void *data, int dataSize, int offset); // Update GPU buffer with new data RLAPI void update_vertex_buffer_elements(unsigned int id, const void *data, int dataSize, int offset); // Update vertex buffer elements with new data RLAPI void unload_vertex_array(unsigned int vaoId); RLAPI void unload_vertex_buffer(unsigned int vboId); RLAPI void set_vertex_attribute(unsigned int index, int compSize, int type, bool normalized, int stride, const void *pointer); RLAPI void set_vertex_attribute_divisor(unsigned int index, int divisor); RLAPI void set_vertex_attribute_default(int locIndex, const void *value, int attribType, int count); // Set vertex attribute default value RLAPI void draw_vertex_array(int offset, int count); RLAPI void draw_vertex_array_elements(int offset, int count, const void *buffer); RLAPI void draw_vertex_array_instanced(int offset, int count, int instances); RLAPI void draw_vertex_array_elements_instanced(int offset, int count, const void *buffer, int instances); // Textures management RLAPI unsigned int load_texture(const void *data, int width, int height, int format, int mipmapCount); // Load texture in GPU RLAPI unsigned int load_texture_depth(int width, int height, bool useRenderBuffer); // Load depth texture/renderbuffer (to be attached to fbo) RLAPI unsigned int load_texture_cubemap(const void *data, int size, int format); // Load texture cubemap RLAPI void update_texture(unsigned int id, int offsetX, int offsetY, int width, int height, int format, const void *data); // Update GPU texture with new data RLAPI void get_gl_texture_formats(int format, unsigned int *glInternalFormat, unsigned int *glFormat, unsigned int *glType); // Get OpenGL internal formats RLAPI const char *get_pixel_format_name(unsigned int format); // Get name string for pixel format RLAPI void unload_texture(unsigned int id); // Unload texture from GPU memory RLAPI void gen_texture_mipmaps(unsigned int id, int width, int height, int format, int *mipmaps); // Generate mipmap data for selected texture RLAPI void *read_texture_pixels(unsigned int id, int width, int height, int format); // Read texture pixel data RLAPI unsigned char *read_screen_pixels(int width, int height); // Read screen pixel data (color buffer) // Framebuffer management (fbo) RLAPI unsigned int load_framebuffer(int width, int height); // Load an empty framebuffer RLAPI void framebuffer_attach(unsigned int fboId, unsigned int texId, int attachType, int texType, int mipLevel); // Attach texture/renderbuffer to a framebuffer RLAPI bool framebuffer_complete(unsigned int id); // Verify framebuffer is complete RLAPI void unload_framebuffer(unsigned int id); // Delete framebuffer from GPU // Shaders management RLAPI unsigned int load_shader_code(const char *vsCode, const char *fsCode); // Load shader from code strings RLAPI unsigned int compile_shader(const char *shaderCode, int type); // Compile custom shader and return shader id (type: RL_VERTEX_SHADER, RL_FRAGMENT_SHADER, RL_COMPUTE_SHADER) RLAPI unsigned int load_shader_program(unsigned int vShaderId, unsigned int fShaderId); // Load custom shader program RLAPI void unload_shader_program(unsigned int id); // Unload shader program RLAPI int get_location_uniform(unsigned int shaderId, const char *uniformName); // Get shader location uniform RLAPI int get_location_attrib(unsigned int shaderId, const char *attribName); // Get shader location attribute RLAPI void set_uniform(int locIndex, const void *value, int uniformType, int count); // Set shader value uniform RLAPI void set_uniform_matrix(int locIndex, Matrix mat); // Set shader value matrix RLAPI void set_uniform_sampler(int locIndex, unsigned int textureId); // Set shader value sampler RLAPI void set_shader(unsigned int id, int *locs); // Set shader currently active (id and locations) // Compute shader management RLAPI unsigned int load_compute_shader_program(unsigned int shaderId); // Load compute shader program RLAPI void compute_shader_dispatch(unsigned int groupX, unsigned int groupY, unsigned int groupZ); // Dispatch compute shader (equivalent to *draw* for graphics pipeline) // Shader buffer storage object management (ssbo) RLAPI unsigned int load_shader_buffer(unsigned int size, const void *data, int usageHint); // Load shader storage buffer object (SSBO) RLAPI void unload_shader_buffer(unsigned int ssboId); // Unload shader storage buffer object (SSBO) RLAPI void update_shader_buffer(unsigned int id, const void *data, unsigned int dataSize, unsigned int offset); // Update SSBO buffer data RLAPI void bind_shader_buffer(unsigned int id, unsigned int index); // Bind SSBO buffer RLAPI void read_shader_buffer(unsigned int id, void *dest, unsigned int count, unsigned int offset); // Read SSBO buffer data (GPU->CPU) RLAPI void copy_shader_buffer(unsigned int destId, unsigned int srcId, unsigned int destOffset, unsigned int srcOffset, unsigned int count); // Copy SSBO data between buffers RLAPI unsigned int get_shader_buffer_size(unsigned int id); // Get SSBO buffer size // Buffer management RLAPI void bind_image_texture(unsigned int id, unsigned int index, int format, bool readonly); // Bind image texture // Matrix state management RLAPI Matrix get_matrix_modelview(void); // Get internal modelview matrix RLAPI Matrix get_matrix_projection(void); // Get internal projection matrix RLAPI Matrix get_matrix_transform(void); // Get internal accumulated transform matrix RLAPI Matrix get_matrix_projection_stereo(int eye); // Get internal projection matrix for stereo render (selected eye) RLAPI Matrix get_matrix_view_offset_stereo(int eye); // Get internal view offset matrix for stereo render (selected eye) RLAPI void set_matrix_projection(Matrix proj); // Set a custom projection matrix (replaces internal projection matrix) RLAPI void set_matrix_modelview(Matrix view); // Set a custom modelview matrix (replaces internal modelview matrix) RLAPI void set_matrix_projection_stereo(Matrix right, Matrix left); // Set eyes projection matrices for stereo rendering RLAPI void set_matrix_view_offset_stereo(Matrix right, Matrix left); // Set eyes view offsets matrices for stereo rendering // Quick and dirty cube/quad buffers load->draw->unload RLAPI void load_draw_cube(void); // Load and draw a cube RLAPI void load_draw_quad(void); // Load and draw a quad RLGL_EXTERN_C_END RLGL_NS_END #endif // RLGL_H /*********************************************************************************** * * GLOBAL_DATA IMPLEMENTATION * ************************************************************************************/ #if defined(RLGL_IMPLEMENTATION) #if defined(GRAPHICS_API_OPENGL_11) #if defined(__APPLE__) #include <OpenGL/gl.h> // OpenGL 1.1 library for OSX #include <OpenGL/glext.h> // OpenGL extensions library #else // APIENTRY for OpenGL function pointer declarations is required #if !defined(APIENTRY) #if defined(_WIN32) #define APIENTRY __stdcall #else #define APIENTRY #endif #endif // WINGDIAPI definition. Some Windows OpenGL headers need it #if !defined(WINGDIAPI) && defined(_WIN32) #define WINGDIAPI __declspec(dllimport) #endif #include <GL/gl.h> // OpenGL 1.1 library #endif #endif #if defined(GRAPHICS_API_OPENGL_33) #define GLAD_MALLOC RL_MALLOC #define GLAD_FREE RL_FREE #define GLAD_GL_IMPLEMENTATION #include "external/glad.h" // GLAD extensions loading library, includes OpenGL headers #endif #if defined(GRAPHICS_API_OPENGL_ES3) #include <GLES3/gl3.h> // OpenGL ES 3.0 library #define GL_GLEXT_PROTOTYPES #include <GLES2/gl2ext.h> // OpenGL ES 2.0 extensions library #elif defined(GRAPHICS_API_OPENGL_ES2) // NOTE: OpenGL ES 2.0 can be enabled on PLATFORM_DESKTOP, // in that case, functions are loaded from a custom glad for OpenGL ES 2.0 #if defined(PLATFORM_DESKTOP) || defined(PLATFORM_DESKTOP_SDL) #define GLAD_GLES2_IMPLEMENTATION #include "external/glad_gles2.h" #else #define GL_GLEXT_PROTOTYPES //#include <EGL/egl.h> // EGL library -> not required, platform layer #include <GLES2/gl2.h> // OpenGL ES 2.0 library #include <GLES2/gl2ext.h> // OpenGL ES 2.0 extensions library #endif // It seems OpenGL ES 2.0 instancing entry points are not defined on Raspberry Pi // provided headers (despite being defined in official Khronos GLES2 headers) #if defined(PLATFORM_DRM) typedef void (GL_APIENTRYP PFNGLDRAWARRAYSINSTANCEDEXTPROC) (GLenum mode, GLint start, GLsizei count, GLsizei primcount); typedef void (GL_APIENTRYP PFNGLDRAWELEMENTSINSTANCEDEXTPROC) (GLenum mode, GLsizei count, GLenum type, const void *indices, GLsizei primcount); typedef void (GL_APIENTRYP PFNGLVERTEXATTRIBDIVISOREXTPROC) (GLuint index, GLuint divisor); #endif #endif #include <stdlib.h> // Required for: malloc(), free() #include <string.h> // Required for: strcmp(), strlen() [Used in init(), on extensions loading] #include <math.h> // Required for: sqrtf(), sinf(), cosf(), floor(), log() //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #ifndef PI #define PI 3.14159265358979323846f #endif #ifndef DEG2RAD #define DEG2RAD (PI/180.0f) #endif #ifndef RAD2DEG #define RAD2DEG (180.0f/PI) #endif #ifndef GL_SHADING_LANGUAGE_VERSION #define GL_SHADING_LANGUAGE_VERSION 0x8B8C #endif #ifndef GL_COMPRESSED_RGB_S3TC_DXT1_EXT #define GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT1_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT3_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT5_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #endif #ifndef GL_ETC1_RGB8_OES #define GL_ETC1_RGB8_OES 0x8D64 #endif #ifndef GL_COMPRESSED_RGB8_ETC2 #define GL_COMPRESSED_RGB8_ETC2 0x9274 #endif #ifndef GL_COMPRESSED_RGBA8_ETC2_EAC #define GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278 #endif #ifndef GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG #define GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 #endif #ifndef GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG #define GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #endif #ifndef GL_COMPRESSED_RGBA_ASTC_4x4_KHR #define GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0 #endif #ifndef GL_COMPRESSED_RGBA_ASTC_8x8_KHR #define GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7 #endif #ifndef GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT #define GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF #endif #ifndef GL_TEXTURE_MAX_ANISOTROPY_EXT #define GL_TEXTURE_MAX_ANISOTROPY_EXT 0x84FE #endif #if defined(GRAPHICS_API_OPENGL_11) #define GL_UNSIGNED_SHORT_5_6_5 0x8363 #define GL_UNSIGNED_SHORT_5_5_5_1 0x8034 #define GL_UNSIGNED_SHORT_4_4_4_4 0x8033 #endif #if defined(GRAPHICS_API_OPENGL_21) #define GL_LUMINANCE 0x1909 #define GL_LUMINANCE_ALPHA 0x190A #endif #if defined(GRAPHICS_API_OPENGL_ES2) #define glClearDepth glClearDepthf #if !defined(GRAPHICS_API_OPENGL_ES3) #define GL_READ_FRAMEBUFFER GL_FRAMEBUFFER #define GL_DRAW_FRAMEBUFFER GL_FRAMEBUFFER #endif #endif // Default shader vertex attribute names to set location points #ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_POSITION #define RL_DEFAULT_SHADER_ATTRIB_NAME_POSITION "vertexPosition" // Bound by default to shader location: 0 #endif #ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD #define RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD "vertexTexCoord" // Bound by default to shader location: 1 #endif #ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_NORMAL #define RL_DEFAULT_SHADER_ATTRIB_NAME_NORMAL "vertexNormal" // Bound by default to shader location: 2 #endif #ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_COLOR #define RL_DEFAULT_SHADER_ATTRIB_NAME_COLOR "vertexColor" // Bound by default to shader location: 3 #endif #ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_TANGENT #define RL_DEFAULT_SHADER_ATTRIB_NAME_TANGENT "vertexTangent" // Bound by default to shader location: 4 #endif #ifndef RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2 #define RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2 "vertexTexCoord2" // Bound by default to shader location: 5 #endif #ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_MVP #define RL_DEFAULT_SHADER_UNIFORM_NAME_MVP "mvp" // model-view-projection matrix #endif #ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_VIEW #define RL_DEFAULT_SHADER_UNIFORM_NAME_VIEW "matView" // view matrix #endif #ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_PROJECTION #define RL_DEFAULT_SHADER_UNIFORM_NAME_PROJECTION "matProjection" // projection matrix #endif #ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_MODEL #define RL_DEFAULT_SHADER_UNIFORM_NAME_MODEL "matModel" // model matrix #endif #ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_NORMAL #define RL_DEFAULT_SHADER_UNIFORM_NAME_NORMAL "matNormal" // normal matrix (transpose(inverse(matModelView)) #endif #ifndef RL_DEFAULT_SHADER_UNIFORM_NAME_COLOR #define RL_DEFAULT_SHADER_UNIFORM_NAME_COLOR "colDiffuse" // color diffuse (base tint color, multiplied by texture color) #endif #ifndef RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE0 #define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE0 "texture0" // texture0 (texture slot active 0) #endif #ifndef RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE1 #define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE1 "texture1" // texture1 (texture slot active 1) #endif #ifndef RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE2 #define RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE2 "texture2" // texture2 (texture slot active 2) #endif RLGL_NS_BEGIN //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) typedef struct glData { render_batch *currentBatch; // Current render batch render_batch defaultBatch; // Default internal render batch struct { int vertexCounter; // Current active render batch vertex counter (generic, used for all batches) float texcoordx, texcoordy; // Current active texture coordinate (added on glVertex*()) float normalx, normaly, normalz; // Current active normal (added on glVertex*()) unsigned char colorr, colorg, colorb, colora; // Current active color (added on glVertex*()) int currentMatrixMode; // Current matrix mode Matrix *currentMatrix; // Current matrix pointer Matrix modelview; // Default modelview matrix Matrix projection; // Default projection matrix Matrix transform; // Transform matrix to be used with Translate, Rotate, Scale bool transformRequired; // Require transform matrix application to current draw-call vertex (if required) Matrix stack[RL_MAX_MATRIX_STACK_SIZE];// Matrix stack for push/pop int stackCounter; // Matrix stack counter unsigned int defaultTextureId; // Default texture used on shapes/poly drawing (required by shader) unsigned int activeTextureId[RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS]; // Active texture ids to be enabled on batch drawing (0 active by default) unsigned int defaultVShaderId; // Default vertex shader id (used by default shader program) unsigned int defaultFShaderId; // Default fragment shader id (used by default shader program) unsigned int defaultShaderId; // Default shader program id, supports vertex color and diffuse texture int *defaultShaderLocs; // Default shader locations pointer to be used on rendering unsigned int currentShaderId; // Current shader id to be used on rendering (by default, defaultShaderId) int *currentShaderLocs; // Current shader locations pointer to be used on rendering (by default, defaultShaderLocs) bool stereoRender; // Stereo rendering flag Matrix projectionStereo[2]; // VR stereo rendering eyes projection matrices Matrix viewOffsetStereo[2]; // VR stereo rendering eyes view offset matrices // Blending variables int currentBlendMode; // Blending mode active int glBlendSrcFactor; // Blending source factor int glBlendDstFactor; // Blending destination factor int glBlendEquation; // Blending equation int glBlendSrcFactorRGB; // Blending source RGB factor int glBlendDestFactorRGB; // Blending destination RGB factor int glBlendSrcFactorAlpha; // Blending source alpha factor int glBlendDestFactorAlpha; // Blending destination alpha factor int glBlendEquationRGB; // Blending equation for RGB int glBlendEquationAlpha; // Blending equation for alpha bool glCustomBlendModeModified; // Custom blending factor and equation modification status int framebufferWidth; // Current framebuffer width int framebufferHeight; // Current framebuffer height } State; // Renderer state struct { bool vao; // VAO support (OpenGL ES2 could not support VAO extension) (GL_ARB_vertex_array_object) bool instancing; // Instancing supported (GL_ANGLE_instanced_arrays, GL_EXT_draw_instanced + GL_EXT_instanced_arrays) bool texNPOT; // NPOT textures full support (GL_ARB_texture_non_power_of_two, GL_OES_texture_npot) bool texDepth; // Depth textures supported (GL_ARB_depth_texture, GL_OES_depth_texture) bool texDepthWebGL; // Depth textures supported WebGL specific (GL_WEBGL_depth_texture) bool texFloat32; // float textures support (32 bit per channel) (GL_OES_texture_float) bool texFloat16; // half float textures support (16 bit per channel) (GL_OES_texture_half_float) bool texCompDXT; // DDS texture compression support (GL_EXT_texture_compression_s3tc, GL_WEBGL_compressed_texture_s3tc, GL_WEBKIT_WEBGL_compressed_texture_s3tc) bool texCompETC1; // ETC1 texture compression support (GL_OES_compressed_ETC1_RGB8_texture, GL_WEBGL_compressed_texture_etc1) bool texCompETC2; // ETC2/EAC texture compression support (GL_ARB_ES3_compatibility) bool texCompPVRT; // PVR texture compression support (GL_IMG_texture_compression_pvrtc) bool texCompASTC; // ASTC texture compression support (GL_KHR_texture_compression_astc_hdr, GL_KHR_texture_compression_astc_ldr) bool texMirrorClamp; // Clamp mirror wrap mode supported (GL_EXT_texture_mirror_clamp) bool texAnisoFilter; // Anisotropic texture filtering support (GL_EXT_texture_filter_anisotropic) bool computeShader; // Compute shaders support (GL_ARB_compute_shader) bool ssbo; // Shader storage buffer object support (GL_ARB_shader_storage_buffer_object) float maxAnisotropyLevel; // Maximum anisotropy level supported (minimum is 2.0f) int maxDepthBits; // Maximum bits for depth component } ExtSupported; // Extensions supported flags } glData; typedef void *(*glLoadProc)(const char *name); // OpenGL extension functions loader signature (same as GLADloadproc) #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) static glData GLOBAL_DATA = { 0 }; #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 #if defined(GRAPHICS_API_OPENGL_ES2) && !defined(GRAPHICS_API_OPENGL_ES3) // NOTE: VAO functionality is exposed through extensions (OES) static PFNGLGENVERTEXARRAYSOESPROC glGenVertexArrays = NULL; static PFNGLBINDVERTEXARRAYOESPROC glBindVertexArray = NULL; static PFNGLDELETEVERTEXARRAYSOESPROC glDeleteVertexArrays = NULL; // NOTE: Instancing functionality could also be available through extension static PFNGLDRAWARRAYSINSTANCEDEXTPROC glDrawArraysInstanced = NULL; static PFNGLDRAWELEMENTSINSTANCEDEXTPROC glDrawElementsInstanced = NULL; static PFNGLVERTEXATTRIBDIVISOREXTPROC glVertexAttribDivisor = NULL; #endif RLGL_EXTERN_C_BEGIN //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) static void load_shader_default(void); // Load default shader static void unload_shader_default(void); // Unload default shader #if defined(RLGL_SHOW_GL_DETAILS_INFO) static const char *GetCompressedFormatName(int format); // Get compressed format official GL identifier name #endif // RLGL_SHOW_GL_DETAILS_INFO #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 static int internal_get_pixel_data_size(int width, int height, int format); // Get pixel data size in bytes (image or texture) #if !defined(RAYMATH_H) // Auxiliar matrix math functions static Matrix internal_matrix_identity(void); // Get identity matrix static Matrix internal_matrix_multiply(Matrix left, Matrix right); // Multiply two matrices #endif //---------------------------------------------------------------------------------- // Module Functions Definition - Matrix operations //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_11) // Fallback to OpenGL 1.1 function calls //--------------------------------------- void matrix_mode(int mode) { switch (mode) { case RL_PROJECTION: glMatrixMode(GL_PROJECTION); break; case RL_MODELVIEW: glMatrixMode(GL_MODELVIEW); break; case RL_TEXTURE: glMatrixMode(GL_TEXTURE); break; default: break; } } void frustum(double left, double right, double bottom, double top, double znear, double zfar) { glFrustum(left, right, bottom, top, znear, zfar); } void ortho(double left, double right, double bottom, double top, double znear, double zfar) { glOrtho(left, right, bottom, top, znear, zfar); } void push_matrix(void) { glPushMatrix(); } void pop_matrix(void) { glPopMatrix(); } void load_identity(void) { glLoadIdentity(); } void translatef(float x, float y, float z) { glTranslatef(x, y, z); } void rotatef(float angle, float x, float y, float z) { glRotatef(angle, x, y, z); } void scalef(float x, float y, float z) { glScalef(x, y, z); } void mult_matrixf(const float *matf) { glMultMatrixf(matf); } #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Choose the current matrix to be transformed void matrix_mode(int mode) { if (mode == RL_PROJECTION) GLOBAL_DATA.State.currentMatrix = &GLOBAL_DATA.State.projection; else if (mode == RL_MODELVIEW) GLOBAL_DATA.State.currentMatrix = &GLOBAL_DATA.State.modelview; //else if (mode == RL_TEXTURE) // Not supported GLOBAL_DATA.State.currentMatrixMode = mode; } // Push the current matrix into GLOBAL_DATA.State.stack void push_matrix(void) { if (GLOBAL_DATA.State.stackCounter >= RL_MAX_MATRIX_STACK_SIZE) RL_TRACELOG(LOG_ERROR, "GLOBAL_DATA: Matrix stack overflow (RL_MAX_MATRIX_STACK_SIZE)"); if (GLOBAL_DATA.State.currentMatrixMode == RL_MODELVIEW) { GLOBAL_DATA.State.transformRequired = true; GLOBAL_DATA.State.currentMatrix = &GLOBAL_DATA.State.transform; } GLOBAL_DATA.State.stack[GLOBAL_DATA.State.stackCounter] = *GLOBAL_DATA.State.currentMatrix; GLOBAL_DATA.State.stackCounter++; } // Pop lattest inserted matrix from GLOBAL_DATA.State.stack void pop_matrix(void) { if (GLOBAL_DATA.State.stackCounter > 0) { Matrix mat = GLOBAL_DATA.State.stack[GLOBAL_DATA.State.stackCounter - 1]; *GLOBAL_DATA.State.currentMatrix = mat; GLOBAL_DATA.State.stackCounter--; } if ((GLOBAL_DATA.State.stackCounter == 0) && (GLOBAL_DATA.State.currentMatrixMode == RL_MODELVIEW)) { GLOBAL_DATA.State.currentMatrix = &GLOBAL_DATA.State.modelview; GLOBAL_DATA.State.transformRequired = false; } } // Reset current matrix to identity matrix void load_identity(void) { *GLOBAL_DATA.State.currentMatrix = internal_matrix_identity(); } // Multiply the current matrix by a translation matrix void translatef(float x, float y, float z) { Matrix matTranslation = { 1.0f, 0.0f, 0.0f, x, 0.0f, 1.0f, 0.0f, y, 0.0f, 0.0f, 1.0f, z, 0.0f, 0.0f, 0.0f, 1.0f }; // NOTE: We transpose matrix with multiplication order *GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(matTranslation, *GLOBAL_DATA.State.currentMatrix); } // Multiply the current matrix by a rotation matrix // NOTE: The provided angle must be in degrees void rotatef(float angle, float x, float y, float z) { Matrix matRotation = internal_matrix_identity(); // Axis vector (x, y, z) normalization float lengthSquared = x*x + y*y + z*z; if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f)) { float inverseLength = 1.0f/sqrtf(lengthSquared); x *= inverseLength; y *= inverseLength; z *= inverseLength; } // Rotation matrix generation float sinres = sinf(DEG2RAD*angle); float cosres = cosf(DEG2RAD*angle); float t = 1.0f - cosres; matRotation.m0 = x*x*t + cosres; matRotation.m1 = y*x*t + z*sinres; matRotation.m2 = z*x*t - y*sinres; matRotation.m3 = 0.0f; matRotation.m4 = x*y*t - z*sinres; matRotation.m5 = y*y*t + cosres; matRotation.m6 = z*y*t + x*sinres; matRotation.m7 = 0.0f; matRotation.m8 = x*z*t + y*sinres; matRotation.m9 = y*z*t - x*sinres; matRotation.m10 = z*z*t + cosres; matRotation.m11 = 0.0f; matRotation.m12 = 0.0f; matRotation.m13 = 0.0f; matRotation.m14 = 0.0f; matRotation.m15 = 1.0f; // NOTE: We transpose matrix with multiplication order *GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(matRotation, *GLOBAL_DATA.State.currentMatrix); } // Multiply the current matrix by a scaling matrix void scalef(float x, float y, float z) { Matrix matScale = { x, 0.0f, 0.0f, 0.0f, 0.0f, y, 0.0f, 0.0f, 0.0f, 0.0f, z, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; // NOTE: We transpose matrix with multiplication order *GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(matScale, *GLOBAL_DATA.State.currentMatrix); } // Multiply the current matrix by another matrix void mult_matrixf(const float *matf) { // Matrix creation from array Matrix mat = { matf[0], matf[4], matf[8], matf[12], matf[1], matf[5], matf[9], matf[13], matf[2], matf[6], matf[10], matf[14], matf[3], matf[7], matf[11], matf[15] }; *GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(*GLOBAL_DATA.State.currentMatrix, mat); } // Multiply the current matrix by a perspective matrix generated by parameters void frustum(double left, double right, double bottom, double top, double znear, double zfar) { Matrix matFrustum = { 0 }; float rl = (float)(right - left); float tb = (float)(top - bottom); float fn = (float)(zfar - znear); matFrustum.m0 = ((float) znear*2.0f)/rl; matFrustum.m1 = 0.0f; matFrustum.m2 = 0.0f; matFrustum.m3 = 0.0f; matFrustum.m4 = 0.0f; matFrustum.m5 = ((float) znear*2.0f)/tb; matFrustum.m6 = 0.0f; matFrustum.m7 = 0.0f; matFrustum.m8 = ((float)right + (float)left)/rl; matFrustum.m9 = ((float)top + (float)bottom)/tb; matFrustum.m10 = -((float)zfar + (float)znear)/fn; matFrustum.m11 = -1.0f; matFrustum.m12 = 0.0f; matFrustum.m13 = 0.0f; matFrustum.m14 = -((float)zfar*(float)znear*2.0f)/fn; matFrustum.m15 = 0.0f; *GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(*GLOBAL_DATA.State.currentMatrix, matFrustum); } // Multiply the current matrix by an orthographic matrix generated by parameters void ortho(double left, double right, double bottom, double top, double znear, double zfar) { // NOTE: If left-right and top-botton values are equal it could create a division by zero, // response to it is platform/compiler dependant Matrix matOrtho = { 0 }; float rl = (float)(right - left); float tb = (float)(top - bottom); float fn = (float)(zfar - znear); matOrtho.m0 = 2.0f/rl; matOrtho.m1 = 0.0f; matOrtho.m2 = 0.0f; matOrtho.m3 = 0.0f; matOrtho.m4 = 0.0f; matOrtho.m5 = 2.0f/tb; matOrtho.m6 = 0.0f; matOrtho.m7 = 0.0f; matOrtho.m8 = 0.0f; matOrtho.m9 = 0.0f; matOrtho.m10 = -2.0f/fn; matOrtho.m11 = 0.0f; matOrtho.m12 = -((float)left + (float)right)/rl; matOrtho.m13 = -((float)top + (float)bottom)/tb; matOrtho.m14 = -((float)zfar + (float)znear)/fn; matOrtho.m15 = 1.0f; *GLOBAL_DATA.State.currentMatrix = internal_matrix_multiply(*GLOBAL_DATA.State.currentMatrix, matOrtho); } #endif // Set the viewport area (transformation from normalized device coordinates to window coordinates) // NOTE: We store current viewport dimensions void viewport(int x, int y, int width, int height) { glViewport(x, y, width, height); } //---------------------------------------------------------------------------------- // Module Functions Definition - Vertex level operations //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_11) // Fallback to OpenGL 1.1 function calls //--------------------------------------- void begin(int mode) { switch (mode) { case RL_LINES: glBegin(GL_LINES); break; case RL_TRIANGLES: glBegin(GL_TRIANGLES); break; case RL_QUADS: glBegin(GL_QUADS); break; default: break; } } void end() { glEnd(); } void vertex2i(int x, int y) { glVertex2i(x, y); } void vertex2f(float x, float y) { glVertex2f(x, y); } void vertex3f(float x, float y, float z) { glVertex3f(x, y, z); } void tex_coord2f(float x, float y) { glTexCoord2f(x, y); } void normal3f(float x, float y, float z) { glNormal3f(x, y, z); } void color4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { glColor4ub(r, g, b, a); } void color3f(float x, float y, float z) { glColor3f(x, y, z); } void color4f(float x, float y, float z, float w) { glColor4f(x, y, z, w); } #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Initialize drawing mode (how to organize vertex) void begin(int mode) { // Draw mode can be RL_LINES, RL_TRIANGLES and RL_QUADS // NOTE: In all three cases, vertex are accumulated over default internal vertex buffer if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode != mode) { if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount > 0) { // Make sure current GLOBAL_DATA.currentBatch->draws[i].vertexCount is aligned a multiple of 4, // that way, following QUADS drawing will keep aligned with index processing // It implies adding some extra alignment vertex at the end of the draw, // those vertex are not processed but they are considered as an additional offset // for the next set of vertex to be drawn if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_LINES) GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount < 4)? GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount : GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%4); else if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_TRIANGLES) GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount < 4)? 1 : (4 - (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%4))); else GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = 0; if (!check_render_batch_limit(GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment)) { GLOBAL_DATA.State.vertexCounter += GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment; GLOBAL_DATA.currentBatch->drawCounter++; } } if (GLOBAL_DATA.currentBatch->drawCounter >= RL_DEFAULT_BATCH_DRAWCALLS) draw_render_batch(GLOBAL_DATA.currentBatch); GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode = mode; GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount = 0; GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].textureId = GLOBAL_DATA.State.defaultTextureId; } } // Finish vertex providing void end(void) { // NOTE: Depth increment is dependant on ortho(): z-near and z-far values, // as well as depth buffer bit-depth (16bit or 24bit or 32bit) // Correct increment formula would be: depthInc = (zfar - znear)/pow(2, bits) GLOBAL_DATA.currentBatch->currentDepth += (1.0f/20000.0f); } // Define one vertex (position) // NOTE: Vertex position data is the basic information required for drawing void vertex3f(float x, float y, float z) { float tx = x; float ty = y; float tz = z; // Transform provided vector if required if (GLOBAL_DATA.State.transformRequired) { tx = GLOBAL_DATA.State.transform.m0*x + GLOBAL_DATA.State.transform.m4*y + GLOBAL_DATA.State.transform.m8*z + GLOBAL_DATA.State.transform.m12; ty = GLOBAL_DATA.State.transform.m1*x + GLOBAL_DATA.State.transform.m5*y + GLOBAL_DATA.State.transform.m9*z + GLOBAL_DATA.State.transform.m13; tz = GLOBAL_DATA.State.transform.m2*x + GLOBAL_DATA.State.transform.m6*y + GLOBAL_DATA.State.transform.m10*z + GLOBAL_DATA.State.transform.m14; } // WARNING: We can't break primitives when launching a new batch. // RL_LINES comes in pairs, RL_TRIANGLES come in groups of 3 vertices and RL_QUADS come in groups of 4 vertices. // We must check current draw.mode when a new vertex is required and finish the batch only if the draw.mode draw.vertexCount is %2, %3 or %4 if (GLOBAL_DATA.State.vertexCounter > (GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].elementCount*4 - 4)) { if ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_LINES) && (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%2 == 0)) { // Reached the maximum number of vertices for RL_LINES drawing // Launch a draw call but keep current state for next vertices comming // NOTE: We add +1 vertex to the check for security check_render_batch_limit(2 + 1); } else if ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_TRIANGLES) && (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%3 == 0)) { check_render_batch_limit(3 + 1); } else if ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_QUADS) && (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%4 == 0)) { check_render_batch_limit(4 + 1); } } // Add vertices GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].vertices[3*GLOBAL_DATA.State.vertexCounter] = tx; GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].vertices[3*GLOBAL_DATA.State.vertexCounter + 1] = ty; GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].vertices[3*GLOBAL_DATA.State.vertexCounter + 2] = tz; // Add current texcoord GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].texcoords[2*GLOBAL_DATA.State.vertexCounter] = GLOBAL_DATA.State.texcoordx; GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].texcoords[2*GLOBAL_DATA.State.vertexCounter + 1] = GLOBAL_DATA.State.texcoordy; // WARNING: By default vertex_buffer struct does not store normals // Add current color GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].colors[4*GLOBAL_DATA.State.vertexCounter] = GLOBAL_DATA.State.colorr; GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].colors[4*GLOBAL_DATA.State.vertexCounter + 1] = GLOBAL_DATA.State.colorg; GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].colors[4*GLOBAL_DATA.State.vertexCounter + 2] = GLOBAL_DATA.State.colorb; GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].colors[4*GLOBAL_DATA.State.vertexCounter + 3] = GLOBAL_DATA.State.colora; GLOBAL_DATA.State.vertexCounter++; GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount++; } // Define one vertex (position) void vertex2f(float x, float y) { vertex3f(x, y, GLOBAL_DATA.currentBatch->currentDepth); } // Define one vertex (position) void vertex2i(int x, int y) { vertex3f((float)x, (float)y, GLOBAL_DATA.currentBatch->currentDepth); } // Define one vertex (texture coordinate) // NOTE: Texture coordinates are limited to QUADS only void tex_coord2f(float x, float y) { GLOBAL_DATA.State.texcoordx = x; GLOBAL_DATA.State.texcoordy = y; } // Define one vertex (normal) // NOTE: Normals limited to TRIANGLES only? void normal3f(float x, float y, float z) { GLOBAL_DATA.State.normalx = x; GLOBAL_DATA.State.normaly = y; GLOBAL_DATA.State.normalz = z; } // Define one vertex (color) void color4ub(unsigned char x, unsigned char y, unsigned char z, unsigned char w) { GLOBAL_DATA.State.colorr = x; GLOBAL_DATA.State.colorg = y; GLOBAL_DATA.State.colorb = z; GLOBAL_DATA.State.colora = w; } // Define one vertex (color) void color4f(float r, float g, float b, float a) { color4ub((unsigned char)(r*255), (unsigned char)(g*255), (unsigned char)(b*255), (unsigned char)(a*255)); } // Define one vertex (color) void color3f(float x, float y, float z) { color4ub((unsigned char)(x*255), (unsigned char)(y*255), (unsigned char)(z*255), 255); } #endif //-------------------------------------------------------------------------------------- // Module Functions Definition - OpenGL style functions (common to 1.1, 3.3+, ES2) //-------------------------------------------------------------------------------------- // Set current texture to use void set_texture(unsigned int id) { if (id == 0) { #if defined(GRAPHICS_API_OPENGL_11) disable_texture(); #else // NOTE: If quads batch limit is reached, we force a draw call and next batch starts if (GLOBAL_DATA.State.vertexCounter >= GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].elementCount*4) { draw_render_batch(GLOBAL_DATA.currentBatch); } #endif } else { #if defined(GRAPHICS_API_OPENGL_11) enable_texture(id); #else if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].textureId != id) { if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount > 0) { // Make sure current GLOBAL_DATA.currentBatch->draws[i].vertexCount is aligned a multiple of 4, // that way, following QUADS drawing will keep aligned with index processing // It implies adding some extra alignment vertex at the end of the draw, // those vertex are not processed but they are considered as an additional offset // for the next set of vertex to be drawn if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_LINES) GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount < 4)? GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount : GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%4); else if (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode == RL_TRIANGLES) GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = ((GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount < 4)? 1 : (4 - (GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount%4))); else GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment = 0; if (!check_render_batch_limit(GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment)) { GLOBAL_DATA.State.vertexCounter += GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexAlignment; GLOBAL_DATA.currentBatch->drawCounter++; } } if (GLOBAL_DATA.currentBatch->drawCounter >= RL_DEFAULT_BATCH_DRAWCALLS) draw_render_batch(GLOBAL_DATA.currentBatch); GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].textureId = id; GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].vertexCount = 0; } #endif } } // Select and active a texture slot void active_texture_slot(int slot) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glActiveTexture(GL_TEXTURE0 + slot); #endif } // Enable texture void enable_texture(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_11) glEnable(GL_TEXTURE_2D); #endif glBindTexture(GL_TEXTURE_2D, id); } // Disable texture void disable_texture(void) { #if defined(GRAPHICS_API_OPENGL_11) glDisable(GL_TEXTURE_2D); #endif glBindTexture(GL_TEXTURE_2D, 0); } // Enable texture cubemap void enable_texture_cubemap(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindTexture(GL_TEXTURE_CUBE_MAP, id); #endif } // Disable texture cubemap void disable_texture_cubemap(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindTexture(GL_TEXTURE_CUBE_MAP, 0); #endif } // Set texture parameters (wrap mode/filter mode) void texture_parameters(unsigned int id, int param, int value) { glBindTexture(GL_TEXTURE_2D, id); #if !defined(GRAPHICS_API_OPENGL_11) // Reset anisotropy filter, in case it was set glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f); #endif switch (param) { case TEXTURE_WRAP_S: case TEXTURE_WRAP_T: { if (value == TEXTURE_WRAP_MIRROR_CLAMP) { #if !defined(GRAPHICS_API_OPENGL_11) if (GLOBAL_DATA.ExtSupported.texMirrorClamp) glTexParameteri(GL_TEXTURE_2D, param, value); else RL_TRACELOG(LOG_WARNING, "GL: Clamp mirror wrap mode not supported (GL_MIRROR_CLAMP_EXT)"); #endif } else glTexParameteri(GL_TEXTURE_2D, param, value); } break; case TEXTURE_MAG_FILTER: case TEXTURE_MIN_FILTER: glTexParameteri(GL_TEXTURE_2D, param, value); break; case TEXTURE_FILTER_ANISOTROPIC: { #if !defined(GRAPHICS_API_OPENGL_11) if (value <= GLOBAL_DATA.ExtSupported.maxAnisotropyLevel) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value); else if (GLOBAL_DATA.ExtSupported.maxAnisotropyLevel > 0.0f) { RL_TRACELOG(LOG_WARNING, "GL: Maximum anisotropic filter level supported is %iX", id, (int)GLOBAL_DATA.ExtSupported.maxAnisotropyLevel); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value); } else RL_TRACELOG(LOG_WARNING, "GL: Anisotropic filtering not supported"); #endif } break; #if defined(GRAPHICS_API_OPENGL_33) case TEXTURE_MIPMAP_BIAS_RATIO: glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_LOD_BIAS, value/100.0f); #endif default: break; } glBindTexture(GL_TEXTURE_2D, 0); } // Set cubemap parameters (wrap mode/filter mode) void cubemap_parameters(unsigned int id, int param, int value) { #if !defined(GRAPHICS_API_OPENGL_11) glBindTexture(GL_TEXTURE_CUBE_MAP, id); // Reset anisotropy filter, in case it was set glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f); switch (param) { case TEXTURE_WRAP_S: case TEXTURE_WRAP_T: { if (value == TEXTURE_WRAP_MIRROR_CLAMP) { if (GLOBAL_DATA.ExtSupported.texMirrorClamp) glTexParameteri(GL_TEXTURE_CUBE_MAP, param, value); else RL_TRACELOG(LOG_WARNING, "GL: Clamp mirror wrap mode not supported (GL_MIRROR_CLAMP_EXT)"); } else glTexParameteri(GL_TEXTURE_CUBE_MAP, param, value); } break; case TEXTURE_MAG_FILTER: case TEXTURE_MIN_FILTER: glTexParameteri(GL_TEXTURE_CUBE_MAP, param, value); break; case TEXTURE_FILTER_ANISOTROPIC: { if (value <= GLOBAL_DATA.ExtSupported.maxAnisotropyLevel) glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value); else if (GLOBAL_DATA.ExtSupported.maxAnisotropyLevel > 0.0f) { RL_TRACELOG(LOG_WARNING, "GL: Maximum anisotropic filter level supported is %iX", id, (int)GLOBAL_DATA.ExtSupported.maxAnisotropyLevel); glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)value); } else RL_TRACELOG(LOG_WARNING, "GL: Anisotropic filtering not supported"); } break; #if defined(GRAPHICS_API_OPENGL_33) case TEXTURE_MIPMAP_BIAS_RATIO: glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_LOD_BIAS, value/100.0f); #endif default: break; } glBindTexture(GL_TEXTURE_CUBE_MAP, 0); #endif } // Enable shader program void enable_shader(unsigned int id) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) glUseProgram(id); #endif } // Disable shader program void disable_shader(void) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) glUseProgram(0); #endif } // Enable rendering to texture (fbo) void enable_framebuffer(unsigned int id) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT) glBindFramebuffer(GL_FRAMEBUFFER, id); #endif } // Disable rendering to texture void disable_framebuffer(void) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT) glBindFramebuffer(GL_FRAMEBUFFER, 0); #endif } // Blit active framebuffer to main framebuffer void blit_framebuffer(int srcX, int srcY, int srcWidth, int srcHeight, int dstX, int dstY, int dstWidth, int dstHeight, int bufferMask) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES3)) && defined(RLGL_RENDER_TEXTURES_HINT) glBlitFramebuffer(srcX, srcY, srcWidth, srcHeight, dstX, dstY, dstWidth, dstHeight, bufferMask, GL_NEAREST); #endif } // Activate multiple draw color buffers // NOTE: One color buffer is always active by default void active_draw_buffers(int count) { #if ((defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES3)) && defined(RLGL_RENDER_TEXTURES_HINT)) // NOTE: Maximum number of draw buffers supported is implementation dependant, // it can be queried with glGet*() but it must be at least 8 //GLint maxDrawBuffers = 0; //glGetIntegerv(GL_MAX_DRAW_BUFFERS, &maxDrawBuffers); if (count > 0) { if (count > 8) RL_TRACELOG(LOG_WARNING, "GL: Max color buffers limited to 8"); else { unsigned int buffers[8] = { #if defined(GRAPHICS_API_OPENGL_ES3) GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT, GL_COLOR_ATTACHMENT2_EXT, GL_COLOR_ATTACHMENT3_EXT, GL_COLOR_ATTACHMENT4_EXT, GL_COLOR_ATTACHMENT5_EXT, GL_COLOR_ATTACHMENT6_EXT, GL_COLOR_ATTACHMENT7_EXT, #else GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1, GL_COLOR_ATTACHMENT2, GL_COLOR_ATTACHMENT3, GL_COLOR_ATTACHMENT4, GL_COLOR_ATTACHMENT5, GL_COLOR_ATTACHMENT6, GL_COLOR_ATTACHMENT7, #endif }; #if defined(GRAPHICS_API_OPENGL_ES3) glDrawBuffersEXT(count, buffers); #else glDrawBuffers(count, buffers); #endif } } else RL_TRACELOG(LOG_WARNING, "GL: One color buffer active by default"); #endif } //---------------------------------------------------------------------------------- // General render state configuration //---------------------------------------------------------------------------------- // Enable color blending void enable_color_blend(void) { glEnable(GL_BLEND); } // Disable color blending void disable_color_blend(void) { glDisable(GL_BLEND); } // Enable depth test void enable_depth_test(void) { glEnable(GL_DEPTH_TEST); } // Disable depth test void disable_depth_test(void) { glDisable(GL_DEPTH_TEST); } // Enable depth write void enable_depth_mask(void) { glDepthMask(GL_TRUE); } // Disable depth write void disable_depth_mask(void) { glDepthMask(GL_FALSE); } // Enable backface culling void enable_backface_culling(void) { glEnable(GL_CULL_FACE); } // Disable backface culling void disable_backface_culling(void) { glDisable(GL_CULL_FACE); } // Set face culling mode void set_cull_face(int mode) { switch (mode) { case CULL_FACE_BACK: glCullFace(GL_BACK); break; case CULL_FACE_FRONT: glCullFace(GL_FRONT); break; default: break; } } // Enable scissor test void enable_scissor_test(void) { glEnable(GL_SCISSOR_TEST); } // Disable scissor test void disable_scissor_test(void) { glDisable(GL_SCISSOR_TEST); } // Scissor test void scissor(int x, int y, int width, int height) { glScissor(x, y, width, height); } // Enable wire mode void enable_wire_mode(void) { #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glPolygonMode() not available on OpenGL ES glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); #endif } void enable_point_mode(void) { #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glPolygonMode() not available on OpenGL ES glPolygonMode(GL_FRONT_AND_BACK, GL_POINT); glEnable(GL_PROGRAM_POINT_SIZE); #endif } // Disable wire mode void disable_wire_mode(void) { #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glPolygonMode() not available on OpenGL ES glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif } // Set the line drawing width void set_line_width(float width) { glLineWidth(width); } // Get the line drawing width float get_line_width(void) { float width = 0; glGetFloatv(GL_LINE_WIDTH, &width); return width; } // Enable line aliasing void enable_smooth_lines(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_11) glEnable(GL_LINE_SMOOTH); #endif } // Disable line aliasing void disable_smooth_lines(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_11) glDisable(GL_LINE_SMOOTH); #endif } // Enable stereo rendering void enable_stereo_render(void) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) GLOBAL_DATA.State.stereoRender = true; #endif } // Disable stereo rendering void disable_stereo_render(void) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) GLOBAL_DATA.State.stereoRender = false; #endif } // Check if stereo render is enabled bool is_stereo_render_enabled(void) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) return GLOBAL_DATA.State.stereoRender; #else return false; #endif } // Clear color buffer with color void clear_color(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { // Color values clamp to 0.0f(0) and 1.0f(255) float cr = (float)r/255; float cg = (float)g/255; float cb = (float)b/255; float ca = (float)a/255; glClearColor(cr, cg, cb, ca); } // Clear used screen buffers (color and depth) void clear_screen_buffers(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers: Color and Depth (Depth is used for 3D) //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); // Stencil buffer not used... } // Check and log OpenGL error codes void check_errors() { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) int check = 1; while (check) { const GLenum err = glGetError(); switch (err) { case GL_NO_ERROR: check = 0; break; case 0x0500: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_ENUM"); break; case 0x0501: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_VALUE"); break; case 0x0502: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_OPERATION"); break; case 0x0503: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_STACK_OVERFLOW"); break; case 0x0504: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_STACK_UNDERFLOW"); break; case 0x0505: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_OUT_OF_MEMORY"); break; case 0x0506: RL_TRACELOG(LOG_WARNING, "GL: Error detected: GL_INVALID_FRAMEBUFFER_OPERATION"); break; default: RL_TRACELOG(LOG_WARNING, "GL: Error detected: Unknown error code: %x", err); break; } } #endif } // Set blend mode void set_blend_mode(int mode) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((GLOBAL_DATA.State.currentBlendMode != mode) || ((mode == BLEND_CUSTOM || mode == BLEND_CUSTOM_SEPARATE) && GLOBAL_DATA.State.glCustomBlendModeModified)) { draw_render_batch(GLOBAL_DATA.currentBatch); switch (mode) { case BLEND_ALPHA: glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glBlendEquation(GL_FUNC_ADD); break; case BLEND_ADDITIVE: glBlendFunc(GL_SRC_ALPHA, GL_ONE); glBlendEquation(GL_FUNC_ADD); break; case BLEND_MULTIPLIED: glBlendFunc(GL_DST_COLOR, GL_ONE_MINUS_SRC_ALPHA); glBlendEquation(GL_FUNC_ADD); break; case BLEND_ADD_COLORS: glBlendFunc(GL_ONE, GL_ONE); glBlendEquation(GL_FUNC_ADD); break; case BLEND_SUBTRACT_COLORS: glBlendFunc(GL_ONE, GL_ONE); glBlendEquation(GL_FUNC_SUBTRACT); break; case BLEND_ALPHA_PREMULTIPLY: glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); glBlendEquation(GL_FUNC_ADD); break; case BLEND_CUSTOM: { // NOTE: Using GL blend src/dst factors and GL equation configured with set_blend_factors() glBlendFunc(GLOBAL_DATA.State.glBlendSrcFactor, GLOBAL_DATA.State.glBlendDstFactor); glBlendEquation(GLOBAL_DATA.State.glBlendEquation); } break; case BLEND_CUSTOM_SEPARATE: { // NOTE: Using GL blend src/dst factors and GL equation configured with set_blend_factors_separate() glBlendFuncSeparate(GLOBAL_DATA.State.glBlendSrcFactorRGB, GLOBAL_DATA.State.glBlendDestFactorRGB, GLOBAL_DATA.State.glBlendSrcFactorAlpha, GLOBAL_DATA.State.glBlendDestFactorAlpha); glBlendEquationSeparate(GLOBAL_DATA.State.glBlendEquationRGB, GLOBAL_DATA.State.glBlendEquationAlpha); } break; default: break; } GLOBAL_DATA.State.currentBlendMode = mode; GLOBAL_DATA.State.glCustomBlendModeModified = false; } #endif } // Set blending mode factor and equation void set_blend_factors(int glSrcFactor, int glDstFactor, int glEquation) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((GLOBAL_DATA.State.glBlendSrcFactor != glSrcFactor) || (GLOBAL_DATA.State.glBlendDstFactor != glDstFactor) || (GLOBAL_DATA.State.glBlendEquation != glEquation)) { GLOBAL_DATA.State.glBlendSrcFactor = glSrcFactor; GLOBAL_DATA.State.glBlendDstFactor = glDstFactor; GLOBAL_DATA.State.glBlendEquation = glEquation; GLOBAL_DATA.State.glCustomBlendModeModified = true; } #endif } // Set blending mode factor and equation separately for RGB and alpha void set_blend_factors_separate(int glSrcRGB, int glDstRGB, int glSrcAlpha, int glDstAlpha, int glEqRGB, int glEqAlpha) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((GLOBAL_DATA.State.glBlendSrcFactorRGB != glSrcRGB) || (GLOBAL_DATA.State.glBlendDestFactorRGB != glDstRGB) || (GLOBAL_DATA.State.glBlendSrcFactorAlpha != glSrcAlpha) || (GLOBAL_DATA.State.glBlendDestFactorAlpha != glDstAlpha) || (GLOBAL_DATA.State.glBlendEquationRGB != glEqRGB) || (GLOBAL_DATA.State.glBlendEquationAlpha != glEqAlpha)) { GLOBAL_DATA.State.glBlendSrcFactorRGB = glSrcRGB; GLOBAL_DATA.State.glBlendDestFactorRGB = glDstRGB; GLOBAL_DATA.State.glBlendSrcFactorAlpha = glSrcAlpha; GLOBAL_DATA.State.glBlendDestFactorAlpha = glDstAlpha; GLOBAL_DATA.State.glBlendEquationRGB = glEqRGB; GLOBAL_DATA.State.glBlendEquationAlpha = glEqAlpha; GLOBAL_DATA.State.glCustomBlendModeModified = true; } #endif } //---------------------------------------------------------------------------------- // Module Functions Definition - OpenGL Debug //---------------------------------------------------------------------------------- #if defined(RLGL_ENABLE_OPENGL_DEBUG_CONTEXT) && defined(GRAPHICS_API_OPENGL_43) static void GLAPIENTRY DebugMessageCallback(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message, const void *userParam) { // Ignore non-significant error/warning codes (NVidia drivers) // NOTE: Here there are the details with a sample output: // - #131169 - Framebuffer detailed info: The driver allocated storage for renderbuffer 2. (severity: low) // - #131185 - Buffer detailed info: Buffer object 1 (bound to GL_ELEMENT_ARRAY_BUFFER_ARB, usage hint is GL_ENUM_88e4) // will use VIDEO memory as the source for buffer object operations. (severity: low) // - #131218 - Program/shader state performance warning: Vertex shader in program 7 is being recompiled based on GL state. (severity: medium) // - #131204 - Texture state usage warning: The texture object (0) bound to texture image unit 0 does not have // a defined base level and cannot be used for texture mapping. (severity: low) if ((id == 131169) || (id == 131185) || (id == 131218) || (id == 131204)) return; const char *msgSource = NULL; switch (source) { case GL_DEBUG_SOURCE_API: msgSource = "API"; break; case GL_DEBUG_SOURCE_WINDOW_SYSTEM: msgSource = "WINDOW_SYSTEM"; break; case GL_DEBUG_SOURCE_SHADER_COMPILER: msgSource = "SHADER_COMPILER"; break; case GL_DEBUG_SOURCE_THIRD_PARTY: msgSource = "THIRD_PARTY"; break; case GL_DEBUG_SOURCE_APPLICATION: msgSource = "APPLICATION"; break; case GL_DEBUG_SOURCE_OTHER: msgSource = "OTHER"; break; default: break; } const char *msgType = NULL; switch (type) { case GL_DEBUG_TYPE_ERROR: msgType = "ERROR"; break; case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR: msgType = "DEPRECATED_BEHAVIOR"; break; case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR: msgType = "UNDEFINED_BEHAVIOR"; break; case GL_DEBUG_TYPE_PORTABILITY: msgType = "PORTABILITY"; break; case GL_DEBUG_TYPE_PERFORMANCE: msgType = "PERFORMANCE"; break; case GL_DEBUG_TYPE_MARKER: msgType = "MARKER"; break; case GL_DEBUG_TYPE_PUSH_GROUP: msgType = "PUSH_GROUP"; break; case GL_DEBUG_TYPE_POP_GROUP: msgType = "POP_GROUP"; break; case GL_DEBUG_TYPE_OTHER: msgType = "OTHER"; break; default: break; } const char *msgSeverity = "DEFAULT"; switch (severity) { case GL_DEBUG_SEVERITY_LOW: msgSeverity = "LOW"; break; case GL_DEBUG_SEVERITY_MEDIUM: msgSeverity = "MEDIUM"; break; case GL_DEBUG_SEVERITY_HIGH: msgSeverity = "HIGH"; break; case GL_DEBUG_SEVERITY_NOTIFICATION: msgSeverity = "NOTIFICATION"; break; default: break; } RL_TRACELOG(LOG_WARNING, "GL: OpenGL debug message: %s", message); RL_TRACELOG(LOG_WARNING, " > Type: %s", msgType); RL_TRACELOG(LOG_WARNING, " > Source = %s", msgSource); RL_TRACELOG(LOG_WARNING, " > Severity = %s", msgSeverity); } #endif //---------------------------------------------------------------------------------- // Module Functions Definition - rlgl functionality //---------------------------------------------------------------------------------- // Initialize rlgl: OpenGL extensions, default buffers/shaders/textures, OpenGL states void init(int width, int height) { // Enable OpenGL debug context if required #if defined(RLGL_ENABLE_OPENGL_DEBUG_CONTEXT) && defined(GRAPHICS_API_OPENGL_43) if ((glDebugMessageCallback != NULL) && (glDebugMessageControl != NULL)) { glDebugMessageCallback(DebugMessageCallback, 0); // glDebugMessageControl(GL_DEBUG_SOURCE_API, GL_DEBUG_TYPE_ERROR, GL_DEBUG_SEVERITY_HIGH, 0, 0, GL_TRUE); // Debug context options: // - GL_DEBUG_OUTPUT - Faster version but not useful for breakpoints // - GL_DEBUG_OUTPUT_SYNCHRONUS - Callback is in sync with errors, so a breakpoint can be placed on the callback in order to get a stacktrace for the GL error glEnable(GL_DEBUG_OUTPUT); glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS); } #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Init default white texture unsigned char pixels[4] = { 255, 255, 255, 255 }; // 1 pixel RGBA (4 bytes) GLOBAL_DATA.State.defaultTextureId = load_texture(pixels, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8, 1); if (GLOBAL_DATA.State.defaultTextureId != 0) RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Default texture loaded successfully", GLOBAL_DATA.State.defaultTextureId); else RL_TRACELOG(LOG_WARNING, "TEXTURE: Failed to load default texture"); // Init default Shader (customized for GL 3.3 and ES2) // Loaded: GLOBAL_DATA.State.defaultShaderId + GLOBAL_DATA.State.defaultShaderLocs load_shader_default(); GLOBAL_DATA.State.currentShaderId = GLOBAL_DATA.State.defaultShaderId; GLOBAL_DATA.State.currentShaderLocs = GLOBAL_DATA.State.defaultShaderLocs; // Init default vertex arrays buffers GLOBAL_DATA.defaultBatch = load_render_batch(RL_DEFAULT_BATCH_BUFFERS, RL_DEFAULT_BATCH_BUFFER_ELEMENTS); GLOBAL_DATA.currentBatch = &GLOBAL_DATA.defaultBatch; // Init stack matrices (emulating OpenGL 1.1) for (int i = 0; i < RL_MAX_MATRIX_STACK_SIZE; i++) GLOBAL_DATA.State.stack[i] = internal_matrix_identity(); // Init internal matrices GLOBAL_DATA.State.transform = internal_matrix_identity(); GLOBAL_DATA.State.projection = internal_matrix_identity(); GLOBAL_DATA.State.modelview = internal_matrix_identity(); GLOBAL_DATA.State.currentMatrix = &GLOBAL_DATA.State.modelview; #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 // Initialize OpenGL default states //---------------------------------------------------------- // Init state: Depth test glDepthFunc(GL_LEQUAL); // Type of depth testing to apply glDisable(GL_DEPTH_TEST); // Disable depth testing for 2D (only used for 3D) // Init state: Blending mode glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Color blending function (how colors are mixed) glEnable(GL_BLEND); // Enable color blending (required to work with transparencies) // Init state: Culling // NOTE: All shapes/models triangles are drawn CCW glCullFace(GL_BACK); // Cull the back face (default) glFrontFace(GL_CCW); // Front face are defined counter clockwise (default) glEnable(GL_CULL_FACE); // Enable backface culling // Init state: Cubemap seamless #if defined(GRAPHICS_API_OPENGL_33) glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); // Seamless cubemaps (not supported on OpenGL ES 2.0) #endif #if defined(GRAPHICS_API_OPENGL_11) // Init state: Color hints (deprecated in OpenGL 3.0+) glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Improve quality of color and texture coordinate interpolation glShadeModel(GL_SMOOTH); // Smooth shading between vertex (vertex colors interpolation) #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Store screen size into global variables GLOBAL_DATA.State.framebufferWidth = width; GLOBAL_DATA.State.framebufferHeight = height; RL_TRACELOG(LOG_INFO, "GLOBAL_DATA: Default OpenGL state initialized successfully"); //---------------------------------------------------------- #endif // Init state: Color/Depth buffers clear glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set clear color (black) glClearDepth(1.0f); // Set clear depth value (default) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear color and depth buffers (depth buffer required for 3D) } // Vertex Buffer Object deinitialization (memory free) void close(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unload_render_batch(GLOBAL_DATA.defaultBatch); unload_shader_default(); // Unload default shader glDeleteTextures(1, &GLOBAL_DATA.State.defaultTextureId); // Unload default texture RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Default texture unloaded successfully", GLOBAL_DATA.State.defaultTextureId); #endif } // Load OpenGL extensions // NOTE: External loader function must be provided void load_extensions(void *loader) { #if defined(GRAPHICS_API_OPENGL_33) // Also defined for GRAPHICS_API_OPENGL_21 // NOTE: glad is generated and contains only required OpenGL 3.3 Core extensions (and lower versions) if (gladLoadGL((GLADloadfunc)loader) == 0) RL_TRACELOG(LOG_WARNING, "GLAD: Cannot load OpenGL extensions"); else RL_TRACELOG(LOG_INFO, "GLAD: OpenGL extensions loaded successfully"); // Get number of supported extensions GLint numExt = 0; glGetIntegerv(GL_NUM_EXTENSIONS, &numExt); RL_TRACELOG(LOG_INFO, "GL: Supported extensions count: %i", numExt); #if defined(RLGL_SHOW_GL_DETAILS_INFO) // Get supported extensions list // WARNING: glGetStringi() not available on OpenGL 2.1 RL_TRACELOG(LOG_INFO, "GL: OpenGL extensions:"); for (int i = 0; i < numExt; i++) RL_TRACELOG(LOG_INFO, " %s", glGetStringi(GL_EXTENSIONS, i)); #endif #if defined(GRAPHICS_API_OPENGL_21) // Register supported extensions flags // Optional OpenGL 2.1 extensions GLOBAL_DATA.ExtSupported.vao = GLAD_GL_ARB_vertex_array_object; GLOBAL_DATA.ExtSupported.instancing = (GLAD_GL_EXT_draw_instanced && GLAD_GL_ARB_instanced_arrays); GLOBAL_DATA.ExtSupported.texNPOT = GLAD_GL_ARB_texture_non_power_of_two; GLOBAL_DATA.ExtSupported.texFloat32 = GLAD_GL_ARB_texture_float; GLOBAL_DATA.ExtSupported.texFloat16 = GLAD_GL_ARB_texture_float; GLOBAL_DATA.ExtSupported.texDepth = GLAD_GL_ARB_depth_texture; GLOBAL_DATA.ExtSupported.maxDepthBits = 32; GLOBAL_DATA.ExtSupported.texAnisoFilter = GLAD_GL_EXT_texture_filter_anisotropic; GLOBAL_DATA.ExtSupported.texMirrorClamp = GLAD_GL_EXT_texture_mirror_clamp; #else // Register supported extensions flags // OpenGL 3.3 extensions supported by default (core) GLOBAL_DATA.ExtSupported.vao = true; GLOBAL_DATA.ExtSupported.instancing = true; GLOBAL_DATA.ExtSupported.texNPOT = true; GLOBAL_DATA.ExtSupported.texFloat32 = true; GLOBAL_DATA.ExtSupported.texFloat16 = true; GLOBAL_DATA.ExtSupported.texDepth = true; GLOBAL_DATA.ExtSupported.maxDepthBits = 32; GLOBAL_DATA.ExtSupported.texAnisoFilter = true; GLOBAL_DATA.ExtSupported.texMirrorClamp = true; #endif // Optional OpenGL 3.3 extensions GLOBAL_DATA.ExtSupported.texCompASTC = GLAD_GL_KHR_texture_compression_astc_hdr && GLAD_GL_KHR_texture_compression_astc_ldr; GLOBAL_DATA.ExtSupported.texCompDXT = GLAD_GL_EXT_texture_compression_s3tc; // Texture compression: DXT GLOBAL_DATA.ExtSupported.texCompETC2 = GLAD_GL_ARB_ES3_compatibility; // Texture compression: ETC2/EAC #if defined(GRAPHICS_API_OPENGL_43) GLOBAL_DATA.ExtSupported.computeShader = GLAD_GL_ARB_compute_shader; GLOBAL_DATA.ExtSupported.ssbo = GLAD_GL_ARB_shader_storage_buffer_object; #endif #endif // GRAPHICS_API_OPENGL_33 #if defined(GRAPHICS_API_OPENGL_ES3) // Register supported extensions flags // OpenGL ES 3.0 extensions supported by default (or it should be) GLOBAL_DATA.ExtSupported.vao = true; GLOBAL_DATA.ExtSupported.instancing = true; GLOBAL_DATA.ExtSupported.texNPOT = true; GLOBAL_DATA.ExtSupported.texFloat32 = true; GLOBAL_DATA.ExtSupported.texFloat16 = true; GLOBAL_DATA.ExtSupported.texDepth = true; GLOBAL_DATA.ExtSupported.texDepthWebGL = true; GLOBAL_DATA.ExtSupported.maxDepthBits = 24; GLOBAL_DATA.ExtSupported.texAnisoFilter = true; GLOBAL_DATA.ExtSupported.texMirrorClamp = true; // TODO: Check for additional OpenGL ES 3.0 supported extensions: //GLOBAL_DATA.ExtSupported.texCompDXT = true; //GLOBAL_DATA.ExtSupported.texCompETC1 = true; //GLOBAL_DATA.ExtSupported.texCompETC2 = true; //GLOBAL_DATA.ExtSupported.texCompPVRT = true; //GLOBAL_DATA.ExtSupported.texCompASTC = true; //GLOBAL_DATA.ExtSupported.maxAnisotropyLevel = true; //GLOBAL_DATA.ExtSupported.computeShader = true; //GLOBAL_DATA.ExtSupported.ssbo = true; #elif defined(GRAPHICS_API_OPENGL_ES2) #if defined(PLATFORM_DESKTOP) || defined(PLATFORM_DESKTOP_SDL) // TODO: Support GLAD loader for OpenGL ES 3.0 if (gladLoadGLES2((GLADloadfunc)loader) == 0) RL_TRACELOG(LOG_WARNING, "GLAD: Cannot load OpenGL ES2.0 functions"); else RL_TRACELOG(LOG_INFO, "GLAD: OpenGL ES 2.0 loaded successfully"); #endif // Get supported extensions list GLint numExt = 0; const char **extList = RL_MALLOC(512*sizeof(const char *)); // Allocate 512 strings pointers (2 KB) const char *extensions = (const char *)glGetString(GL_EXTENSIONS); // One big const string // NOTE: We have to duplicate string because glGetString() returns a const string int size = strlen(extensions) + 1; // Get extensions string size in bytes char *extensionsDup = (char *)RL_CALLOC(size, sizeof(char)); strcpy(extensionsDup, extensions); extList[numExt] = extensionsDup; for (int i = 0; i < size; i++) { if (extensionsDup[i] == ' ') { extensionsDup[i] = '\0'; numExt++; extList[numExt] = &extensionsDup[i + 1]; } } RL_TRACELOG(LOG_INFO, "GL: Supported extensions count: %i", numExt); #if defined(RLGL_SHOW_GL_DETAILS_INFO) RL_TRACELOG(LOG_INFO, "GL: OpenGL extensions:"); for (int i = 0; i < numExt; i++) RL_TRACELOG(LOG_INFO, " %s", extList[i]); #endif // Check required extensions for (int i = 0; i < numExt; i++) { // Check VAO support // NOTE: Only check on OpenGL ES, OpenGL 3.3 has VAO support as core feature if (strcmp(extList[i], (const char *)"GL_OES_vertex_array_object") == 0) { // The extension is supported by our hardware and driver, try to get related functions pointers // NOTE: emscripten does not support VAOs natively, it uses emulation and it reduces overall performance... glGenVertexArrays = (PFNGLGENVERTEXARRAYSOESPROC)((glLoadProc)loader)("glGenVertexArraysOES"); glBindVertexArray = (PFNGLBINDVERTEXARRAYOESPROC)((glLoadProc)loader)("glBindVertexArrayOES"); glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSOESPROC)((glLoadProc)loader)("glDeleteVertexArraysOES"); //glIsVertexArray = (PFNGLISVERTEXARRAYOESPROC)loader("glIsVertexArrayOES"); // NOTE: Fails in WebGL, omitted if ((glGenVertexArrays != NULL) && (glBindVertexArray != NULL) && (glDeleteVertexArrays != NULL)) GLOBAL_DATA.ExtSupported.vao = true; } // Check instanced rendering support if (strcmp(extList[i], (const char *)"GL_ANGLE_instanced_arrays") == 0) // Web ANGLE { glDrawArraysInstanced = (PFNGLDRAWARRAYSINSTANCEDEXTPROC)((glLoadProc)loader)("glDrawArraysInstancedANGLE"); glDrawElementsInstanced = (PFNGLDRAWELEMENTSINSTANCEDEXTPROC)((glLoadProc)loader)("glDrawElementsInstancedANGLE"); glVertexAttribDivisor = (PFNGLVERTEXATTRIBDIVISOREXTPROC)((glLoadProc)loader)("glVertexAttribDivisorANGLE"); if ((glDrawArraysInstanced != NULL) && (glDrawElementsInstanced != NULL) && (glVertexAttribDivisor != NULL)) GLOBAL_DATA.ExtSupported.instancing = true; } else { if ((strcmp(extList[i], (const char *)"GL_EXT_draw_instanced") == 0) && // Standard EXT (strcmp(extList[i], (const char *)"GL_EXT_instanced_arrays") == 0)) { glDrawArraysInstanced = (PFNGLDRAWARRAYSINSTANCEDEXTPROC)((glLoadProc)loader)("glDrawArraysInstancedEXT"); glDrawElementsInstanced = (PFNGLDRAWELEMENTSINSTANCEDEXTPROC)((glLoadProc)loader)("glDrawElementsInstancedEXT"); glVertexAttribDivisor = (PFNGLVERTEXATTRIBDIVISOREXTPROC)((glLoadProc)loader)("glVertexAttribDivisorEXT"); if ((glDrawArraysInstanced != NULL) && (glDrawElementsInstanced != NULL) && (glVertexAttribDivisor != NULL)) GLOBAL_DATA.ExtSupported.instancing = true; } } // Check NPOT textures support // NOTE: Only check on OpenGL ES, OpenGL 3.3 has NPOT textures full support as core feature if (strcmp(extList[i], (const char *)"GL_OES_texture_npot") == 0) GLOBAL_DATA.ExtSupported.texNPOT = true; // Check texture float support if (strcmp(extList[i], (const char *)"GL_OES_texture_float") == 0) GLOBAL_DATA.ExtSupported.texFloat32 = true; if (strcmp(extList[i], (const char *)"GL_OES_texture_half_float") == 0) GLOBAL_DATA.ExtSupported.texFloat16 = true; // Check depth texture support if (strcmp(extList[i], (const char *)"GL_OES_depth_texture") == 0) GLOBAL_DATA.ExtSupported.texDepth = true; if (strcmp(extList[i], (const char *)"GL_WEBGL_depth_texture") == 0) GLOBAL_DATA.ExtSupported.texDepthWebGL = true; // WebGL requires unsized internal format if (GLOBAL_DATA.ExtSupported.texDepthWebGL) GLOBAL_DATA.ExtSupported.texDepth = true; if (strcmp(extList[i], (const char *)"GL_OES_depth24") == 0) GLOBAL_DATA.ExtSupported.maxDepthBits = 24; // Not available on WebGL if (strcmp(extList[i], (const char *)"GL_OES_depth32") == 0) GLOBAL_DATA.ExtSupported.maxDepthBits = 32; // Not available on WebGL // Check texture compression support: DXT if ((strcmp(extList[i], (const char *)"GL_EXT_texture_compression_s3tc") == 0) || (strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_s3tc") == 0) || (strcmp(extList[i], (const char *)"GL_WEBKIT_WEBGL_compressed_texture_s3tc") == 0)) GLOBAL_DATA.ExtSupported.texCompDXT = true; // Check texture compression support: ETC1 if ((strcmp(extList[i], (const char *)"GL_OES_compressed_ETC1_RGB8_texture") == 0) || (strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_etc1") == 0)) GLOBAL_DATA.ExtSupported.texCompETC1 = true; // Check texture compression support: ETC2/EAC if (strcmp(extList[i], (const char *)"GL_ARB_ES3_compatibility") == 0) GLOBAL_DATA.ExtSupported.texCompETC2 = true; // Check texture compression support: PVR if (strcmp(extList[i], (const char *)"GL_IMG_texture_compression_pvrtc") == 0) GLOBAL_DATA.ExtSupported.texCompPVRT = true; // Check texture compression support: ASTC if (strcmp(extList[i], (const char *)"GL_KHR_texture_compression_astc_hdr") == 0) GLOBAL_DATA.ExtSupported.texCompASTC = true; // Check anisotropic texture filter support if (strcmp(extList[i], (const char *)"GL_EXT_texture_filter_anisotropic") == 0) GLOBAL_DATA.ExtSupported.texAnisoFilter = true; // Check clamp mirror wrap mode support if (strcmp(extList[i], (const char *)"GL_EXT_texture_mirror_clamp") == 0) GLOBAL_DATA.ExtSupported.texMirrorClamp = true; } // Free extensions pointers RL_FREE(extList); RL_FREE(extensionsDup); // Duplicated string must be deallocated #endif // GRAPHICS_API_OPENGL_ES2 // Check OpenGL information and capabilities //------------------------------------------------------------------------------ // Show current OpenGL and GLSL version RL_TRACELOG(LOG_INFO, "GL: OpenGL device information:"); RL_TRACELOG(LOG_INFO, " > Vendor: %s", glGetString(GL_VENDOR)); RL_TRACELOG(LOG_INFO, " > Renderer: %s", glGetString(GL_RENDERER)); RL_TRACELOG(LOG_INFO, " > Version: %s", glGetString(GL_VERSION)); RL_TRACELOG(LOG_INFO, " > GLSL: %s", glGetString(GL_SHADING_LANGUAGE_VERSION)); #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: Anisotropy levels capability is an extension #ifndef GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT #define GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF #endif glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &GLOBAL_DATA.ExtSupported.maxAnisotropyLevel); #if defined(RLGL_SHOW_GL_DETAILS_INFO) // Show some OpenGL GPU capabilities RL_TRACELOG(LOG_INFO, "GL: OpenGL capabilities:"); GLint capability = 0; glGetIntegerv(GL_MAX_TEXTURE_SIZE, &capability); RL_TRACELOG(LOG_INFO, " GL_MAX_TEXTURE_SIZE: %i", capability); glGetIntegerv(GL_MAX_CUBE_MAP_TEXTURE_SIZE, &capability); RL_TRACELOG(LOG_INFO, " GL_MAX_CUBE_MAP_TEXTURE_SIZE: %i", capability); glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &capability); RL_TRACELOG(LOG_INFO, " GL_MAX_TEXTURE_IMAGE_UNITS: %i", capability); glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &capability); RL_TRACELOG(LOG_INFO, " GL_MAX_VERTEX_ATTRIBS: %i", capability); #if !defined(GRAPHICS_API_OPENGL_ES2) glGetIntegerv(GL_MAX_UNIFORM_BLOCK_SIZE, &capability); RL_TRACELOG(LOG_INFO, " GL_MAX_UNIFORM_BLOCK_SIZE: %i", capability); glGetIntegerv(GL_MAX_DRAW_BUFFERS, &capability); RL_TRACELOG(LOG_INFO, " GL_MAX_DRAW_BUFFERS: %i", capability); if (GLOBAL_DATA.ExtSupported.texAnisoFilter) RL_TRACELOG(LOG_INFO, " GL_MAX_TEXTURE_MAX_ANISOTROPY: %.0f", GLOBAL_DATA.ExtSupported.maxAnisotropyLevel); #endif glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &capability); RL_TRACELOG(LOG_INFO, " GL_NUM_COMPRESSED_TEXTURE_FORMATS: %i", capability); GLint *compFormats = (GLint *)RL_CALLOC(capability, sizeof(GLint)); glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, compFormats); for (int i = 0; i < capability; i++) RL_TRACELOG(LOG_INFO, " %s", GetCompressedFormatName(compFormats[i])); RL_FREE(compFormats); #if defined(GRAPHICS_API_OPENGL_43) glGetIntegerv(GL_MAX_VERTEX_ATTRIB_BINDINGS, &capability); RL_TRACELOG(LOG_INFO, " GL_MAX_VERTEX_ATTRIB_BINDINGS: %i", capability); glGetIntegerv(GL_MAX_UNIFORM_LOCATIONS, &capability); RL_TRACELOG(LOG_INFO, " GL_MAX_UNIFORM_LOCATIONS: %i", capability); #endif // GRAPHICS_API_OPENGL_43 #else // RLGL_SHOW_GL_DETAILS_INFO // Show some basic info about GL supported features if (GLOBAL_DATA.ExtSupported.vao) RL_TRACELOG(LOG_INFO, "GL: VAO extension detected, VAO functions loaded successfully"); else RL_TRACELOG(LOG_WARNING, "GL: VAO extension not found, VAO not supported"); if (GLOBAL_DATA.ExtSupported.texNPOT) RL_TRACELOG(LOG_INFO, "GL: NPOT textures extension detected, full NPOT textures supported"); else RL_TRACELOG(LOG_WARNING, "GL: NPOT textures extension not found, limited NPOT support (no-mipmaps, no-repeat)"); if (GLOBAL_DATA.ExtSupported.texCompDXT) RL_TRACELOG(LOG_INFO, "GL: DXT compressed textures supported"); if (GLOBAL_DATA.ExtSupported.texCompETC1) RL_TRACELOG(LOG_INFO, "GL: ETC1 compressed textures supported"); if (GLOBAL_DATA.ExtSupported.texCompETC2) RL_TRACELOG(LOG_INFO, "GL: ETC2/EAC compressed textures supported"); if (GLOBAL_DATA.ExtSupported.texCompPVRT) RL_TRACELOG(LOG_INFO, "GL: PVRT compressed textures supported"); if (GLOBAL_DATA.ExtSupported.texCompASTC) RL_TRACELOG(LOG_INFO, "GL: ASTC compressed textures supported"); if (GLOBAL_DATA.ExtSupported.computeShader) RL_TRACELOG(LOG_INFO, "GL: Compute shaders supported"); if (GLOBAL_DATA.ExtSupported.ssbo) RL_TRACELOG(LOG_INFO, "GL: Shader storage buffer objects supported"); #endif // RLGL_SHOW_GL_DETAILS_INFO #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 } // Get current OpenGL version int get_version(void) { int glVersion = 0; #if defined(GRAPHICS_API_OPENGL_11) glVersion = RL_OPENGL_11; #endif #if defined(GRAPHICS_API_OPENGL_21) glVersion = RL_OPENGL_21; #elif defined(GRAPHICS_API_OPENGL_43) glVersion = RL_OPENGL_43; #elif defined(GRAPHICS_API_OPENGL_33) glVersion = RL_OPENGL_33; #endif #if defined(GRAPHICS_API_OPENGL_ES3) glVersion = RL_OPENGL_ES_30; #elif defined(GRAPHICS_API_OPENGL_ES2) glVersion = RL_OPENGL_ES_20; #endif return glVersion; } // Set current framebuffer width void set_framebuffer_width(int width) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) GLOBAL_DATA.State.framebufferWidth = width; #endif } // Set current framebuffer height void set_framebuffer_height(int height) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) GLOBAL_DATA.State.framebufferHeight = height; #endif } // Get default framebuffer width int get_framebuffer_width(void) { int width = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) width = GLOBAL_DATA.State.framebufferWidth; #endif return width; } // Get default framebuffer height int get_framebuffer_height(void) { int height = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) height = GLOBAL_DATA.State.framebufferHeight; #endif return height; } // Get default internal texture (white texture) // NOTE: Default texture is a 1x1 pixel UNCOMPRESSED_R8G8B8A8 unsigned int get_texture_id_default(void) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) id = GLOBAL_DATA.State.defaultTextureId; #endif return id; } // Get default shader id unsigned int get_shader_id_default(void) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) id = GLOBAL_DATA.State.defaultShaderId; #endif return id; } // Get default shader locs int *get_shader_locs_default(void) { int *locs = NULL; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) locs = GLOBAL_DATA.State.defaultShaderLocs; #endif return locs; } // Render batch management //------------------------------------------------------------------------------------------------ // Load render batch render_batch load_render_batch(int numBuffers, int bufferElements) { render_batch batch = { 0 }; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Initialize CPU (RAM) vertex buffers (position, texcoord, color data and indexes) //-------------------------------------------------------------------------------------------- batch.vertexBuffer = (vertex_buffer *)RL_MALLOC(numBuffers*sizeof(vertex_buffer)); for (int i = 0; i < numBuffers; i++) { batch.vertexBuffer[i].elementCount = bufferElements; batch.vertexBuffer[i].vertices = (float *)RL_MALLOC(bufferElements*3*4*sizeof(float)); // 3 float by vertex, 4 vertex by quad batch.vertexBuffer[i].texcoords = (float *)RL_MALLOC(bufferElements*2*4*sizeof(float)); // 2 float by texcoord, 4 texcoord by quad batch.vertexBuffer[i].colors = (unsigned char *)RL_MALLOC(bufferElements*4*4*sizeof(unsigned char)); // 4 float by color, 4 colors by quad #if defined(GRAPHICS_API_OPENGL_33) batch.vertexBuffer[i].indices = (unsigned int *)RL_MALLOC(bufferElements*6*sizeof(unsigned int)); // 6 int by quad (indices) #endif #if defined(GRAPHICS_API_OPENGL_ES2) batch.vertexBuffer[i].indices = (unsigned short *)RL_MALLOC(bufferElements*6*sizeof(unsigned short)); // 6 int by quad (indices) #endif for (int j = 0; j < (3*4*bufferElements); j++) batch.vertexBuffer[i].vertices[j] = 0.0f; for (int j = 0; j < (2*4*bufferElements); j++) batch.vertexBuffer[i].texcoords[j] = 0.0f; for (int j = 0; j < (4*4*bufferElements); j++) batch.vertexBuffer[i].colors[j] = 0; int k = 0; // Indices can be initialized right now for (int j = 0; j < (6*bufferElements); j += 6) { batch.vertexBuffer[i].indices[j] = 4*k; batch.vertexBuffer[i].indices[j + 1] = 4*k + 1; batch.vertexBuffer[i].indices[j + 2] = 4*k + 2; batch.vertexBuffer[i].indices[j + 3] = 4*k; batch.vertexBuffer[i].indices[j + 4] = 4*k + 2; batch.vertexBuffer[i].indices[j + 5] = 4*k + 3; k++; } GLOBAL_DATA.State.vertexCounter = 0; } RL_TRACELOG(LOG_INFO, "GLOBAL_DATA: Render batch vertex buffers loaded successfully in RAM (CPU)"); //-------------------------------------------------------------------------------------------- // Upload to GPU (VRAM) vertex data and initialize VAOs/VBOs //-------------------------------------------------------------------------------------------- for (int i = 0; i < numBuffers; i++) { if (GLOBAL_DATA.ExtSupported.vao) { // Initialize Quads VAO glGenVertexArrays(1, &batch.vertexBuffer[i].vaoId); glBindVertexArray(batch.vertexBuffer[i].vaoId); } // Quads - Vertex buffers binding and attributes enable // Vertex position buffer (shader-location = 0) glGenBuffers(1, &batch.vertexBuffer[i].vboId[0]); glBindBuffer(GL_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[0]); glBufferData(GL_ARRAY_BUFFER, bufferElements*3*4*sizeof(float), batch.vertexBuffer[i].vertices, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_POSITION]); glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0); // Vertex texcoord buffer (shader-location = 1) glGenBuffers(1, &batch.vertexBuffer[i].vboId[1]); glBindBuffer(GL_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[1]); glBufferData(GL_ARRAY_BUFFER, bufferElements*2*4*sizeof(float), batch.vertexBuffer[i].texcoords, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_TEXCOORD01]); glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0); // Vertex color buffer (shader-location = 3) glGenBuffers(1, &batch.vertexBuffer[i].vboId[2]); glBindBuffer(GL_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[2]); glBufferData(GL_ARRAY_BUFFER, bufferElements*4*4*sizeof(unsigned char), batch.vertexBuffer[i].colors, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_COLOR]); glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); // Fill index buffer glGenBuffers(1, &batch.vertexBuffer[i].vboId[3]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, batch.vertexBuffer[i].vboId[3]); #if defined(GRAPHICS_API_OPENGL_33) glBufferData(GL_ELEMENT_ARRAY_BUFFER, bufferElements*6*sizeof(int), batch.vertexBuffer[i].indices, GL_STATIC_DRAW); #endif #if defined(GRAPHICS_API_OPENGL_ES2) glBufferData(GL_ELEMENT_ARRAY_BUFFER, bufferElements*6*sizeof(short), batch.vertexBuffer[i].indices, GL_STATIC_DRAW); #endif } RL_TRACELOG(LOG_INFO, "GLOBAL_DATA: Render batch vertex buffers loaded successfully in VRAM (GPU)"); // Unbind the current VAO if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(0); //-------------------------------------------------------------------------------------------- // Init draw calls tracking system //-------------------------------------------------------------------------------------------- batch.draws = (draw_call *)RL_MALLOC(RL_DEFAULT_BATCH_DRAWCALLS*sizeof(draw_call)); for (int i = 0; i < RL_DEFAULT_BATCH_DRAWCALLS; i++) { batch.draws[i].mode = RL_QUADS; batch.draws[i].vertexCount = 0; batch.draws[i].vertexAlignment = 0; //batch.draws[i].vaoId = 0; //batch.draws[i].shaderId = 0; batch.draws[i].textureId = GLOBAL_DATA.State.defaultTextureId; //batch.draws[i].GLOBAL_DATA.State.projection = internal_matrix_identity(); //batch.draws[i].GLOBAL_DATA.State.modelview = internal_matrix_identity(); } batch.bufferCount = numBuffers; // Record buffer count batch.drawCounter = 1; // Reset draws counter batch.currentDepth = -1.0f; // Reset depth value //-------------------------------------------------------------------------------------------- #endif return batch; } // Unload default internal buffers vertex data from CPU and GPU void unload_render_batch(render_batch batch) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Unbind everything glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); // Unload all vertex buffers data for (int i = 0; i < batch.bufferCount; i++) { // Unbind VAO attribs data if (GLOBAL_DATA.ExtSupported.vao) { glBindVertexArray(batch.vertexBuffer[i].vaoId); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); glDisableVertexAttribArray(2); glDisableVertexAttribArray(3); glBindVertexArray(0); } // Delete VBOs from GPU (VRAM) glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[0]); glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[1]); glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[2]); glDeleteBuffers(1, &batch.vertexBuffer[i].vboId[3]); // Delete VAOs from GPU (VRAM) if (GLOBAL_DATA.ExtSupported.vao) glDeleteVertexArrays(1, &batch.vertexBuffer[i].vaoId); // Free vertex arrays memory from CPU (RAM) RL_FREE(batch.vertexBuffer[i].vertices); RL_FREE(batch.vertexBuffer[i].texcoords); RL_FREE(batch.vertexBuffer[i].colors); RL_FREE(batch.vertexBuffer[i].indices); } // Unload arrays RL_FREE(batch.vertexBuffer); RL_FREE(batch.draws); #endif } // Draw render batch // NOTE: We require a pointer to reset batch and increase current buffer (multi-buffer) void draw_render_batch(render_batch *batch) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Update batch vertex buffers //------------------------------------------------------------------------------------------------------------ // NOTE: If there is not vertex data, buffers doesn't need to be updated (vertexCount > 0) // TODO: If no data changed on the CPU arrays --> No need to re-update GPU arrays (use a change detector flag?) if (GLOBAL_DATA.State.vertexCounter > 0) { // Activate elements VAO if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(batch->vertexBuffer[batch->currentBuffer].vaoId); // Vertex positions buffer glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[0]); glBufferSubData(GL_ARRAY_BUFFER, 0, GLOBAL_DATA.State.vertexCounter*3*sizeof(float), batch->vertexBuffer[batch->currentBuffer].vertices); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*batch->vertexBuffer[batch->currentBuffer].elementCount, batch->vertexBuffer[batch->currentBuffer].vertices, GL_DYNAMIC_DRAW); // Update all buffer // Texture coordinates buffer glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[1]); glBufferSubData(GL_ARRAY_BUFFER, 0, GLOBAL_DATA.State.vertexCounter*2*sizeof(float), batch->vertexBuffer[batch->currentBuffer].texcoords); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*batch->vertexBuffer[batch->currentBuffer].elementCount, batch->vertexBuffer[batch->currentBuffer].texcoords, GL_DYNAMIC_DRAW); // Update all buffer // Colors buffer glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[2]); glBufferSubData(GL_ARRAY_BUFFER, 0, GLOBAL_DATA.State.vertexCounter*4*sizeof(unsigned char), batch->vertexBuffer[batch->currentBuffer].colors); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*4*batch->vertexBuffer[batch->currentBuffer].elementCount, batch->vertexBuffer[batch->currentBuffer].colors, GL_DYNAMIC_DRAW); // Update all buffer // NOTE: glMapBuffer() causes sync issue. // If GPU is working with this buffer, glMapBuffer() will wait(stall) until GPU to finish its job. // To avoid waiting (idle), you can call first glBufferData() with NULL pointer before glMapBuffer(). // If you do that, the previous data in PBO will be discarded and glMapBuffer() returns a new // allocated pointer immediately even if GPU is still working with the previous data. // Another option: map the buffer object into client's memory // Probably this code could be moved somewhere else... // batch->vertexBuffer[batch->currentBuffer].vertices = (float *)glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE); // if (batch->vertexBuffer[batch->currentBuffer].vertices) // { // Update vertex data // } // glUnmapBuffer(GL_ARRAY_BUFFER); // Unbind the current VAO if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(0); } //------------------------------------------------------------------------------------------------------------ // Draw batch vertex buffers (considering VR stereo if required) //------------------------------------------------------------------------------------------------------------ Matrix matProjection = GLOBAL_DATA.State.projection; Matrix matModelView = GLOBAL_DATA.State.modelview; int eyeCount = 1; if (GLOBAL_DATA.State.stereoRender) eyeCount = 2; for (int eye = 0; eye < eyeCount; eye++) { if (eyeCount == 2) { // Setup current eye viewport (half screen width) viewport(eye*GLOBAL_DATA.State.framebufferWidth/2, 0, GLOBAL_DATA.State.framebufferWidth/2, GLOBAL_DATA.State.framebufferHeight); // Set current eye view offset to modelview matrix set_matrix_modelview(internal_matrix_multiply(matModelView, GLOBAL_DATA.State.viewOffsetStereo[eye])); // Set current eye projection matrix set_matrix_projection(GLOBAL_DATA.State.projectionStereo[eye]); } // Draw buffers if (GLOBAL_DATA.State.vertexCounter > 0) { // Set current shader and upload current MVP matrix glUseProgram(GLOBAL_DATA.State.currentShaderId); // Create modelview-projection matrix and upload to shader Matrix matMVP = internal_matrix_multiply(GLOBAL_DATA.State.modelview, GLOBAL_DATA.State.projection); float matMVPfloat[16] = { matMVP.m0, matMVP.m1, matMVP.m2, matMVP.m3, matMVP.m4, matMVP.m5, matMVP.m6, matMVP.m7, matMVP.m8, matMVP.m9, matMVP.m10, matMVP.m11, matMVP.m12, matMVP.m13, matMVP.m14, matMVP.m15 }; glUniformMatrix4fv(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_MATRIX_MVP], 1, false, matMVPfloat); if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(batch->vertexBuffer[batch->currentBuffer].vaoId); else { // Bind vertex attrib: position (shader-location = 0) glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[0]); glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_POSITION]); // Bind vertex attrib: texcoord (shader-location = 1) glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[1]); glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_TEXCOORD01]); // Bind vertex attrib: color (shader-location = 3) glBindBuffer(GL_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[2]); glVertexAttribPointer(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_VERTEX_COLOR]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, batch->vertexBuffer[batch->currentBuffer].vboId[3]); } // Setup some default shader values glUniform4f(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_COLOR_DIFFUSE], 1.0f, 1.0f, 1.0f, 1.0f); glUniform1i(GLOBAL_DATA.State.currentShaderLocs[SHADER_LOC_MAP_DIFFUSE], 0); // Active default sampler2D: texture0 // Activate additional sampler textures // Those additional textures will be common for all draw calls of the batch for (int i = 0; i < RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS; i++) { if (GLOBAL_DATA.State.activeTextureId[i] > 0) { glActiveTexture(GL_TEXTURE0 + 1 + i); glBindTexture(GL_TEXTURE_2D, GLOBAL_DATA.State.activeTextureId[i]); } } // Activate default sampler2D texture0 (one texture is always active for default batch shader) // NOTE: Batch system accumulates calls by texture0 changes, additional textures are enabled for all the draw calls glActiveTexture(GL_TEXTURE0); for (int i = 0, vertexOffset = 0; i < batch->drawCounter; i++) { // Bind current draw call texture, activated as GL_TEXTURE0 and Bound to sampler2D texture0 by default glBindTexture(GL_TEXTURE_2D, batch->draws[i].textureId); if ((batch->draws[i].mode == RL_LINES) || (batch->draws[i].mode == RL_TRIANGLES)) glDrawArrays(batch->draws[i].mode, vertexOffset, batch->draws[i].vertexCount); else { #if defined(GRAPHICS_API_OPENGL_33) // We need to define the number of indices to be processed: elementCount*6 // NOTE: The final parameter tells the GPU the offset in bytes from the // start of the index buffer to the location of the first index to process glDrawElements(GL_TRIANGLES, batch->draws[i].vertexCount/4*6, GL_UNSIGNED_INT, (GLvoid *)(vertexOffset/4*6*sizeof(GLuint))); #endif #if defined(GRAPHICS_API_OPENGL_ES2) glDrawElements(GL_TRIANGLES, batch->draws[i].vertexCount/4*6, GL_UNSIGNED_SHORT, (GLvoid *)(vertexOffset/4*6*sizeof(GLushort))); #endif } vertexOffset += (batch->draws[i].vertexCount + batch->draws[i].vertexAlignment); } if (!GLOBAL_DATA.ExtSupported.vao) { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures } if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(0); // Unbind VAO glUseProgram(0); // Unbind shader program } // Restore viewport to default measures if (eyeCount == 2) viewport(0, 0, GLOBAL_DATA.State.framebufferWidth, GLOBAL_DATA.State.framebufferHeight); //------------------------------------------------------------------------------------------------------------ // Reset batch buffers //------------------------------------------------------------------------------------------------------------ // Reset vertex counter for next frame GLOBAL_DATA.State.vertexCounter = 0; // Reset depth for next draw batch->currentDepth = -1.0f; // Restore projection/modelview matrices GLOBAL_DATA.State.projection = matProjection; GLOBAL_DATA.State.modelview = matModelView; // Reset GLOBAL_DATA.currentBatch->draws array for (int i = 0; i < RL_DEFAULT_BATCH_DRAWCALLS; i++) { batch->draws[i].mode = RL_QUADS; batch->draws[i].vertexCount = 0; batch->draws[i].textureId = GLOBAL_DATA.State.defaultTextureId; } // Reset active texture units for next batch for (int i = 0; i < RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS; i++) GLOBAL_DATA.State.activeTextureId[i] = 0; // Reset draws counter to one draw for the batch batch->drawCounter = 1; //------------------------------------------------------------------------------------------------------------ // Change to next buffer in the list (in case of multi-buffering) batch->currentBuffer++; if (batch->currentBuffer >= batch->bufferCount) batch->currentBuffer = 0; #endif } // Set the active render batch for rlgl void set_render_batch_active(render_batch *batch) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) draw_render_batch(GLOBAL_DATA.currentBatch); if (batch != NULL) GLOBAL_DATA.currentBatch = batch; else GLOBAL_DATA.currentBatch = &GLOBAL_DATA.defaultBatch; #endif } // Update and draw internal render batch void draw_render_batch_active(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) draw_render_batch(GLOBAL_DATA.currentBatch); // NOTE: Stereo rendering is checked inside #endif } // Check internal buffer overflow for a given number of vertex // and force a render_batch draw call if required bool check_render_batch_limit(int vCount) { bool overflow = false; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((GLOBAL_DATA.State.vertexCounter + vCount) >= (GLOBAL_DATA.currentBatch->vertexBuffer[GLOBAL_DATA.currentBatch->currentBuffer].elementCount*4)) { overflow = true; // Store current primitive drawing mode and texture id int currentMode = GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode; int currentTexture = GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].textureId; draw_render_batch(GLOBAL_DATA.currentBatch); // NOTE: Stereo rendering is checked inside // Restore state of last batch so we can continue adding vertices GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].mode = currentMode; GLOBAL_DATA.currentBatch->draws[GLOBAL_DATA.currentBatch->drawCounter - 1].textureId = currentTexture; } #endif return overflow; } // Textures data management //----------------------------------------------------------------------------------------- // Convert image data to OpenGL texture (returns OpenGL valid Id) unsigned int load_texture(const void *data, int width, int height, int format, int mipmapCount) { unsigned int id = 0; glBindTexture(GL_TEXTURE_2D, 0); // Free any old binding // Check texture format support by OpenGL 1.1 (compressed textures not supported) #if defined(GRAPHICS_API_OPENGL_11) if (format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) { RL_TRACELOG(LOG_WARNING, "GL: OpenGL 1.1 does not support GPU compressed texture formats"); return id; } #else if ((!GLOBAL_DATA.ExtSupported.texCompDXT) && ((format == PIXELFORMAT_COMPRESSED_DXT1_RGB) || (format == PIXELFORMAT_COMPRESSED_DXT1_RGBA) || (format == PIXELFORMAT_COMPRESSED_DXT3_RGBA) || (format == PIXELFORMAT_COMPRESSED_DXT5_RGBA))) { RL_TRACELOG(LOG_WARNING, "GL: DXT compressed texture format not supported"); return id; } #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((!GLOBAL_DATA.ExtSupported.texCompETC1) && (format == PIXELFORMAT_COMPRESSED_ETC1_RGB)) { RL_TRACELOG(LOG_WARNING, "GL: ETC1 compressed texture format not supported"); return id; } if ((!GLOBAL_DATA.ExtSupported.texCompETC2) && ((format == PIXELFORMAT_COMPRESSED_ETC2_RGB) || (format == PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA))) { RL_TRACELOG(LOG_WARNING, "GL: ETC2 compressed texture format not supported"); return id; } if ((!GLOBAL_DATA.ExtSupported.texCompPVRT) && ((format == PIXELFORMAT_COMPRESSED_PVRT_RGB) || (format == PIXELFORMAT_COMPRESSED_PVRT_RGBA))) { RL_TRACELOG(LOG_WARNING, "GL: PVRT compressed texture format not supported"); return id; } if ((!GLOBAL_DATA.ExtSupported.texCompASTC) && ((format == PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA) || (format == PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA))) { RL_TRACELOG(LOG_WARNING, "GL: ASTC compressed texture format not supported"); return id; } #endif #endif // GRAPHICS_API_OPENGL_11 glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glGenTextures(1, &id); // Generate texture id glBindTexture(GL_TEXTURE_2D, id); int mipWidth = width; int mipHeight = height; int mipOffset = 0; // Mipmap data offset, only used for tracelog // NOTE: Added pointer math separately from function to avoid UBSAN complaining unsigned char *dataPtr = NULL; if (data != NULL) dataPtr = (unsigned char *)data; // Load the different mipmap levels for (int i = 0; i < mipmapCount; i++) { unsigned int mipSize = internal_get_pixel_data_size(mipWidth, mipHeight, format); unsigned int glInternalFormat, glFormat, glType; get_gl_texture_formats(format, &glInternalFormat, &glFormat, &glType); TRACELOGD("TEXTURE: Load mipmap level %i (%i x %i), size: %i, offset: %i", i, mipWidth, mipHeight, mipSize, mipOffset); if (glInternalFormat != 0) { if (format < PIXELFORMAT_COMPRESSED_DXT1_RGB) glTexImage2D(GL_TEXTURE_2D, i, glInternalFormat, mipWidth, mipHeight, 0, glFormat, glType, dataPtr); #if !defined(GRAPHICS_API_OPENGL_11) else glCompressedTexImage2D(GL_TEXTURE_2D, i, glInternalFormat, mipWidth, mipHeight, 0, mipSize, dataPtr); #endif #if defined(GRAPHICS_API_OPENGL_33) if (format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) { GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ONE }; glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } else if (format == PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA) { #if defined(GRAPHICS_API_OPENGL_21) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ALPHA }; #elif defined(GRAPHICS_API_OPENGL_33) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_GREEN }; #endif glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } #endif } mipWidth /= 2; mipHeight /= 2; mipOffset += mipSize; // Increment offset position to next mipmap if (data != NULL) dataPtr += mipSize; // Increment data pointer to next mipmap // Security check for NPOT textures if (mipWidth < 1) mipWidth = 1; if (mipHeight < 1) mipHeight = 1; } // Texture parameters configuration // NOTE: glTexParameteri does NOT affect texture uploading, just the way it's used #if defined(GRAPHICS_API_OPENGL_ES2) // NOTE: OpenGL ES 2.0 with no GL_OES_texture_npot support (i.e. WebGL) has limited NPOT support, so CLAMP_TO_EDGE must be used if (GLOBAL_DATA.ExtSupported.texNPOT) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis } else { // NOTE: If using negative texture coordinates (LoadOBJ()), it does not work! glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // Set texture to clamp on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // Set texture to clamp on y-axis } #else glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis #endif // Magnification and minification filters glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Alternative: GL_LINEAR glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Alternative: GL_LINEAR #if defined(GRAPHICS_API_OPENGL_33) if (mipmapCount > 1) { // Activate Trilinear filtering if mipmaps are available glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); } #endif // At this point we have the texture loaded in GPU and texture parameters configured // NOTE: If mipmaps were not in data, they are not generated automatically // Unbind current texture glBindTexture(GL_TEXTURE_2D, 0); if (id > 0) RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Texture loaded successfully (%ix%i | %s | %i mipmaps)", id, width, height, get_pixel_format_name(format), mipmapCount); else RL_TRACELOG(LOG_WARNING, "TEXTURE: Failed to load texture"); return id; } // Load depth texture/renderbuffer (to be attached to fbo) // WARNING: OpenGL ES 2.0 requires GL_OES_depth_texture and WebGL requires WEBGL_depth_texture extensions unsigned int load_texture_depth(int width, int height, bool useRenderBuffer) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // In case depth textures not supported, we force renderbuffer usage if (!GLOBAL_DATA.ExtSupported.texDepth) useRenderBuffer = true; // NOTE: We let the implementation to choose the best bit-depth // Possible formats: GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32 and GL_DEPTH_COMPONENT32F unsigned int glInternalFormat = GL_DEPTH_COMPONENT; #if (defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_ES3)) // WARNING: WebGL platform requires unsized internal format definition (GL_DEPTH_COMPONENT) // while other platforms using OpenGL ES 2.0 require/support sized internal formats depending on the GPU capabilities if (!GLOBAL_DATA.ExtSupported.texDepthWebGL || useRenderBuffer) { if (GLOBAL_DATA.ExtSupported.maxDepthBits == 32) glInternalFormat = GL_DEPTH_COMPONENT32_OES; else if (GLOBAL_DATA.ExtSupported.maxDepthBits == 24) glInternalFormat = GL_DEPTH_COMPONENT24_OES; else glInternalFormat = GL_DEPTH_COMPONENT16; } #endif if (!useRenderBuffer && GLOBAL_DATA.ExtSupported.texDepth) { glGenTextures(1, &id); glBindTexture(GL_TEXTURE_2D, id); glTexImage2D(GL_TEXTURE_2D, 0, glInternalFormat, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, 0); RL_TRACELOG(LOG_INFO, "TEXTURE: Depth texture loaded successfully"); } else { // Create the renderbuffer that will serve as the depth attachment for the framebuffer // NOTE: A renderbuffer is simpler than a texture and could offer better performance on embedded devices glGenRenderbuffers(1, &id); glBindRenderbuffer(GL_RENDERBUFFER, id); glRenderbufferStorage(GL_RENDERBUFFER, glInternalFormat, width, height); glBindRenderbuffer(GL_RENDERBUFFER, 0); RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Depth renderbuffer loaded successfully (%i bits)", id, (GLOBAL_DATA.ExtSupported.maxDepthBits >= 24)? GLOBAL_DATA.ExtSupported.maxDepthBits : 16); } #endif return id; } // Load texture cubemap // NOTE: Cubemap data is expected to be 6 images in a single data array (one after the other), // expected the following convention: +X, -X, +Y, -Y, +Z, -Z unsigned int load_texture_cubemap(const void *data, int size, int format) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unsigned int dataSize = internal_get_pixel_data_size(size, size, format); glGenTextures(1, &id); glBindTexture(GL_TEXTURE_CUBE_MAP, id); unsigned int glInternalFormat, glFormat, glType; get_gl_texture_formats(format, &glInternalFormat, &glFormat, &glType); if (glInternalFormat != 0) { // Load cubemap faces for (unsigned int i = 0; i < 6; i++) { if (data == NULL) { if (format < PIXELFORMAT_COMPRESSED_DXT1_RGB) { if ((format == PIXELFORMAT_UNCOMPRESSED_R32) || (format == PIXELFORMAT_UNCOMPRESSED_R32G32B32A32) || (format == PIXELFORMAT_UNCOMPRESSED_R16) || (format == PIXELFORMAT_UNCOMPRESSED_R16G16B16A16)) RL_TRACELOG(LOG_WARNING, "TEXTURES: Cubemap requested format not supported"); else glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, size, size, 0, glFormat, glType, NULL); } else RL_TRACELOG(LOG_WARNING, "TEXTURES: Empty cubemap creation does not support compressed format"); } else { if (format < PIXELFORMAT_COMPRESSED_DXT1_RGB) glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, size, size, 0, glFormat, glType, (unsigned char *)data + i*dataSize); else glCompressedTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, size, size, 0, dataSize, (unsigned char *)data + i*dataSize); } #if defined(GRAPHICS_API_OPENGL_33) if (format == PIXELFORMAT_UNCOMPRESSED_GRAYSCALE) { GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ONE }; glTexParameteriv(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } else if (format == PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA) { #if defined(GRAPHICS_API_OPENGL_21) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ALPHA }; #elif defined(GRAPHICS_API_OPENGL_33) GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_GREEN }; #endif glTexParameteriv(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } #endif } } // Set cubemap texture sampling parameters glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); #if defined(GRAPHICS_API_OPENGL_33) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); // Flag not supported on OpenGL ES 2.0 #endif glBindTexture(GL_TEXTURE_CUBE_MAP, 0); #endif if (id > 0) RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Cubemap texture loaded successfully (%ix%i)", id, size, size); else RL_TRACELOG(LOG_WARNING, "TEXTURE: Failed to load cubemap texture"); return id; } // Update already loaded texture in GPU with new data // NOTE: We don't know safely if internal texture format is the expected one... void update_texture(unsigned int id, int offsetX, int offsetY, int width, int height, int format, const void *data) { glBindTexture(GL_TEXTURE_2D, id); unsigned int glInternalFormat, glFormat, glType; get_gl_texture_formats(format, &glInternalFormat, &glFormat, &glType); if ((glInternalFormat != 0) && (format < PIXELFORMAT_COMPRESSED_DXT1_RGB)) { glTexSubImage2D(GL_TEXTURE_2D, 0, offsetX, offsetY, width, height, glFormat, glType, data); } else RL_TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to update for current texture format (%i)", id, format); } // Get OpenGL internal formats and data type from raylib PixelFormat void get_gl_texture_formats(int format, unsigned int *glInternalFormat, unsigned int *glFormat, unsigned int *glType) { *glInternalFormat = 0; *glFormat = 0; *glType = 0; switch (format) { #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_21) || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: on OpenGL ES 2.0 (WebGL), internalFormat must match format and options allowed are: GL_LUMINANCE, GL_RGB, GL_RGBA case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: *glInternalFormat = GL_LUMINANCE_ALPHA; *glFormat = GL_LUMINANCE_ALPHA; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_R5G6B5: *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_UNSIGNED_SHORT_5_6_5; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8: *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_5_5_5_1; break; case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_4_4_4_4; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_BYTE; break; #if !defined(GRAPHICS_API_OPENGL_11) #if defined(GRAPHICS_API_OPENGL_ES3) case PIXELFORMAT_UNCOMPRESSED_R32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_R32F_EXT; *glFormat = GL_RED_EXT; *glType = GL_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R32G32B32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGB32F_EXT; *glFormat = GL_RGB; *glType = GL_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGBA32F_EXT; *glFormat = GL_RGBA; *glType = GL_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_R16F_EXT; *glFormat = GL_RED_EXT; *glType = GL_HALF_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R16G16B16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGB16F_EXT; *glFormat = GL_RGB; *glType = GL_HALF_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGBA16F_EXT; *glFormat = GL_RGBA; *glType = GL_HALF_FLOAT; break; #else case PIXELFORMAT_UNCOMPRESSED_R32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float case PIXELFORMAT_UNCOMPRESSED_R32G32B32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_FLOAT; break; // NOTE: Requires extension OES_texture_float #if defined(GRAPHICS_API_OPENGL_21) case PIXELFORMAT_UNCOMPRESSED_R16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_HALF_FLOAT_ARB; break; case PIXELFORMAT_UNCOMPRESSED_R16G16B16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_HALF_FLOAT_ARB; break; case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_HALF_FLOAT_ARB; break; #else // defined(GRAPHICS_API_OPENGL_ES2) case PIXELFORMAT_UNCOMPRESSED_R16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_LUMINANCE; *glFormat = GL_LUMINANCE; *glType = GL_HALF_FLOAT_OES; break; // NOTE: Requires extension OES_texture_half_float case PIXELFORMAT_UNCOMPRESSED_R16G16B16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGB; *glFormat = GL_RGB; *glType = GL_HALF_FLOAT_OES; break; // NOTE: Requires extension OES_texture_half_float case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGBA; *glFormat = GL_RGBA; *glType = GL_HALF_FLOAT_OES; break; // NOTE: Requires extension OES_texture_half_float #endif #endif #endif #elif defined(GRAPHICS_API_OPENGL_33) case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: *glInternalFormat = GL_R8; *glFormat = GL_RED; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: *glInternalFormat = GL_RG8; *glFormat = GL_RG; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_R5G6B5: *glInternalFormat = GL_RGB565; *glFormat = GL_RGB; *glType = GL_UNSIGNED_SHORT_5_6_5; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8: *glInternalFormat = GL_RGB8; *glFormat = GL_RGB; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1: *glInternalFormat = GL_RGB5_A1; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_5_5_5_1; break; case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: *glInternalFormat = GL_RGBA4; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_SHORT_4_4_4_4; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: *glInternalFormat = GL_RGBA8; *glFormat = GL_RGBA; *glType = GL_UNSIGNED_BYTE; break; case PIXELFORMAT_UNCOMPRESSED_R32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_R32F; *glFormat = GL_RED; *glType = GL_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R32G32B32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGB32F; *glFormat = GL_RGB; *glType = GL_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: if (GLOBAL_DATA.ExtSupported.texFloat32) *glInternalFormat = GL_RGBA32F; *glFormat = GL_RGBA; *glType = GL_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_R16F; *glFormat = GL_RED; *glType = GL_HALF_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R16G16B16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGB16F; *glFormat = GL_RGB; *glType = GL_HALF_FLOAT; break; case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: if (GLOBAL_DATA.ExtSupported.texFloat16) *glInternalFormat = GL_RGBA16F; *glFormat = GL_RGBA; *glType = GL_HALF_FLOAT; break; #endif #if !defined(GRAPHICS_API_OPENGL_11) case PIXELFORMAT_COMPRESSED_DXT1_RGB: if (GLOBAL_DATA.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; break; case PIXELFORMAT_COMPRESSED_DXT1_RGBA: if (GLOBAL_DATA.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; break; case PIXELFORMAT_COMPRESSED_DXT3_RGBA: if (GLOBAL_DATA.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break; case PIXELFORMAT_COMPRESSED_DXT5_RGBA: if (GLOBAL_DATA.ExtSupported.texCompDXT) *glInternalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break; case PIXELFORMAT_COMPRESSED_ETC1_RGB: if (GLOBAL_DATA.ExtSupported.texCompETC1) *glInternalFormat = GL_ETC1_RGB8_OES; break; // NOTE: Requires OpenGL ES 2.0 or OpenGL 4.3 case PIXELFORMAT_COMPRESSED_ETC2_RGB: if (GLOBAL_DATA.ExtSupported.texCompETC2) *glInternalFormat = GL_COMPRESSED_RGB8_ETC2; break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA: if (GLOBAL_DATA.ExtSupported.texCompETC2) *glInternalFormat = GL_COMPRESSED_RGBA8_ETC2_EAC; break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case PIXELFORMAT_COMPRESSED_PVRT_RGB: if (GLOBAL_DATA.ExtSupported.texCompPVRT) *glInternalFormat = GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG; break; // NOTE: Requires PowerVR GPU case PIXELFORMAT_COMPRESSED_PVRT_RGBA: if (GLOBAL_DATA.ExtSupported.texCompPVRT) *glInternalFormat = GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; break; // NOTE: Requires PowerVR GPU case PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA: if (GLOBAL_DATA.ExtSupported.texCompASTC) *glInternalFormat = GL_COMPRESSED_RGBA_ASTC_4x4_KHR; break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 case PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA: if (GLOBAL_DATA.ExtSupported.texCompASTC) *glInternalFormat = GL_COMPRESSED_RGBA_ASTC_8x8_KHR; break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 #endif default: RL_TRACELOG(LOG_WARNING, "TEXTURE: Current format not supported (%i)", format); break; } } // Unload texture from GPU memory void unload_texture(unsigned int id) { glDeleteTextures(1, &id); } // Generate mipmap data for selected texture // NOTE: Only supports GPU mipmap generation void gen_texture_mipmaps(unsigned int id, int width, int height, int format, int *mipmaps) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindTexture(GL_TEXTURE_2D, id); // Check if texture is power-of-two (POT) bool texIsPOT = false; if (((width > 0) && ((width & (width - 1)) == 0)) && ((height > 0) && ((height & (height - 1)) == 0))) texIsPOT = true; if ((texIsPOT) || (GLOBAL_DATA.ExtSupported.texNPOT)) { //glHint(GL_GENERATE_MIPMAP_HINT, GL_DONT_CARE); // Hint for mipmaps generation algorithm: GL_FASTEST, GL_NICEST, GL_DONT_CARE glGenerateMipmap(GL_TEXTURE_2D); // Generate mipmaps automatically #define MIN(a,b) (((a)<(b))? (a):(b)) #define MAX(a,b) (((a)>(b))? (a):(b)) *mipmaps = 1 + (int)floor(log(MAX(width, height))/log(2)); RL_TRACELOG(LOG_INFO, "TEXTURE: [ID %i] Mipmaps generated automatically, total: %i", id, *mipmaps); } else RL_TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Failed to generate mipmaps", id); glBindTexture(GL_TEXTURE_2D, 0); #else RL_TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] GPU mipmap generation not supported", id); #endif } // Read texture pixel data void *read_texture_pixels(unsigned int id, int width, int height, int format) { void *pixels = NULL; #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) glBindTexture(GL_TEXTURE_2D, id); // NOTE: Using texture id, we can retrieve some texture info (but not on OpenGL ES 2.0) // Possible texture info: GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE //int width, height, format; //glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, &width); //glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, &height); //glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_INTERNAL_FORMAT, &format); // NOTE: Each row written to or read from by OpenGL pixel operations like glGetTexImage are aligned to a 4 byte boundary by default, which may add some padding. // Use glPixelStorei to modify padding with the GL_[UN]PACK_ALIGNMENT setting. // GL_PACK_ALIGNMENT affects operations that read from OpenGL memory (glReadPixels, glGetTexImage, etc.) // GL_UNPACK_ALIGNMENT affects operations that write to OpenGL memory (glTexImage, etc.) glPixelStorei(GL_PACK_ALIGNMENT, 1); unsigned int glInternalFormat, glFormat, glType; get_gl_texture_formats(format, &glInternalFormat, &glFormat, &glType); unsigned int size = internal_get_pixel_data_size(width, height, format); if ((glInternalFormat != 0) && (format < PIXELFORMAT_COMPRESSED_DXT1_RGB)) { pixels = RL_MALLOC(size); glGetTexImage(GL_TEXTURE_2D, 0, glFormat, glType, pixels); } else RL_TRACELOG(LOG_WARNING, "TEXTURE: [ID %i] Data retrieval not suported for pixel format (%i)", id, format); glBindTexture(GL_TEXTURE_2D, 0); #endif #if defined(GRAPHICS_API_OPENGL_ES2) // glGetTexImage() is not available on OpenGL ES 2.0 // Texture width and height are required on OpenGL ES 2.0. There is no way to get it from texture id. // Two possible Options: // 1 - Bind texture to color fbo attachment and glReadPixels() // 2 - Create an fbo, activate it, render quad with texture, glReadPixels() // We are using Option 1, just need to care for texture format on retrieval // NOTE: This behaviour could be conditioned by graphic driver... unsigned int fboId = load_framebuffer(width, height); glBindFramebuffer(GL_FRAMEBUFFER, fboId); glBindTexture(GL_TEXTURE_2D, 0); // Attach our texture to FBO glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, id, 0); // We read data as RGBA because FBO texture is configured as RGBA, despite binding another texture format pixels = (unsigned char *)RL_MALLOC(internal_get_pixel_data_size(width, height, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8)); glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels); glBindFramebuffer(GL_FRAMEBUFFER, 0); // Clean up temporal fbo unload_framebuffer(fboId); #endif return pixels; } // Read screen pixel data (color buffer) unsigned char *read_screen_pixels(int width, int height) { unsigned char *screenData = (unsigned char *)RL_CALLOC(width*height*4, sizeof(unsigned char)); // NOTE 1: glReadPixels returns image flipped vertically -> (0,0) is the bottom left corner of the framebuffer // NOTE 2: We are getting alpha channel! Be careful, it can be transparent if not cleared properly! glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, screenData); // Flip image vertically! unsigned char *imgData = (unsigned char *)RL_MALLOC(width*height*4*sizeof(unsigned char)); for (int y = height - 1; y >= 0; y--) { for (int x = 0; x < (width*4); x++) { imgData[((height - 1) - y)*width*4 + x] = screenData[(y*width*4) + x]; // Flip line // Set alpha component value to 255 (no trasparent image retrieval) // NOTE: Alpha value has already been applied to RGB in framebuffer, we don't need it! if (((x + 1)%4) == 0) imgData[((height - 1) - y)*width*4 + x] = 255; } } RL_FREE(screenData); return imgData; // NOTE: image data should be freed } // Framebuffer management (fbo) //----------------------------------------------------------------------------------------- // Load a framebuffer to be used for rendering // NOTE: No textures attached unsigned int load_framebuffer(int width, int height) { unsigned int fboId = 0; #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT) glGenFramebuffers(1, &fboId); // Create the framebuffer object glBindFramebuffer(GL_FRAMEBUFFER, 0); // Unbind any framebuffer #endif return fboId; } // Attach color buffer texture to an fbo (unloads previous attachment) // NOTE: Attach type: 0-Color, 1-Depth renderbuffer, 2-Depth texture void framebuffer_attach(unsigned int fboId, unsigned int texId, int attachType, int texType, int mipLevel) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT) glBindFramebuffer(GL_FRAMEBUFFER, fboId); switch (attachType) { case ATTACHMENT_COLOR_CHANNEL0: case ATTACHMENT_COLOR_CHANNEL1: case ATTACHMENT_COLOR_CHANNEL2: case ATTACHMENT_COLOR_CHANNEL3: case ATTACHMENT_COLOR_CHANNEL4: case ATTACHMENT_COLOR_CHANNEL5: case ATTACHMENT_COLOR_CHANNEL6: case ATTACHMENT_COLOR_CHANNEL7: { if (texType == ATTACHMENT_TEXTURE2D) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + attachType, GL_TEXTURE_2D, texId, mipLevel); else if (texType == ATTACHMENT_RENDERBUFFER) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + attachType, GL_RENDERBUFFER, texId); else if (texType >= ATTACHMENT_CUBEMAP_POSITIVE_X) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + attachType, GL_TEXTURE_CUBE_MAP_POSITIVE_X + texType, texId, mipLevel); } break; case ATTACHMENT_DEPTH: { if (texType == ATTACHMENT_TEXTURE2D) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, texId, mipLevel); else if (texType == ATTACHMENT_RENDERBUFFER) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, texId); } break; case ATTACHMENT_STENCIL: { if (texType == ATTACHMENT_TEXTURE2D) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, texId, mipLevel); else if (texType == ATTACHMENT_RENDERBUFFER) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, texId); } break; default: break; } glBindFramebuffer(GL_FRAMEBUFFER, 0); #endif } // Verify render texture is complete bool framebuffer_complete(unsigned int id) { bool result = false; #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT) glBindFramebuffer(GL_FRAMEBUFFER, id); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { switch (status) { case GL_FRAMEBUFFER_UNSUPPORTED: RL_TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer is unsupported", id); break; case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: RL_TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has incomplete attachment", id); break; #if defined(GRAPHICS_API_OPENGL_ES2) case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: RL_TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has incomplete dimensions", id); break; #endif case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: RL_TRACELOG(LOG_WARNING, "FBO: [ID %i] Framebuffer has a missing attachment", id); break; default: break; } } glBindFramebuffer(GL_FRAMEBUFFER, 0); result = (status == GL_FRAMEBUFFER_COMPLETE); #endif return result; } // Unload framebuffer from GPU memory // NOTE: All attached textures/cubemaps/renderbuffers are also deleted void unload_framebuffer(unsigned int id) { #if (defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)) && defined(RLGL_RENDER_TEXTURES_HINT) // Query depth attachment to automatically delete texture/renderbuffer int depthType = 0, depthId = 0; glBindFramebuffer(GL_FRAMEBUFFER, id); // Bind framebuffer to query depth texture type glGetFramebufferAttachmentParameteriv(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, &depthType); // TODO: Review warning retrieving object name in WebGL // WARNING: WebGL: INVALID_ENUM: getFramebufferAttachmentParameter: invalid parameter name // https://registry.khronos.org/webgl/specs/latest/1.0/ glGetFramebufferAttachmentParameteriv(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, &depthId); unsigned int depthIdU = (unsigned int)depthId; if (depthType == GL_RENDERBUFFER) glDeleteRenderbuffers(1, &depthIdU); else if (depthType == GL_TEXTURE) glDeleteTextures(1, &depthIdU); // NOTE: If a texture object is deleted while its image is attached to the *currently bound* framebuffer, // the texture image is automatically detached from the currently bound framebuffer. glBindFramebuffer(GL_FRAMEBUFFER, 0); glDeleteFramebuffers(1, &id); RL_TRACELOG(LOG_INFO, "FBO: [ID %i] Unloaded framebuffer from VRAM (GPU)", id); #endif } // Vertex data management //----------------------------------------------------------------------------------------- // Load a new attributes buffer unsigned int load_vertex_buffer(const void *buffer, int size, bool dynamic) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glGenBuffers(1, &id); glBindBuffer(GL_ARRAY_BUFFER, id); glBufferData(GL_ARRAY_BUFFER, size, buffer, dynamic? GL_DYNAMIC_DRAW : GL_STATIC_DRAW); #endif return id; } // Load a new attributes element buffer unsigned int load_vertex_buffer_element(const void *buffer, int size, bool dynamic) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glGenBuffers(1, &id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, size, buffer, dynamic? GL_DYNAMIC_DRAW : GL_STATIC_DRAW); #endif return id; } // Enable vertex buffer (VBO) void enable_vertex_buffer(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ARRAY_BUFFER, id); #endif } // Disable vertex buffer (VBO) void disable_vertex_buffer(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ARRAY_BUFFER, 0); #endif } // Enable vertex buffer element (VBO element) void enable_vertex_buffer_element(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, id); #endif } // Disable vertex buffer element (VBO element) void disable_vertex_buffer_element(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); #endif } // Update vertex buffer with new data // NOTE: dataSize and offset must be provided in bytes void update_vertex_buffer(unsigned int id, const void *data, int dataSize, int offset) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ARRAY_BUFFER, id); glBufferSubData(GL_ARRAY_BUFFER, offset, dataSize, data); #endif } // Update vertex buffer elements with new data // NOTE: dataSize and offset must be provided in bytes void update_vertex_buffer_elements(unsigned int id, const void *data, int dataSize, int offset) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, id); glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, offset, dataSize, data); #endif } // Enable vertex array object (VAO) bool enable_vertex_array(unsigned int vaoId) { bool result = false; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (GLOBAL_DATA.ExtSupported.vao) { glBindVertexArray(vaoId); result = true; } #endif return result; } // Disable vertex array object (VAO) void disable_vertex_array(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (GLOBAL_DATA.ExtSupported.vao) glBindVertexArray(0); #endif } // Enable vertex attribute index void enable_vertex_attribute(unsigned int index) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glEnableVertexAttribArray(index); #endif } // Disable vertex attribute index void disable_vertex_attribute(unsigned int index) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDisableVertexAttribArray(index); #endif } // Draw vertex array void draw_vertex_array(int offset, int count) { glDrawArrays(GL_TRIANGLES, offset, count); } // Draw vertex array elements void draw_vertex_array_elements(int offset, int count, const void *buffer) { // NOTE: Added pointer math separately from function to avoid UBSAN complaining unsigned short *bufferPtr = (unsigned short *)buffer; if (offset > 0) bufferPtr += offset; glDrawElements(GL_TRIANGLES, count, GL_UNSIGNED_SHORT, (const unsigned short *)bufferPtr); } // Draw vertex array instanced void draw_vertex_array_instanced(int offset, int count, int instances) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDrawArraysInstanced(GL_TRIANGLES, 0, count, instances); #endif } // Draw vertex array elements instanced void draw_vertex_array_elements_instanced(int offset, int count, const void *buffer, int instances) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: Added pointer math separately from function to avoid UBSAN complaining unsigned short *bufferPtr = (unsigned short *)buffer; if (offset > 0) bufferPtr += offset; glDrawElementsInstanced(GL_TRIANGLES, count, GL_UNSIGNED_SHORT, (const unsigned short *)bufferPtr, instances); #endif } #if defined(GRAPHICS_API_OPENGL_11) // Enable vertex state pointer void enable_state_pointer(int vertexAttribType, void *buffer) { if (buffer != NULL) glEnableClientState(vertexAttribType); switch (vertexAttribType) { case GL_VERTEX_ARRAY: glVertexPointer(3, GL_FLOAT, 0, buffer); break; case GL_TEXTURE_COORD_ARRAY: glTexCoordPointer(2, GL_FLOAT, 0, buffer); break; case GL_NORMAL_ARRAY: if (buffer != NULL) glNormalPointer(GL_FLOAT, 0, buffer); break; case GL_COLOR_ARRAY: if (buffer != NULL) glColorPointer(4, GL_UNSIGNED_BYTE, 0, buffer); break; //case GL_INDEX_ARRAY: if (buffer != NULL) glIndexPointer(GL_SHORT, 0, buffer); break; // Indexed colors default: break; } } // Disable vertex state pointer void disable_state_pointer(int vertexAttribType) { glDisableClientState(vertexAttribType); } #endif // Load vertex array object (VAO) unsigned int load_vertex_array(void) { unsigned int vaoId = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (GLOBAL_DATA.ExtSupported.vao) { glGenVertexArrays(1, &vaoId); } #endif return vaoId; } // Set vertex attribute void set_vertex_attribute(unsigned int index, int compSize, int type, bool normalized, int stride, const void *pointer) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glVertexAttribPointer(index, compSize, type, normalized, stride, pointer); #endif } // Set vertex attribute divisor void set_vertex_attribute_divisor(unsigned int index, int divisor) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glVertexAttribDivisor(index, divisor); #endif } // Unload vertex array object (VAO) void unload_vertex_array(unsigned int vaoId) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (GLOBAL_DATA.ExtSupported.vao) { glBindVertexArray(0); glDeleteVertexArrays(1, &vaoId); RL_TRACELOG(LOG_INFO, "VAO: [ID %i] Unloaded vertex array data from VRAM (GPU)", vaoId); } #endif } // Unload vertex buffer (VBO) void unload_vertex_buffer(unsigned int vboId) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDeleteBuffers(1, &vboId); //RL_TRACELOG(LOG_INFO, "VBO: Unloaded vertex data from VRAM (GPU)"); #endif } // Shaders management //----------------------------------------------------------------------------------------------- // Load shader from code strings // NOTE: If shader string is NULL, using default vertex/fragment shaders unsigned int load_shader_code(const char *vsCode, const char *fsCode) { unsigned int id = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unsigned int vertexShaderId = 0; unsigned int fragmentShaderId = 0; // Compile vertex shader (if provided) if (vsCode != NULL) vertexShaderId = compile_shader(vsCode, GL_VERTEX_SHADER); // In case no vertex shader was provided or compilation failed, we use default vertex shader if (vertexShaderId == 0) vertexShaderId = GLOBAL_DATA.State.defaultVShaderId; // Compile fragment shader (if provided) if (fsCode != NULL) fragmentShaderId = compile_shader(fsCode, GL_FRAGMENT_SHADER); // In case no fragment shader was provided or compilation failed, we use default fragment shader if (fragmentShaderId == 0) fragmentShaderId = GLOBAL_DATA.State.defaultFShaderId; // In case vertex and fragment shader are the default ones, no need to recompile, we can just assign the default shader program id if ((vertexShaderId == GLOBAL_DATA.State.defaultVShaderId) && (fragmentShaderId == GLOBAL_DATA.State.defaultFShaderId)) id = GLOBAL_DATA.State.defaultShaderId; else { // One of or both shader are new, we need to compile a new shader program id = load_shader_program(vertexShaderId, fragmentShaderId); // We can detach and delete vertex/fragment shaders (if not default ones) // NOTE: We detach shader before deletion to make sure memory is freed if (vertexShaderId != GLOBAL_DATA.State.defaultVShaderId) { // WARNING: Shader program linkage could fail and returned id is 0 if (id > 0) glDetachShader(id, vertexShaderId); glDeleteShader(vertexShaderId); } if (fragmentShaderId != GLOBAL_DATA.State.defaultFShaderId) { // WARNING: Shader program linkage could fail and returned id is 0 if (id > 0) glDetachShader(id, fragmentShaderId); glDeleteShader(fragmentShaderId); } // In case shader program loading failed, we assign default shader if (id == 0) { // In case shader loading fails, we return the default shader RL_TRACELOG(LOG_WARNING, "SHADER: Failed to load custom shader code, using default shader"); id = GLOBAL_DATA.State.defaultShaderId; } /* else { // Get available shader uniforms // NOTE: This information is useful for debug... int uniformCount = -1; glGetProgramiv(id, GL_ACTIVE_UNIFORMS, &uniformCount); for (int i = 0; i < uniformCount; i++) { int namelen = -1; int num = -1; char name[256] = { 0 }; // Assume no variable names longer than 256 GLenum type = GL_ZERO; // Get the name of the uniforms glGetActiveUniform(id, i, sizeof(name) - 1, &namelen, &num, &type, name); name[namelen] = 0; TRACELOGD("SHADER: [ID %i] Active uniform (%s) set at location: %i", id, name, glGetUniformLocation(id, name)); } } */ } #endif return id; } // Compile custom shader and return shader id unsigned int compile_shader(const char *shaderCode, int type) { unsigned int shader = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) shader = glCreateShader(type); glShaderSource(shader, 1, &shaderCode, NULL); GLint success = 0; glCompileShader(shader); glGetShaderiv(shader, GL_COMPILE_STATUS, &success); if (success == GL_FALSE) { switch (type) { case GL_VERTEX_SHADER: RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to compile vertex shader code", shader); break; case GL_FRAGMENT_SHADER: RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to compile fragment shader code", shader); break; //case GL_GEOMETRY_SHADER: #if defined(GRAPHICS_API_OPENGL_43) case GL_COMPUTE_SHADER: RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to compile compute shader code", shader); break; #endif default: break; } int maxLength = 0; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &maxLength); if (maxLength > 0) { int length = 0; char *log = (char *)RL_CALLOC(maxLength, sizeof(char)); glGetShaderInfoLog(shader, maxLength, &length, log); RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Compile error: %s", shader, log); RL_FREE(log); } } else { switch (type) { case GL_VERTEX_SHADER: RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Vertex shader compiled successfully", shader); break; case GL_FRAGMENT_SHADER: RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Fragment shader compiled successfully", shader); break; //case GL_GEOMETRY_SHADER: #if defined(GRAPHICS_API_OPENGL_43) case GL_COMPUTE_SHADER: RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Compute shader compiled successfully", shader); break; #endif default: break; } } #endif return shader; } // Load custom shader strings and return program id unsigned int load_shader_program(unsigned int vShaderId, unsigned int fShaderId) { unsigned int program = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) GLint success = 0; program = glCreateProgram(); glAttachShader(program, vShaderId); glAttachShader(program, fShaderId); // NOTE: Default attribute shader locations must be Bound before linking glBindAttribLocation(program, 0, RL_DEFAULT_SHADER_ATTRIB_NAME_POSITION); glBindAttribLocation(program, 1, RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD); glBindAttribLocation(program, 2, RL_DEFAULT_SHADER_ATTRIB_NAME_NORMAL); glBindAttribLocation(program, 3, RL_DEFAULT_SHADER_ATTRIB_NAME_COLOR); glBindAttribLocation(program, 4, RL_DEFAULT_SHADER_ATTRIB_NAME_TANGENT); glBindAttribLocation(program, 5, RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2); // NOTE: If some attrib name is no found on the shader, it locations becomes -1 glLinkProgram(program); // NOTE: All uniform variables are intitialised to 0 when a program links glGetProgramiv(program, GL_LINK_STATUS, &success); if (success == GL_FALSE) { RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to link shader program", program); int maxLength = 0; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength); if (maxLength > 0) { int length = 0; char *log = (char *)RL_CALLOC(maxLength, sizeof(char)); glGetProgramInfoLog(program, maxLength, &length, log); RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Link error: %s", program, log); RL_FREE(log); } glDeleteProgram(program); program = 0; } else { // Get the size of compiled shader program (not available on OpenGL ES 2.0) // NOTE: If GL_LINK_STATUS is GL_FALSE, program binary length is zero. //GLint binarySize = 0; //glGetProgramiv(id, GL_PROGRAM_BINARY_LENGTH, &binarySize); RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Program shader loaded successfully", program); } #endif return program; } // Unload shader program void unload_shader_program(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDeleteProgram(id); RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Unloaded shader program data from VRAM (GPU)", id); #endif } // Get shader location uniform int get_location_uniform(unsigned int shaderId, const char *uniformName) { int location = -1; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) location = glGetUniformLocation(shaderId, uniformName); //if (location == -1) RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to find shader uniform: %s", shaderId, uniformName); //else RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Shader uniform (%s) set at location: %i", shaderId, uniformName, location); #endif return location; } // Get shader location attribute int get_location_attrib(unsigned int shaderId, const char *attribName) { int location = -1; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) location = glGetAttribLocation(shaderId, attribName); //if (location == -1) RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to find shader attribute: %s", shaderId, attribName); //else RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Shader attribute (%s) set at location: %i", shaderId, attribName, location); #endif return location; } // Set shader value uniform void set_uniform(int locIndex, const void *value, int uniformType, int count) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) switch (uniformType) { case SHADER_UNIFORM_FLOAT: glUniform1fv(locIndex, count, (float *)value); break; case SHADER_UNIFORM_VEC2: glUniform2fv(locIndex, count, (float *)value); break; case SHADER_UNIFORM_VEC3: glUniform3fv(locIndex, count, (float *)value); break; case SHADER_UNIFORM_VEC4: glUniform4fv(locIndex, count, (float *)value); break; case SHADER_UNIFORM_INT: glUniform1iv(locIndex, count, (int *)value); break; case SHADER_UNIFORM_IVEC2: glUniform2iv(locIndex, count, (int *)value); break; case SHADER_UNIFORM_IVEC3: glUniform3iv(locIndex, count, (int *)value); break; case SHADER_UNIFORM_IVEC4: glUniform4iv(locIndex, count, (int *)value); break; case SHADER_UNIFORM_SAMPLER2D: glUniform1iv(locIndex, count, (int *)value); break; default: RL_TRACELOG(LOG_WARNING, "SHADER: Failed to set uniform value, data type not recognized"); } #endif } // Set shader value attribute void set_vertex_attribute_default(int locIndex, const void *value, int attribType, int count) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) switch (attribType) { case SHADER_ATTRIB_FLOAT: if (count == 1) glVertexAttrib1fv(locIndex, (float *)value); break; case SHADER_ATTRIB_VEC2: if (count == 2) glVertexAttrib2fv(locIndex, (float *)value); break; case SHADER_ATTRIB_VEC3: if (count == 3) glVertexAttrib3fv(locIndex, (float *)value); break; case SHADER_ATTRIB_VEC4: if (count == 4) glVertexAttrib4fv(locIndex, (float *)value); break; default: RL_TRACELOG(LOG_WARNING, "SHADER: Failed to set attrib default value, data type not recognized"); } #endif } // Set shader value uniform matrix void set_uniform_matrix(int locIndex, Matrix mat) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) float matfloat[16] = { mat.m0, mat.m1, mat.m2, mat.m3, mat.m4, mat.m5, mat.m6, mat.m7, mat.m8, mat.m9, mat.m10, mat.m11, mat.m12, mat.m13, mat.m14, mat.m15 }; glUniformMatrix4fv(locIndex, 1, false, matfloat); #endif } // Set shader value uniform sampler void set_uniform_sampler(int locIndex, unsigned int textureId) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Check if texture is already active for (int i = 0; i < RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS; i++) if (GLOBAL_DATA.State.activeTextureId[i] == textureId) return; // Register a new active texture for the internal batch system // NOTE: Default texture is always activated as GL_TEXTURE0 for (int i = 0; i < RL_DEFAULT_BATCH_MAX_TEXTURE_UNITS; i++) { if (GLOBAL_DATA.State.activeTextureId[i] == 0) { glUniform1i(locIndex, 1 + i); // Activate new texture unit GLOBAL_DATA.State.activeTextureId[i] = textureId; // Save texture id for binding on drawing break; } } #endif } // Set shader currently active (id and locations) void set_shader(unsigned int id, int *locs) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (GLOBAL_DATA.State.currentShaderId != id) { draw_render_batch(GLOBAL_DATA.currentBatch); GLOBAL_DATA.State.currentShaderId = id; GLOBAL_DATA.State.currentShaderLocs = locs; } #endif } // Load compute shader program unsigned int load_compute_shader_program(unsigned int shaderId) { unsigned int program = 0; #if defined(GRAPHICS_API_OPENGL_43) GLint success = 0; program = glCreateProgram(); glAttachShader(program, shaderId); glLinkProgram(program); // NOTE: All uniform variables are intitialised to 0 when a program links glGetProgramiv(program, GL_LINK_STATUS, &success); if (success == GL_FALSE) { RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to link compute shader program", program); int maxLength = 0; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength); if (maxLength > 0) { int length = 0; char *log = (char *)RL_CALLOC(maxLength, sizeof(char)); glGetProgramInfoLog(program, maxLength, &length, log); RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Link error: %s", program, log); RL_FREE(log); } glDeleteProgram(program); program = 0; } else { // Get the size of compiled shader program (not available on OpenGL ES 2.0) // NOTE: If GL_LINK_STATUS is GL_FALSE, program binary length is zero. //GLint binarySize = 0; //glGetProgramiv(id, GL_PROGRAM_BINARY_LENGTH, &binarySize); RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Compute shader program loaded successfully", program); } #endif return program; } // Dispatch compute shader (equivalent to *draw* for graphics pilepine) void compute_shader_dispatch(unsigned int groupX, unsigned int groupY, unsigned int groupZ) { #if defined(GRAPHICS_API_OPENGL_43) glDispatchCompute(groupX, groupY, groupZ); #endif } // Load shader storage buffer object (SSBO) unsigned int load_shader_buffer(unsigned int size, const void *data, int usageHint) { unsigned int ssbo = 0; #if defined(GRAPHICS_API_OPENGL_43) glGenBuffers(1, &ssbo); glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo); glBufferData(GL_SHADER_STORAGE_BUFFER, size, data, usageHint? usageHint : RL_STREAM_COPY); if (data == NULL) glClearBufferData(GL_SHADER_STORAGE_BUFFER, GL_R8UI, GL_RED_INTEGER, GL_UNSIGNED_BYTE, NULL); // Clear buffer data to 0 glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0); #endif return ssbo; } // Unload shader storage buffer object (SSBO) void unload_shader_buffer(unsigned int ssboId) { #if defined(GRAPHICS_API_OPENGL_43) glDeleteBuffers(1, &ssboId); #endif } // Update SSBO buffer data void update_shader_buffer(unsigned int id, const void *data, unsigned int dataSize, unsigned int offset) { #if defined(GRAPHICS_API_OPENGL_43) glBindBuffer(GL_SHADER_STORAGE_BUFFER, id); glBufferSubData(GL_SHADER_STORAGE_BUFFER, offset, dataSize, data); #endif } // Get SSBO buffer size unsigned int get_shader_buffer_size(unsigned int id) { long long size = 0; #if defined(GRAPHICS_API_OPENGL_43) glBindBuffer(GL_SHADER_STORAGE_BUFFER, id); glGetInteger64v(GL_SHADER_STORAGE_BUFFER_SIZE, &size); #endif return (size > 0)? (unsigned int)size : 0; } // Read SSBO buffer data (GPU->CPU) void read_shader_buffer(unsigned int id, void *dest, unsigned int count, unsigned int offset) { #if defined(GRAPHICS_API_OPENGL_43) glBindBuffer(GL_SHADER_STORAGE_BUFFER, id); glGetBufferSubData(GL_SHADER_STORAGE_BUFFER, offset, count, dest); #endif } // Bind SSBO buffer void bind_shader_buffer(unsigned int id, unsigned int index) { #if defined(GRAPHICS_API_OPENGL_43) glBindBufferBase(GL_SHADER_STORAGE_BUFFER, index, id); #endif } // Copy SSBO buffer data void copy_shader_buffer(unsigned int destId, unsigned int srcId, unsigned int destOffset, unsigned int srcOffset, unsigned int count) { #if defined(GRAPHICS_API_OPENGL_43) glBindBuffer(GL_COPY_READ_BUFFER, srcId); glBindBuffer(GL_COPY_WRITE_BUFFER, destId); glCopyBufferSubData(GL_COPY_READ_BUFFER, GL_COPY_WRITE_BUFFER, srcOffset, destOffset, count); #endif } // Bind image texture void bind_image_texture(unsigned int id, unsigned int index, int format, bool readonly) { #if defined(GRAPHICS_API_OPENGL_43) unsigned int glInternalFormat = 0, glFormat = 0, glType = 0; get_gl_texture_formats(format, &glInternalFormat, &glFormat, &glType); glBindImageTexture(index, id, 0, 0, 0, readonly? GL_READ_ONLY : GL_READ_WRITE, glInternalFormat); #endif } // Matrix state management //----------------------------------------------------------------------------------------- // Get internal modelview matrix Matrix get_matrix_modelview(void) { Matrix matrix = internal_matrix_identity(); #if defined(GRAPHICS_API_OPENGL_11) float mat[16]; glGetFloatv(GL_MODELVIEW_MATRIX, mat); matrix.m0 = mat[0]; matrix.m1 = mat[1]; matrix.m2 = mat[2]; matrix.m3 = mat[3]; matrix.m4 = mat[4]; matrix.m5 = mat[5]; matrix.m6 = mat[6]; matrix.m7 = mat[7]; matrix.m8 = mat[8]; matrix.m9 = mat[9]; matrix.m10 = mat[10]; matrix.m11 = mat[11]; matrix.m12 = mat[12]; matrix.m13 = mat[13]; matrix.m14 = mat[14]; matrix.m15 = mat[15]; #else matrix = GLOBAL_DATA.State.modelview; #endif return matrix; } // Get internal projection matrix Matrix get_matrix_projection(void) { #if defined(GRAPHICS_API_OPENGL_11) float mat[16]; glGetFloatv(GL_PROJECTION_MATRIX,mat); Matrix m; m.m0 = mat[0]; m.m1 = mat[1]; m.m2 = mat[2]; m.m3 = mat[3]; m.m4 = mat[4]; m.m5 = mat[5]; m.m6 = mat[6]; m.m7 = mat[7]; m.m8 = mat[8]; m.m9 = mat[9]; m.m10 = mat[10]; m.m11 = mat[11]; m.m12 = mat[12]; m.m13 = mat[13]; m.m14 = mat[14]; m.m15 = mat[15]; return m; #else return GLOBAL_DATA.State.projection; #endif } // Get internal accumulated transform matrix Matrix get_matrix_transform(void) { Matrix mat = internal_matrix_identity(); #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // TODO: Consider possible transform matrices in the GLOBAL_DATA.State.stack // Is this the right order? or should we start with the first stored matrix instead of the last one? //Matrix matStackTransform = internal_matrix_identity(); //for (int i = GLOBAL_DATA.State.stackCounter; i > 0; i--) matStackTransform = internal_matrix_multiply(GLOBAL_DATA.State.stack[i], matStackTransform); mat = GLOBAL_DATA.State.transform; #endif return mat; } // Get internal projection matrix for stereo render (selected eye) RLAPI Matrix get_matrix_projection_stereo(int eye) { Matrix mat = internal_matrix_identity(); #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) mat = GLOBAL_DATA.State.projectionStereo[eye]; #endif return mat; } // Get internal view offset matrix for stereo render (selected eye) RLAPI Matrix get_matrix_view_offset_stereo(int eye) { Matrix mat = internal_matrix_identity(); #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) mat = GLOBAL_DATA.State.viewOffsetStereo[eye]; #endif return mat; } // Set a custom modelview matrix (replaces internal modelview matrix) void set_matrix_modelview(Matrix view) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) GLOBAL_DATA.State.modelview = view; #endif } // Set a custom projection matrix (replaces internal projection matrix) void set_matrix_projection(Matrix projection) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) GLOBAL_DATA.State.projection = projection; #endif } // Set eyes projection matrices for stereo rendering void set_matrix_projection_stereo(Matrix right, Matrix left) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) GLOBAL_DATA.State.projectionStereo[0] = right; GLOBAL_DATA.State.projectionStereo[1] = left; #endif } // Set eyes view offsets matrices for stereo rendering void set_matrix_view_offset_stereo(Matrix right, Matrix left) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) GLOBAL_DATA.State.viewOffsetStereo[0] = right; GLOBAL_DATA.State.viewOffsetStereo[1] = left; #endif } // Load and draw a quad in NDC void load_draw_quad(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unsigned int quadVAO = 0; unsigned int quadVBO = 0; float vertices[] = { // Positions Texcoords -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, }; // Gen VAO to contain VBO glGenVertexArrays(1, &quadVAO); glBindVertexArray(quadVAO); // Gen and fill vertex buffer (VBO) glGenBuffers(1, &quadVBO); glBindBuffer(GL_ARRAY_BUFFER, quadVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), &vertices, GL_STATIC_DRAW); // Bind vertex attributes (position, texcoords) glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5*sizeof(float), (void *)0); // Positions glEnableVertexAttribArray(1); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5*sizeof(float), (void *)(3*sizeof(float))); // Texcoords // Draw quad glBindVertexArray(quadVAO); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glBindVertexArray(0); // Delete buffers (VBO and VAO) glDeleteBuffers(1, &quadVBO); glDeleteVertexArrays(1, &quadVAO); #endif } // Load and draw a cube in NDC void load_draw_cube(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) unsigned int cubeVAO = 0; unsigned int cubeVBO = 0; float vertices[] = { // Positions Normals Texcoords -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, -1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, -1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, -1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, -1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f }; // Gen VAO to contain VBO glGenVertexArrays(1, &cubeVAO); glBindVertexArray(cubeVAO); // Gen and fill vertex buffer (VBO) glGenBuffers(1, &cubeVBO); glBindBuffer(GL_ARRAY_BUFFER, cubeVBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); // Bind vertex attributes (position, normals, texcoords) glBindVertexArray(cubeVAO); glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)0); // Positions glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)(3*sizeof(float))); // Normals glEnableVertexAttribArray(2); glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8*sizeof(float), (void *)(6*sizeof(float))); // Texcoords glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); // Draw cube glBindVertexArray(cubeVAO); glDrawArrays(GL_TRIANGLES, 0, 36); glBindVertexArray(0); // Delete VBO and VAO glDeleteBuffers(1, &cubeVBO); glDeleteVertexArrays(1, &cubeVAO); #endif } // Get name string for pixel format const char *get_pixel_format_name(unsigned int format) { switch (format) { case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: return "GRAYSCALE"; break; // 8 bit per pixel (no alpha) case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: return "GRAY_ALPHA"; break; // 8*2 bpp (2 channels) case PIXELFORMAT_UNCOMPRESSED_R5G6B5: return "R5G6B5"; break; // 16 bpp case PIXELFORMAT_UNCOMPRESSED_R8G8B8: return "R8G8B8"; break; // 24 bpp case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1: return "R5G5B5A1"; break; // 16 bpp (1 bit alpha) case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: return "R4G4B4A4"; break; // 16 bpp (4 bit alpha) case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: return "R8G8B8A8"; break; // 32 bpp case PIXELFORMAT_UNCOMPRESSED_R32: return "R32"; break; // 32 bpp (1 channel - float) case PIXELFORMAT_UNCOMPRESSED_R32G32B32: return "R32G32B32"; break; // 32*3 bpp (3 channels - float) case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: return "R32G32B32A32"; break; // 32*4 bpp (4 channels - float) case PIXELFORMAT_UNCOMPRESSED_R16: return "R16"; break; // 16 bpp (1 channel - half float) case PIXELFORMAT_UNCOMPRESSED_R16G16B16: return "R16G16B16"; break; // 16*3 bpp (3 channels - half float) case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: return "R16G16B16A16"; break; // 16*4 bpp (4 channels - half float) case PIXELFORMAT_COMPRESSED_DXT1_RGB: return "DXT1_RGB"; break; // 4 bpp (no alpha) case PIXELFORMAT_COMPRESSED_DXT1_RGBA: return "DXT1_RGBA"; break; // 4 bpp (1 bit alpha) case PIXELFORMAT_COMPRESSED_DXT3_RGBA: return "DXT3_RGBA"; break; // 8 bpp case PIXELFORMAT_COMPRESSED_DXT5_RGBA: return "DXT5_RGBA"; break; // 8 bpp case PIXELFORMAT_COMPRESSED_ETC1_RGB: return "ETC1_RGB"; break; // 4 bpp case PIXELFORMAT_COMPRESSED_ETC2_RGB: return "ETC2_RGB"; break; // 4 bpp case PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA: return "ETC2_RGBA"; break; // 8 bpp case PIXELFORMAT_COMPRESSED_PVRT_RGB: return "PVRT_RGB"; break; // 4 bpp case PIXELFORMAT_COMPRESSED_PVRT_RGBA: return "PVRT_RGBA"; break; // 4 bpp case PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA: return "ASTC_4x4_RGBA"; break; // 8 bpp case PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA: return "ASTC_8x8_RGBA"; break; // 2 bpp default: return "UNKNOWN"; break; } } //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Load default shader (just vertex positioning and texture coloring) // NOTE: This shader program is used for internal buffers // NOTE: Loaded: GLOBAL_DATA.State.defaultShaderId, GLOBAL_DATA.State.defaultShaderLocs static void load_shader_default(void) { GLOBAL_DATA.State.defaultShaderLocs = (int *)RL_CALLOC(RL_MAX_SHADER_LOCATIONS, sizeof(int)); // NOTE: All locations must be reseted to -1 (no location) for (int i = 0; i < RL_MAX_SHADER_LOCATIONS; i++) GLOBAL_DATA.State.defaultShaderLocs[i] = -1; // Vertex shader directly defined, no external file required const char *defaultVShaderCode = #if defined(GRAPHICS_API_OPENGL_21) "#version 120 \n" "attribute vec3 vertexPosition; \n" "attribute vec2 vertexTexCoord; \n" "attribute vec4 vertexColor; \n" "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" #elif defined(GRAPHICS_API_OPENGL_33) "#version 330 \n" "in vec3 vertexPosition; \n" "in vec2 vertexTexCoord; \n" "in vec4 vertexColor; \n" "out vec2 fragTexCoord; \n" "out vec4 fragColor; \n" #endif #if defined(GRAPHICS_API_OPENGL_ES2) "#version 100 \n" "precision mediump float; \n" // Precision required for OpenGL ES2 (WebGL) (on some browsers) "attribute vec3 vertexPosition; \n" "attribute vec2 vertexTexCoord; \n" "attribute vec4 vertexColor; \n" "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" #endif "uniform mat4 mvp; \n" "void main() \n" "{ \n" " fragTexCoord = vertexTexCoord; \n" " fragColor = vertexColor; \n" " gl_Position = mvp*vec4(vertexPosition, 1.0); \n" "} \n"; // Fragment shader directly defined, no external file required const char *defaultFShaderCode = #if defined(GRAPHICS_API_OPENGL_21) "#version 120 \n" "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" "uniform sampler2D texture0; \n" "uniform vec4 colDiffuse; \n" "void main() \n" "{ \n" " vec4 texelColor = texture2D(texture0, fragTexCoord); \n" " gl_FragColor = texelColor*colDiffuse*fragColor; \n" "} \n"; #elif defined(GRAPHICS_API_OPENGL_33) "#version 330 \n" "in vec2 fragTexCoord; \n" "in vec4 fragColor; \n" "out vec4 finalColor; \n" "uniform sampler2D texture0; \n" "uniform vec4 colDiffuse; \n" "void main() \n" "{ \n" " vec4 texelColor = texture(texture0, fragTexCoord); \n" " finalColor = texelColor*colDiffuse*fragColor; \n" "} \n"; #endif #if defined(GRAPHICS_API_OPENGL_ES2) "#version 100 \n" "precision mediump float; \n" // Precision required for OpenGL ES2 (WebGL) "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" "uniform sampler2D texture0; \n" "uniform vec4 colDiffuse; \n" "void main() \n" "{ \n" " vec4 texelColor = texture2D(texture0, fragTexCoord); \n" " gl_FragColor = texelColor*colDiffuse*fragColor; \n" "} \n"; #endif // NOTE: Compiled vertex/fragment shaders are not deleted, // they are kept for re-use as default shaders in case some shader loading fails GLOBAL_DATA.State.defaultVShaderId = compile_shader(defaultVShaderCode, GL_VERTEX_SHADER); // Compile default vertex shader GLOBAL_DATA.State.defaultFShaderId = compile_shader(defaultFShaderCode, GL_FRAGMENT_SHADER); // Compile default fragment shader GLOBAL_DATA.State.defaultShaderId = load_shader_program(GLOBAL_DATA.State.defaultVShaderId, GLOBAL_DATA.State.defaultFShaderId); if (GLOBAL_DATA.State.defaultShaderId > 0) { RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Default shader loaded successfully", GLOBAL_DATA.State.defaultShaderId); // Set default shader locations: attributes locations GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_VERTEX_POSITION] = glGetAttribLocation(GLOBAL_DATA.State.defaultShaderId, "vertexPosition"); GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_VERTEX_TEXCOORD01] = glGetAttribLocation(GLOBAL_DATA.State.defaultShaderId, "vertexTexCoord"); GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_VERTEX_COLOR] = glGetAttribLocation(GLOBAL_DATA.State.defaultShaderId, "vertexColor"); // Set default shader locations: uniform locations GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_MATRIX_MVP] = glGetUniformLocation(GLOBAL_DATA.State.defaultShaderId, "mvp"); GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_COLOR_DIFFUSE] = glGetUniformLocation(GLOBAL_DATA.State.defaultShaderId, "colDiffuse"); GLOBAL_DATA.State.defaultShaderLocs[SHADER_LOC_MAP_DIFFUSE] = glGetUniformLocation(GLOBAL_DATA.State.defaultShaderId, "texture0"); } else RL_TRACELOG(LOG_WARNING, "SHADER: [ID %i] Failed to load default shader", GLOBAL_DATA.State.defaultShaderId); } // Unload default shader // NOTE: Unloads: GLOBAL_DATA.State.defaultShaderId, GLOBAL_DATA.State.defaultShaderLocs static void unload_shader_default(void) { glUseProgram(0); glDetachShader(GLOBAL_DATA.State.defaultShaderId, GLOBAL_DATA.State.defaultVShaderId); glDetachShader(GLOBAL_DATA.State.defaultShaderId, GLOBAL_DATA.State.defaultFShaderId); glDeleteShader(GLOBAL_DATA.State.defaultVShaderId); glDeleteShader(GLOBAL_DATA.State.defaultFShaderId); glDeleteProgram(GLOBAL_DATA.State.defaultShaderId); RL_FREE(GLOBAL_DATA.State.defaultShaderLocs); RL_TRACELOG(LOG_INFO, "SHADER: [ID %i] Default shader unloaded successfully", GLOBAL_DATA.State.defaultShaderId); } #if defined(RLGL_SHOW_GL_DETAILS_INFO) // Get compressed format official GL identifier name static const char *GetCompressedFormatName(int format) { switch (format) { // GL_EXT_texture_compression_s3tc case 0x83F0: return "GL_COMPRESSED_RGB_S3TC_DXT1_EXT"; break; case 0x83F1: return "GL_COMPRESSED_RGBA_S3TC_DXT1_EXT"; break; case 0x83F2: return "GL_COMPRESSED_RGBA_S3TC_DXT3_EXT"; break; case 0x83F3: return "GL_COMPRESSED_RGBA_S3TC_DXT5_EXT"; break; // GL_3DFX_texture_compression_FXT1 case 0x86B0: return "GL_COMPRESSED_RGB_FXT1_3DFX"; break; case 0x86B1: return "GL_COMPRESSED_RGBA_FXT1_3DFX"; break; // GL_IMG_texture_compression_pvrtc case 0x8C00: return "GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG"; break; case 0x8C01: return "GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG"; break; case 0x8C02: return "GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG"; break; case 0x8C03: return "GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG"; break; // GL_OES_compressed_ETC1_RGB8_texture case 0x8D64: return "GL_ETC1_RGB8_OES"; break; // GL_ARB_texture_compression_rgtc case 0x8DBB: return "GL_COMPRESSED_RED_RGTC1"; break; case 0x8DBC: return "GL_COMPRESSED_SIGNED_RED_RGTC1"; break; case 0x8DBD: return "GL_COMPRESSED_RG_RGTC2"; break; case 0x8DBE: return "GL_COMPRESSED_SIGNED_RG_RGTC2"; break; // GL_ARB_texture_compression_bptc case 0x8E8C: return "GL_COMPRESSED_RGBA_BPTC_UNORM_ARB"; break; case 0x8E8D: return "GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB"; break; case 0x8E8E: return "GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB"; break; case 0x8E8F: return "GL_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB"; break; // GL_ARB_ES3_compatibility case 0x9274: return "GL_COMPRESSED_RGB8_ETC2"; break; case 0x9275: return "GL_COMPRESSED_SRGB8_ETC2"; break; case 0x9276: return "GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2"; break; case 0x9277: return "GL_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2"; break; case 0x9278: return "GL_COMPRESSED_RGBA8_ETC2_EAC"; break; case 0x9279: return "GL_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC"; break; case 0x9270: return "GL_COMPRESSED_R11_EAC"; break; case 0x9271: return "GL_COMPRESSED_SIGNED_R11_EAC"; break; case 0x9272: return "GL_COMPRESSED_RG11_EAC"; break; case 0x9273: return "GL_COMPRESSED_SIGNED_RG11_EAC"; break; // GL_KHR_texture_compression_astc_hdr case 0x93B0: return "GL_COMPRESSED_RGBA_ASTC_4x4_KHR"; break; case 0x93B1: return "GL_COMPRESSED_RGBA_ASTC_5x4_KHR"; break; case 0x93B2: return "GL_COMPRESSED_RGBA_ASTC_5x5_KHR"; break; case 0x93B3: return "GL_COMPRESSED_RGBA_ASTC_6x5_KHR"; break; case 0x93B4: return "GL_COMPRESSED_RGBA_ASTC_6x6_KHR"; break; case 0x93B5: return "GL_COMPRESSED_RGBA_ASTC_8x5_KHR"; break; case 0x93B6: return "GL_COMPRESSED_RGBA_ASTC_8x6_KHR"; break; case 0x93B7: return "GL_COMPRESSED_RGBA_ASTC_8x8_KHR"; break; case 0x93B8: return "GL_COMPRESSED_RGBA_ASTC_10x5_KHR"; break; case 0x93B9: return "GL_COMPRESSED_RGBA_ASTC_10x6_KHR"; break; case 0x93BA: return "GL_COMPRESSED_RGBA_ASTC_10x8_KHR"; break; case 0x93BB: return "GL_COMPRESSED_RGBA_ASTC_10x10_KHR"; break; case 0x93BC: return "GL_COMPRESSED_RGBA_ASTC_12x10_KHR"; break; case 0x93BD: return "GL_COMPRESSED_RGBA_ASTC_12x12_KHR"; break; case 0x93D0: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR"; break; case 0x93D1: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR"; break; case 0x93D2: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR"; break; case 0x93D3: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR"; break; case 0x93D4: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR"; break; case 0x93D5: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR"; break; case 0x93D6: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR"; break; case 0x93D7: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR"; break; case 0x93D8: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR"; break; case 0x93D9: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR"; break; case 0x93DA: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR"; break; case 0x93DB: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR"; break; case 0x93DC: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR"; break; case 0x93DD: return "GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR"; break; default: return "GL_COMPRESSED_UNKNOWN"; break; } } #endif // RLGL_SHOW_GL_DETAILS_INFO #endif // GRAPHICS_API_OPENGL_33 || GRAPHICS_API_OPENGL_ES2 // Get pixel data size in bytes (image or texture) // NOTE: Size depends on pixel format static int internal_get_pixel_data_size(int width, int height, int format) { int dataSize = 0; // Size in bytes int bpp = 0; // Bits per pixel switch (format) { case PIXELFORMAT_UNCOMPRESSED_GRAYSCALE: bpp = 8; break; case PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA: case PIXELFORMAT_UNCOMPRESSED_R5G6B5: case PIXELFORMAT_UNCOMPRESSED_R5G5B5A1: case PIXELFORMAT_UNCOMPRESSED_R4G4B4A4: bpp = 16; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8A8: bpp = 32; break; case PIXELFORMAT_UNCOMPRESSED_R8G8B8: bpp = 24; break; case PIXELFORMAT_UNCOMPRESSED_R32: bpp = 32; break; case PIXELFORMAT_UNCOMPRESSED_R32G32B32: bpp = 32*3; break; case PIXELFORMAT_UNCOMPRESSED_R32G32B32A32: bpp = 32*4; break; case PIXELFORMAT_UNCOMPRESSED_R16: bpp = 16; break; case PIXELFORMAT_UNCOMPRESSED_R16G16B16: bpp = 16*3; break; case PIXELFORMAT_UNCOMPRESSED_R16G16B16A16: bpp = 16*4; break; case PIXELFORMAT_COMPRESSED_DXT1_RGB: case PIXELFORMAT_COMPRESSED_DXT1_RGBA: case PIXELFORMAT_COMPRESSED_ETC1_RGB: case PIXELFORMAT_COMPRESSED_ETC2_RGB: case PIXELFORMAT_COMPRESSED_PVRT_RGB: case PIXELFORMAT_COMPRESSED_PVRT_RGBA: bpp = 4; break; case PIXELFORMAT_COMPRESSED_DXT3_RGBA: case PIXELFORMAT_COMPRESSED_DXT5_RGBA: case PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA: case PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA: bpp = 8; break; case PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA: bpp = 2; break; default: break; } dataSize = width*height*bpp/8; // Total data size in bytes // Most compressed formats works on 4x4 blocks, // if texture is smaller, minimum dataSize is 8 or 16 if ((width < 4) && (height < 4)) { if ((format >= PIXELFORMAT_COMPRESSED_DXT1_RGB) && (format < PIXELFORMAT_COMPRESSED_DXT3_RGBA)) dataSize = 8; else if ((format >= PIXELFORMAT_COMPRESSED_DXT3_RGBA) && (format < PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA)) dataSize = 16; } return dataSize; } // Auxiliar math functions // #if !defined(RAYMATH_H) && !defined(RL_REFACTORED_C) && !defined(RL_REFACTORED_CPP) // Get identity matrix static Matrix internal_matrix_identity(void) { Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; return result; } // Get two matrix multiplication // NOTE: When multiplying matrices... the order matters! static Matrix internal_matrix_multiply(Matrix left, Matrix right) { Matrix result = { 0 }; result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12; result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13; result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14; result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15; result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12; result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13; result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14; result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15; result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12; result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13; result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14; result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15; result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12; result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13; result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14; result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15; return result; } // #endif RLGL_EXTERN_C_END RLGL_NS_END #endif // RLGL_IMPLEMENTATION