More dependency movement from zpl, incremental design improvements.

Made token_fmt more ergonomic, going to have to use a similar behavior with the upfront body constructors.
This commit is contained in:
2023-07-12 01:33:11 -04:00
parent 20d307759b
commit 7828e6d2ea
26 changed files with 2009 additions and 739 deletions

View File

@ -9,7 +9,7 @@
# define ZPL_IMPLEMENTATION
#endif
// TODO: This will be removed when making the library have zero dependencies.
// TODO : This will be removed when making the library have zero dependencies.
#pragma region ZPL INCLUDE
#if __clang__
# pragma clang diagnostic push
@ -27,10 +27,16 @@
# define ZPL_MODULE_HASHING
#include "zpl.h"
#undef Array
#undef heap
#undef alloc_item
#undef alloc_array
#undef Array
#undef heap
#undef malloc
#undef mfree
#undef ZPL_ASSERT_MSG
#undef ZPL_ASSERT_NOT_NULL
#undef ZPL_DEBUG_TRAP
#undef ZPL_PANIC
using zpl::b32;
using zpl::s8;
@ -38,12 +44,15 @@ using zpl::s16;
using zpl::s32;
using zpl::s64;
using zpl::u8;
using zpl::u16;
using zpl::u32;
using zpl::u64;
using zpl::uw;
using zpl::sw;
using zpl::sptr;
using zpl::uptr;
using zpl::f32;
using zpl::f64;
// using zpl::AllocType;
// using zpl::Arena;
@ -63,39 +72,40 @@ using zpl::uptr;
// using zpl::ZPL_ALLOCATOR_FLAG_CLEAR_TO_ZERO;
using zpl::align_forward;
using zpl::align_forward_i64;
// using zpl::align_forward;
// using zpl::align_forward_i64;
// using zpl::alloc;
// using zpl::alloc_align;
// using zpl::arena_allocator;
// using zpl::arena_init_from_memory;
// using zpl::arena_init_from_allocator;
// using zpl::arena_free;
using zpl::assert_crash;
using zpl::char_first_occurence;
using zpl::char_is_alpha;
using zpl::char_is_alphanumeric;
using zpl::char_is_digit;
using zpl::char_is_hex_digit;
using zpl::char_is_space;
using zpl::crc32;
// using zpl::assert_crash;
// using zpl::char_first_occurence;
// using zpl::char_is_alpha;
// using zpl::char_is_alphanumeric;
// using zpl::char_is_digit;
// using zpl::char_is_hex_digit;
// using zpl::char_is_space;
// using zpl::crc32;
// using zpl::free_all;
using zpl::is_power_of_two;
using zpl::mem_copy;
using zpl::mem_move;
using zpl::mem_set;
using zpl::pointer_add;
// using zpl::is_power_of_two;
// using zpl::mem_copy;
// using zpl::mem_move;
// using zpl::mem_set;
// using zpl::pointer_add;
// using zpl::pool_allocator;
// using zpl::pool_init;
// using zpl::pool_free;
using zpl::process_exit;
using zpl::str_compare;
using zpl::str_copy;
using zpl::str_fmt_buf;
using zpl::str_fmt_va;
using zpl::str_fmt_out_va;
// using zpl::process_exit;
// using zpl::str_compare;
// using zpl::str_copy;
// using zpl::str_fmt_buf;
// using zpl::str_fmt_va;
// using zpl::str_fmt_out_va;
using zpl::str_fmt_out_err;
using zpl::str_fmt_out_err_va;
using zpl::str_len;
// using zpl::str_len;
using zpl::zero_size;
#if __clang__
@ -114,6 +124,27 @@ using zpl::zero_size;
#endif
/* Platform compiler */
#if defined( _MSC_VER )
# define ZPL_COMPILER_MSVC 1
#elif defined( __GNUC__ )
# define ZPL_COMPILER_GCC 1
#elif defined( __clang__ )
# define ZPL_COMPILER_CLANG 1
#elif defined( __MINGW32__ )
# define ZPL_COMPILER_MINGW 1
#elif defined( __TINYC__ )
# define ZPL_COMPILER_TINYC 1
#else
# error Unknown compiler
#endif
#ifndef zpl_cast
# define zpl_cast( Type ) ( Type )
#endif
#include "Banned.define.hpp"
@ -163,8 +194,7 @@ using zpl::zero_size;
#define rcast( Type_, Value_ ) reinterpret_cast< Type_ >( Value_ )
#define pcast( Type_, Value_ ) ( * (Type_*)( & (Value_) ) )
#define GEN_STRINGIZE_VA( ... ) #__VA_ARGS__
#define txt( ... ) GEN_STRINGIZE_VA( __VA_ARGS__ )
#define txt_to_StrC( ... ) sizeof( GEN_STRINGIZE_VA( __VA_ARGS__ ) ), GEN_STRINGIZE_VA( __VA_ARGS__ )
#define stringize( ... ) GEN_STRINGIZE_VA( __VA_ARGS__ )
#define do_once() \
do \
{ \
@ -194,7 +224,73 @@ namespace gen
constexpr
char const* Msg_Invalid_Value = "INVALID VALUE PROVIDED";
#pragma region Debug
#ifndef ZPL_DEBUG_TRAP
# if defined( _MSC_VER )
# if _MSC_VER < 1300
# define ZPL_DEBUG_TRAP() __asm int 3 /* Trap to debugger! */
# else
# define ZPL_DEBUG_TRAP() __debugbreak()
# endif
# elif defined( ZPL_COMPILER_TINYC )
# define ZPL_DEBUG_TRAP() process_exit( 1 )
# else
# define ZPL_DEBUG_TRAP() __builtin_trap()
# endif
#endif
#ifndef ZPL_ASSERT_MSG
# define ZPL_ASSERT_MSG( cond, msg, ... ) \
do \
{ \
if ( ! ( cond ) ) \
{ \
assert_handler( #cond, __FILE__, zpl_cast( s64 ) __LINE__, msg, ##__VA_ARGS__ ); \
ZPL_DEBUG_TRAP(); \
} \
} while ( 0 )
#endif
#ifndef ZPL_ASSERT_NOT_NULL
# define ZPL_ASSERT_NOT_NULL( ptr ) ZPL_ASSERT_MSG( ( ptr ) != NULL, #ptr " must not be NULL" )
#endif
// NOTE: Things that shouldn't happen with a message!
#ifndef ZPL_PANIC
# define ZPL_PANIC( msg, ... ) ZPL_ASSERT_MSG( 0, msg, ##__VA_ARGS__ )
#endif
void assert_handler( char const* condition, char const* file, s32 line, char const* msg, ... );
s32 assert_crash( char const* condition );
void process_exit( u32 code );
#pragma endregion Debug
#pragma region Memory
//! Checks if value is power of 2.
ZPL_DEF_INLINE b32 is_power_of_two( sw x );
//! Aligns address to specified alignment.
ZPL_DEF_INLINE void* align_forward( void* ptr, sw alignment );
//! Aligns value to a specified alignment.
ZPL_DEF_INLINE s64 align_forward_i64( s64 value, sw alignment );
//! Moves pointer forward by bytes.
ZPL_DEF_INLINE void* pointer_add( void* ptr, sw bytes );
//! Copy non-overlapping memory from source to destination.
void* mem_copy( void* dest, void const* source, sw size );
//! Search for a constant value within the size limit at memory location.
ZPL_DEF void const* mem_find( void const* data, u8 byte_value, sw size );
//! Copy memory from source to destination.
ZPL_DEF_INLINE void* mem_move( void* dest, void const* source, sw size );
//! Set constant value at memory location with specified size.
ZPL_DEF_INLINE void* mem_set( void* data, u8 byte_value, sw size );
enum AllocType : u8
{
@ -246,7 +342,6 @@ namespace gen
# define alloc_array( allocator_, Type, count ) ( Type* )alloc( allocator_, size_of( Type ) * ( count ) )
#endif
/* heap memory analysis tools */
/* define ZPL_HEAP_ANALYSIS to enable this feature */
/* call zpl_heap_stats_init at the beginning of the entry point */
@ -266,17 +361,168 @@ namespace gen
//! The heap allocator backed by operating system's memory manager.
constexpr AllocatorInfo heap( void ) { return { heap_allocator_proc, nullptr }; }
// #ifndef malloc
#ifndef malloc
//! Helper to allocate memory using heap allocator.
# define malloc( sz ) alloc( heap(), sz )
// //! Helper to allocate memory using heap allocator.
// # define malloc( sz ) ZPL_NS( alloc )( ZPL_NS( heap_allocator )(), sz )
//! Helper to free memory allocated by heap allocator.
# define mfree( ptr ) free( heap(), ptr )
#endif
// //! Helper to free memory allocated by heap allocator.
// # define mfree( ptr ) ZPL_NS( free )( ZPL_NS( heap_allocator )(), ptr )
ZPL_IMPL_INLINE b32 is_power_of_two( sw x )
{
if ( x <= 0 )
return false;
return ! ( x & ( x - 1 ) );
}
// //! Alias to heap allocator.
// # define heap ZPL_NS( heap_allocator )
// #endif
ZPL_IMPL_INLINE void* align_forward( void* ptr, sw alignment )
{
uptr p;
ZPL_ASSERT( is_power_of_two( alignment ) );
p = zpl_cast( uptr ) ptr;
return zpl_cast( void* )( ( p + ( alignment - 1 ) ) & ~( alignment - 1 ) );
}
ZPL_IMPL_INLINE s64 align_forward_i64( s64 value, sw alignment )
{
return value + ( alignment - value % alignment ) % alignment;
}
ZPL_IMPL_INLINE void* pointer_add( void* ptr, sw bytes )
{
return zpl_cast( void* )( zpl_cast( u8* ) ptr + bytes );
}
ZPL_IMPL_INLINE void* mem_move( void* dest, void const* source, sw n )
{
if ( dest == NULL )
{
return NULL;
}
u8* d = zpl_cast( u8* ) dest;
u8 const* s = zpl_cast( u8 const* ) source;
if ( d == s )
return d;
if ( s + n <= d || d + n <= s ) // NOTE: Non-overlapping
return mem_copy( d, s, n );
if ( d < s )
{
if ( zpl_cast( uptr ) s % size_of( sw ) == zpl_cast( uptr ) d % size_of( sw ) )
{
while ( zpl_cast( uptr ) d % size_of( sw ) )
{
if ( ! n-- )
return dest;
*d++ = *s++;
}
while ( n >= size_of( sw ) )
{
*zpl_cast( sw* ) d = *zpl_cast( sw* ) s;
n -= size_of( sw );
d += size_of( sw );
s += size_of( sw );
}
}
for ( ; n; n-- )
*d++ = *s++;
}
else
{
if ( ( zpl_cast( uptr ) s % size_of( sw ) ) == ( zpl_cast( uptr ) d % size_of( sw ) ) )
{
while ( zpl_cast( uptr )( d + n ) % size_of( sw ) )
{
if ( ! n-- )
return dest;
d[ n ] = s[ n ];
}
while ( n >= size_of( sw ) )
{
n -= size_of( sw );
*zpl_cast( sw* )( d + n ) = *zpl_cast( sw* )( s + n );
}
}
while ( n )
n--, d[ n ] = s[ n ];
}
return dest;
}
ZPL_IMPL_INLINE void* mem_set( void* dest, u8 c, sw n )
{
if ( dest == NULL )
{
return NULL;
}
u8* s = zpl_cast( u8* ) dest;
sw k;
u32 c32 = ( ( u32 )-1 ) / 255 * c;
if ( n == 0 )
return dest;
s[ 0 ] = s[ n - 1 ] = c;
if ( n < 3 )
return dest;
s[ 1 ] = s[ n - 2 ] = c;
s[ 2 ] = s[ n - 3 ] = c;
if ( n < 7 )
return dest;
s[ 3 ] = s[ n - 4 ] = c;
if ( n < 9 )
return dest;
k = -zpl_cast( sptr ) s & 3;
s += k;
n -= k;
n &= -4;
*zpl_cast( u32* )( s + 0 ) = c32;
*zpl_cast( u32* )( s + n - 4 ) = c32;
if ( n < 9 )
return dest;
*zpl_cast( u32* )( s + 4 ) = c32;
*zpl_cast( u32* )( s + 8 ) = c32;
*zpl_cast( u32* )( s + n - 12 ) = c32;
*zpl_cast( u32* )( s + n - 8 ) = c32;
if ( n < 25 )
return dest;
*zpl_cast( u32* )( s + 12 ) = c32;
*zpl_cast( u32* )( s + 16 ) = c32;
*zpl_cast( u32* )( s + 20 ) = c32;
*zpl_cast( u32* )( s + 24 ) = c32;
*zpl_cast( u32* )( s + n - 28 ) = c32;
*zpl_cast( u32* )( s + n - 24 ) = c32;
*zpl_cast( u32* )( s + n - 20 ) = c32;
*zpl_cast( u32* )( s + n - 16 ) = c32;
k = 24 + ( zpl_cast( uptr ) s & 4 );
s += k;
n -= k;
{
u64 c64 = ( zpl_cast( u64 ) c32 << 32 ) | c32;
while ( n > 31 )
{
*zpl_cast( u64* )( s + 0 ) = c64;
*zpl_cast( u64* )( s + 8 ) = c64;
*zpl_cast( u64* )( s + 16 ) = c64;
*zpl_cast( u64* )( s + 24 ) = c64;
n -= 32;
s += 32;
}
}
return dest;
}
ZPL_IMPL_INLINE void* alloc_align( AllocatorInfo a, sw size, sw alignment )
{
@ -338,14 +584,6 @@ namespace gen
}
}
// ZPL_IMPL_INLINE AllocatorInfo heap( void )
// {
// AllocatorInfo a;
// a.Proc = heap_allocator_proc;
// a.Data = nullptr;
// return a;
// }
struct Arena
{
static
@ -466,9 +704,234 @@ namespace gen
return { allocator_proc, this };
}
};
#pragma endregion Memory
#pragma region String Ops
ZPL_DEF_INLINE const char* char_first_occurence( const char* str, char c );
ZPL_DEF_INLINE b32 char_is_alpha( char c );
ZPL_DEF_INLINE b32 char_is_alphanumeric( char c );
ZPL_DEF_INLINE b32 char_is_digit( char c );
ZPL_DEF_INLINE b32 char_is_hex_digit( char c );
ZPL_DEF_INLINE b32 char_is_space( char c );
ZPL_DEF_INLINE char char_to_lower( char c );
ZPL_DEF_INLINE char char_to_upper( char c );
ZPL_DEF_INLINE s32 digit_to_int( char c );
ZPL_DEF_INLINE s32 hex_digit_to_int( char c );
ZPL_DEF_INLINE s32 str_compare( const char* s1, const char* s2 );
ZPL_DEF_INLINE s32 str_compare( const char* s1, const char* s2, sw len );
ZPL_DEF_INLINE char* str_copy( char* dest, const char* source, sw len );
ZPL_DEF_INLINE sw str_copy_nulpad( char* dest, const char* source, sw len );
ZPL_DEF_INLINE sw str_len( const char* str );
ZPL_DEF_INLINE sw str_len( const char* str, sw max_len );
ZPL_DEF_INLINE char* str_reverse( char* str ); // NOTE: ASCII only
// NOTE: ASCII only
ZPL_DEF_INLINE void str_to_lower( char* str );
ZPL_DEF_INLINE void str_to_upper( char* str );
s64 str_to_i64( const char* str, char** end_ptr, s32 base ); // TODO : Support more than just decimal and hexadecimal
void i64_to_str( s64 value, char* string, s32 base );
void u64_to_str( u64 value, char* string, s32 base );
ZPL_IMPL_INLINE const char* char_first_occurence( const char* s, char c )
{
char ch = c;
for ( ; *s != ch; s++ )
{
if ( *s == '\0' )
return NULL;
}
return s;
}
ZPL_IMPL_INLINE b32 char_is_alpha( char c )
{
if ( ( c >= 'A' && c <= 'Z' ) || ( c >= 'a' && c <= 'z' ) )
return true;
return false;
}
ZPL_IMPL_INLINE b32 char_is_alphanumeric( char c )
{
return char_is_alpha( c ) || char_is_digit( c );
}
ZPL_IMPL_INLINE b32 char_is_digit( char c )
{
if ( c >= '0' && c <= '9' )
return true;
return false;
}
ZPL_IMPL_INLINE b32 char_is_hex_digit( char c )
{
if ( char_is_digit( c ) || ( c >= 'a' && c <= 'f' ) || ( c >= 'A' && c <= 'F' ) )
return true;
return false;
}
ZPL_IMPL_INLINE b32 char_is_space( char c )
{
if ( c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f' || c == '\v' )
return true;
return false;
}
ZPL_IMPL_INLINE char char_to_lower( char c )
{
if ( c >= 'A' && c <= 'Z' )
return 'a' + ( c - 'A' );
return c;
}
ZPL_IMPL_INLINE char char_to_upper( char c )
{
if ( c >= 'a' && c <= 'z' )
return 'A' + ( c - 'a' );
return c;
}
ZPL_IMPL_INLINE s32 digit_to_int( char c )
{
return char_is_digit( c ) ? c - '0' : c - 'W';
}
ZPL_IMPL_INLINE s32 hex_digit_to_int( char c )
{
if ( char_is_digit( c ) )
return digit_to_int( c );
else if ( is_between( c, 'a', 'f' ) )
return c - 'a' + 10;
else if ( is_between( c, 'A', 'F' ) )
return c - 'A' + 10;
return -1;
}
ZPL_IMPL_INLINE s32 str_compare( const char* s1, const char* s2 )
{
while ( *s1 && ( *s1 == *s2 ) )
{
s1++, s2++;
}
return *( u8* )s1 - *( u8* )s2;
}
ZPL_IMPL_INLINE s32 str_compare( const char* s1, const char* s2, sw len )
{
for ( ; len > 0; s1++, s2++, len-- )
{
if ( *s1 != *s2 )
return ( ( s1 < s2 ) ? -1 : +1 );
else if ( *s1 == '\0' )
return 0;
}
return 0;
}
ZPL_IMPL_INLINE char* str_copy( char* dest, const char* source, sw len )
{
ZPL_ASSERT_NOT_NULL( dest );
if ( source )
{
char* str = dest;
while ( len > 0 && *source )
{
*str++ = *source++;
len--;
}
while ( len > 0 )
{
*str++ = '\0';
len--;
}
}
return dest;
}
ZPL_IMPL_INLINE sw str_copy_nulpad( char* dest, const char* source, sw len )
{
sw result = 0;
ZPL_ASSERT_NOT_NULL( dest );
if ( source )
{
const char* source_start = source;
char* str = dest;
while ( len > 0 && *source )
{
*str++ = *source++;
len--;
}
while ( len > 0 )
{
*str++ = '\0';
len--;
}
result = source - source_start;
}
return result;
}
ZPL_IMPL_INLINE sw str_len( const char* str )
{
if ( str == NULL )
{
return 0;
}
const char* p = str;
while ( *str )
str++;
return str - p;
}
ZPL_IMPL_INLINE sw str_len( const char* str, sw max_len )
{
const char* end = zpl_cast( const char* ) mem_find( str, 0, max_len );
if ( end )
return end - str;
return max_len;
}
ZPL_IMPL_INLINE char* str_reverse( char* str )
{
sw len = str_len( str );
char* a = str + 0;
char* b = str + len - 1;
len /= 2;
while ( len-- )
{
swap( char, *a, *b );
a++, b--;
}
return str;
}
ZPL_IMPL_INLINE void str_to_lower( char* str )
{
if ( ! str )
return;
while ( *str )
{
*str = char_to_lower( *str );
str++;
}
}
ZPL_IMPL_INLINE void str_to_upper( char* str )
{
if ( ! str )
return;
while ( *str )
{
*str = char_to_upper( *str );
str++;
}
}
#pragma endregion String Ops
#pragma region Containers
#pragma push_macro("template")
#undef template
@ -551,7 +1014,6 @@ namespace gen
{
Data[ idx ] = value;
}
// mem_set( Data + begin, value, end - begin)
return true;
}
@ -618,6 +1080,8 @@ namespace gen
{
if ( ! grow( num ) )
return false;
header = get_header();
}
header->Num = num;
@ -635,7 +1099,7 @@ namespace gen
header.Num = new_capacity;
sw size = sizeof( Header ) + sizeof( Type ) * new_capacity;
Header* new_header = reinterpret_cast< Header* >( alloc( header.Allocator, size ) );
Header* new_header = rcast( Header*, alloc( header.Allocator, size ) );
if ( new_header == nullptr )
return false;
@ -703,6 +1167,19 @@ namespace gen
return result;
}
static
HashTable init_reserve( AllocatorInfo allocator, sw num )
{
HashTable<Type> result = { { nullptr }, { nullptr } };
result.Hashes = Array<sw>::init_reserve( allocator, num );
result.Hashes.get_header()->Num = num;
result.Entries = Array<Entry>::init_reserve( allocator, num );
return result;
}
void clear( void )
{
for ( sw idx = 0; idx < Hashes.num(); idx++ )
@ -764,10 +1241,7 @@ namespace gen
sw idx;
sw last_added_index;
HashTable<Type> new_ht = init( Hashes.get_header()->Allocator );
new_ht.Hashes.resize( new_num );
new_ht.Entries.reserve( new_ht.Hashes.num() );
HashTable<Type> new_ht = init_reserve( Hashes.get_header()->Allocator, new_num );
Array<sw>::Header* hash_header = new_ht.Hashes.get_header();
@ -798,8 +1272,6 @@ namespace gen
}
destroy();
// Hashes = new_ht.Hashes;
// Entries = new_ht.Entries;
*this = new_ht;
}
@ -926,6 +1398,12 @@ namespace gen
#pragma pop_macro("template")
#pragma endregion Containers
#pragma region Hashing
u32 crc32( void const* data, sw len );
#pragma endregion Hashing
#pragma region String
// Constant string with length.
struct StrC
@ -933,18 +1411,20 @@ namespace gen
sw Len;
char const* Ptr;
static constexpr
StrC from( char const* str )
{
return { str_len( str ), str };
}
operator char const* () const
{
return Ptr;
}
};
#define txt_StrC( text ) \
(StrC){ sizeof( text ) - 1, text }
StrC to_StrC( char const* str )
{
return { str_len( str ), str };
}
// Dynamic String
// This is directly based off the ZPL string api.
// They used a header pattern
@ -1023,29 +1503,10 @@ namespace gen
}
static
String fmt( AllocatorInfo allocator, char* buf, sw buf_size, char const* fmt, ... )
{
va_list va;
va_start( va, fmt );
str_fmt_va( buf, buf_size, fmt, va );
va_end( va );
return make( allocator, buf );
}
String fmt( AllocatorInfo allocator, char* buf, sw buf_size, char const* fmt, ... );
static
String fmt_buf( AllocatorInfo allocator, char const* fmt, ... )
{
local_persist thread_local
char buf[ ZPL_PRINTF_MAXLEN ] = { 0 };
va_list va;
va_start( va, fmt );
str_fmt_va( buf, ZPL_PRINTF_MAXLEN, fmt, va );
va_end( va );
return make( allocator, buf );
}
String fmt_buf( AllocatorInfo allocator, char const* fmt, ... );
static
String join( AllocatorInfo allocator, char const** parts, sw num_parts, char const* glue )
@ -1151,18 +1612,7 @@ namespace gen
return append( other.Data, other.length() );
}
bool append_fmt( char const* fmt, ... )
{
sw res;
char buf[ ZPL_PRINTF_MAXLEN ] = { 0 };
va_list va;
va_start( va, fmt );
res = str_fmt_va( buf, count_of( buf ) - 1, fmt, va ) - 1;
va_end( va );
return append( buf, res );
}
bool append_fmt( char const* fmt, ... );
sw avail_space() const
{
@ -1424,6 +1874,22 @@ namespace gen
DirEntry* Dir;
};
enum FileStandardType
{
EFileStandard_INPUT,
EFileStandard_OUTPUT,
EFileStandard_ERROR,
EFileStandard_COUNT,
};
/**
* Get standard file I/O.
* @param std Check zpl_file_standard_type
* @return File handle to standard I/O
*/
FileInfo* file_get_standard( FileStandardType std );
/**
* Closes the file
* @param file
@ -1533,6 +1999,7 @@ namespace gen
{
if ( ! f->Ops.read_at )
f->Ops = default_file_operations;
return f->Ops.write_at( f->FD, buffer, size, offset, bytes_written );
}
@ -1540,6 +2007,17 @@ namespace gen
#pragma endregion File Handling
#pragma region Printing
// NOTE: A locally persisting buffer is used internally
char* str_fmt_buf( char const* fmt, ... );
char* str_fmt_buf_va( char const* fmt, va_list va );
sw str_fmt_va( char* str, sw n, char const* fmt, va_list va );
sw str_fmt_out_va( char const* fmt, va_list va );
sw str_fmt_file_va( FileInfo* f, char const* fmt, va_list va );
#pragma endregion Printing
namespace Memory
{
// NOTE: This limits the size of the string that can be read from a file or generated to 10 megs.
@ -1556,7 +2034,6 @@ namespace gen
void cleanup();
}
inline
sw log_fmt(char const* fmt, ...)
{