gencpp/project/dependencies/memory.hpp

673 lines
22 KiB
C++
Raw Normal View History

#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "debug.hpp"
#endif
#pragma region Memory
2024-11-29 11:50:54 -08:00
#define kilobytes( x ) ( ( x ) * ( s64 )( 1024 ) )
2023-07-24 15:19:37 -07:00
#define megabytes( x ) ( kilobytes( x ) * ( s64 )( 1024 ) )
#define gigabytes( x ) ( megabytes( x ) * ( s64 )( 1024 ) )
#define terabytes( x ) ( gigabytes( x ) * ( s64 )( 1024 ) )
#define GEN__ONES ( scast( GEN_NS usize, - 1) / GEN_U8_MAX )
2023-07-24 15:19:37 -07:00
#define GEN__HIGHS ( GEN__ONES * ( GEN_U8_MAX / 2 + 1 ) )
#define GEN__HAS_ZERO( x ) ( ( ( x ) - GEN__ONES ) & ~( x ) & GEN__HIGHS )
2024-12-01 09:48:58 -08:00
template< class Type >
void swap( Type& a, Type& b )
{
Type tmp = a;
a = b;
b = tmp;
}
2023-07-24 15:19:37 -07:00
//! Checks if value is power of 2.
b32 is_power_of_two( ssize x );
2023-07-24 15:19:37 -07:00
//! Aligns address to specified alignment.
void* align_forward( void* ptr, ssize alignment );
2023-07-24 15:19:37 -07:00
//! Aligns value to a specified alignment.
s64 align_forward_by_value( s64 value, ssize alignment );
2023-07-24 15:19:37 -07:00
//! Moves pointer forward by bytes.
void* pointer_add( void* ptr, ssize bytes );
2023-07-24 15:19:37 -07:00
//! Moves pointer forward by bytes.
void const* pointer_add_const( void const* ptr, ssize bytes );
2023-07-24 15:19:37 -07:00
//! Calculates difference between two addresses.
ssize pointer_diff( void const* begin, void const* end );
2023-07-24 15:19:37 -07:00
//! Copy non-overlapping memory from source to destination.
void* mem_copy( void* dest, void const* source, ssize size );
2023-07-24 15:19:37 -07:00
//! Search for a constant value within the size limit at memory location.
void const* mem_find( void const* data, u8 byte_value, ssize size );
2023-07-24 15:19:37 -07:00
//! Copy memory from source to destination.
void* mem_move( void* dest, void const* source, ssize size );
2023-07-24 15:19:37 -07:00
//! Set constant value at memory location with specified size.
void* mem_set( void* data, u8 byte_value, ssize size );
2023-07-24 15:19:37 -07:00
//! @param ptr Memory location to clear up.
//! @param size The size to clear up with.
void zero_size( void* ptr, ssize size );
2023-07-24 15:19:37 -07:00
//! Clears up an item.
#define zero_item( t ) zero_size( ( t ), size_of( *( t ) ) ) // NOTE: Pass pointer of struct
//! Clears up an array.
#define zero_array( a, count ) zero_size( ( a ), size_of( *( a ) ) * count )
enum AllocType : u8
2023-07-24 15:19:37 -07:00
{
EAllocation_ALLOC,
EAllocation_FREE,
EAllocation_FREE_ALL,
EAllocation_RESIZE,
};
typedef void*(AllocatorProc)( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags );
2023-07-24 15:19:37 -07:00
struct AllocatorInfo
2023-07-24 15:19:37 -07:00
{
AllocatorProc* Proc;
void* Data;
};
enum AllocFlag
{
ALLOCATOR_FLAG_CLEAR_TO_ZERO = bit( 0 ),
};
#ifndef GEN_DEFAULT_MEMORY_ALIGNMENT
# define GEN_DEFAULT_MEMORY_ALIGNMENT ( 2 * size_of( void* ) )
#endif
#ifndef GEN_DEFAULT_ALLOCATOR_FLAGS
# define GEN_DEFAULT_ALLOCATOR_FLAGS ( ALLOCATOR_FLAG_CLEAR_TO_ZERO )
#endif
//! Allocate memory with default alignment.
void* alloc( AllocatorInfo a, ssize size );
2023-07-24 15:19:37 -07:00
//! Allocate memory with specified alignment.
void* alloc_align( AllocatorInfo a, ssize size, ssize alignment );
2023-07-24 15:19:37 -07:00
//! Free allocated memory.
void allocator_free( AllocatorInfo a, void* ptr );
2023-07-24 15:19:37 -07:00
//! Free all memory allocated by an allocator.
void free_all( AllocatorInfo a );
2023-07-24 15:19:37 -07:00
//! Resize an allocated memory.
void* resize( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size );
2023-07-24 15:19:37 -07:00
//! Resize an allocated memory with specified alignment.
void* resize_align( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size, ssize alignment );
2023-07-24 15:19:37 -07:00
//! Allocate memory for an item.
#define alloc_item( allocator_, Type ) ( Type* )alloc( allocator_, size_of( Type ) )
//! Allocate memory for an array of items.
#define alloc_array( allocator_, Type, count ) ( Type* )alloc( allocator_, size_of( Type ) * ( count ) )
/* heap memory analysis tools */
/* define GEN_HEAP_ANALYSIS to enable this feature */
/* call zpl_heap_stats_init at the beginning of the entry point */
/* you can call zpl_heap_stats_check near the end of the execution to validate any possible leaks */
void heap_stats_init( void );
ssize heap_stats_used_memory( void );
ssize heap_stats_alloc_count( void );
void heap_stats_check( void );
2023-07-24 15:19:37 -07:00
//! Allocate/Resize memory using default options.
//! Use this if you don't need a "fancy" resize allocation
void* default_resize_align( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size, ssize alignment );
2023-07-24 15:19:37 -07:00
void* heap_allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags );
2023-07-24 15:19:37 -07:00
//! The heap allocator backed by operating system's memory manager.
constexpr AllocatorInfo heap( void ) { AllocatorInfo allocator = { heap_allocator_proc, nullptr }; return allocator; }
2023-07-24 15:19:37 -07:00
//! Helper to allocate memory using heap allocator.
#define malloc( sz ) alloc( heap(), sz )
//! Helper to free memory allocated by heap allocator.
#define mfree( ptr ) free( heap(), ptr )
struct VirtualMemory
{
void* data;
ssize size;
};
//! Initialize virtual memory from existing data.
VirtualMemory vm_from_memory( void* data, ssize size );
//! Allocate virtual memory at address with size.
//! @param addr The starting address of the region to reserve. If NULL, it lets operating system to decide where to allocate it.
//! @param size The size to serve.
VirtualMemory vm_alloc( void* addr, ssize size );
//! Release the virtual memory.
b32 vm_free( VirtualMemory vm );
//! Trim virtual memory.
VirtualMemory vm_trim( VirtualMemory vm, ssize lead_size, ssize size );
//! Purge virtual memory.
b32 vm_purge( VirtualMemory vm );
//! Retrieve VM's page size and alignment.
ssize virtual_memory_page_size( ssize* alignment_out );
#pragma region Arena
struct Arena;
AllocatorInfo arena_allocator_info( Arena* arena );
2023-07-24 15:19:37 -07:00
// Remove static keyword and rename allocator_proc
void* arena_allocator_proc(void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags);
2023-07-24 15:19:37 -07:00
// Add these declarations after the Arena struct
Arena arena_init_from_allocator(AllocatorInfo backing, ssize size);
Arena arena_init_from_memory ( void* start, ssize size );
Arena arena_init_sub (Arena* parent, ssize size);
ssize arena_alignment_of (Arena* arena, ssize alignment);
void arena_check (Arena* arena);
void arena_free (Arena* arena);
ssize arena_size_remaining(Arena* arena, ssize alignment);
2023-07-24 15:19:37 -07:00
struct Arena
{
2023-07-24 15:19:37 -07:00
AllocatorInfo Backing;
void* PhysicalStart;
ssize TotalSize;
ssize TotalUsed;
ssize TempCount;
2023-07-24 15:19:37 -07:00
#if GEN_COMPILER_CPP
#pragma region Member Mapping
forceinline operator AllocatorInfo() { return GEN_NS arena_allocator_info(this); }
forceinline static void* allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags ) { return GEN_NS arena_allocator_proc( allocator_data, type, size, alignment, old_memory, old_size, flags ); }
forceinline static Arena init_from_memory( void* start, ssize size ) { return GEN_NS arena_init_from_memory( start, size ); }
forceinline static Arena init_from_allocator( AllocatorInfo backing, ssize size ) { return GEN_NS arena_init_from_allocator( backing, size ); }
forceinline static Arena init_sub( Arena& parent, ssize size ) { return GEN_NS arena_init_from_allocator( parent.Backing, size ); }
forceinline ssize alignment_of( ssize alignment ) { return GEN_NS arena_alignment_of(this, alignment); }
forceinline void free() { return GEN_NS arena_free(this); }
forceinline ssize size_remaining( ssize alignment ) { return GEN_NS arena_size_remaining(this, alignment); }
// This id is defined by Unreal for asserts
#pragma push_macro("check")
#undef check
forceinline void check() { GEN_NS arena_check(this); }
#pragma pop_macro("check")
#pragma endregion Member Mapping
#endif
2023-07-24 15:19:37 -07:00
};
#if GEN_COMPILER_CPP
forceinline AllocatorInfo allocator_info(Arena& arena ) { return arena_allocator_info(& arena); }
forceinline Arena init_sub (Arena& parent, ssize size) { return arena_init_sub( & parent, size); }
forceinline ssize alignment_of (Arena& arena, ssize alignment) { return arena_alignment_of( & arena, alignment); }
forceinline void free (Arena& arena) { return arena_free(& arena); }
forceinline ssize size_remaining(Arena& arena, ssize alignment) { return arena_size_remaining(& arena, alignment); }
// This id is defined by Unreal for asserts
#pragma push_macro("check")
#undef check
2024-12-04 08:30:54 -08:00
forceinline void check(Arena& arena) { return arena_check(& arena); };
#pragma pop_macro("check")
#endif
inline
AllocatorInfo arena_allocator_info( Arena* arena ) {
GEN_ASSERT(arena != nullptr);
AllocatorInfo info = { arena_allocator_proc, arena };
return info;
}
inline
Arena arena_init_from_memory( void* start, ssize size )
{
Arena arena = {
{ nullptr, nullptr },
start,
size,
0,
0
};
return arena;
}
inline
Arena arena_init_from_allocator(AllocatorInfo backing, ssize size) {
Arena result = {
backing,
alloc(backing, size),
size,
0,
0
};
return result;
}
inline
Arena arena_init_sub(Arena* parent, ssize size) {
GEN_ASSERT(parent != nullptr);
return arena_init_from_allocator(parent->Backing, size);
}
inline
ssize arena_alignment_of(Arena* arena, ssize alignment)
{
GEN_ASSERT(arena != nullptr);
ssize alignment_offset, result_pointer, mask;
GEN_ASSERT(is_power_of_two(alignment));
alignment_offset = 0;
result_pointer = (ssize)arena->PhysicalStart + arena->TotalUsed;
mask = alignment - 1;
if (result_pointer & mask)
alignment_offset = alignment - (result_pointer & mask);
return alignment_offset;
}
inline
void arena_check(Arena* arena)
{
GEN_ASSERT(arena != nullptr );
GEN_ASSERT(arena->TempCount == 0);
}
inline
void arena_free(Arena* arena)
{
GEN_ASSERT(arena != nullptr);
if (arena->Backing.Proc)
{
allocator_free(arena->Backing, arena->PhysicalStart);
arena->PhysicalStart = nullptr;
}
}
inline
ssize arena_size_remaining(Arena* arena, ssize alignment)
{
GEN_ASSERT(arena != nullptr);
ssize result = arena->TotalSize - (arena->TotalUsed + arena_alignment_of(arena, alignment));
return result;
}
#pragma endregion Arena
#pragma region FixedArena
template<s32 Size>
struct FixedArena;
template<s32 Size> FixedArena<Size> fixed_arena_init();
template<s32 Size> AllocatorInfo fixed_arena_allocator_info(FixedArena<Size>* fixed_arena );
template<s32 Size> ssize fixed_arena_size_remaining(FixedArena<Size>* fixed_arena, ssize alignment);
#if 0
template<s32 Size> AllocatorInfo allocator_info( FixedArena<Size>& fixed_arena ) { return allocator_info(& fixed_arena); }
template<s32 Size> ssize size_remaining(FixedArena<Size>& fixed_arena, ssize alignment) { return size_remaining( & fixed_arena, alignment); }
#endif
2023-09-07 19:29:04 -07:00
// Just a wrapper around using an arena with memory associated with its scope instead of from an allocator.
// Used for static segment or stack allocations.
template< s32 Size >
struct FixedArena
{
char memory[Size];
Arena arena;
2023-09-07 19:29:04 -07:00
#if 0
#pragma region Member Mapping
forceinline operator AllocatorInfo() { return GEN_NS allocator_info(this); }
2023-09-07 19:29:04 -07:00
forceinline static FixedArena init() { FixedArena result; GEN_NS fixed_arena_init<Size>(result); return result; }
forceinline ssize size_remaining(ssize alignment) { GEN_NS size_remaining(this, alignment); }
#pragma endregion Member Mapping
#endif
2023-09-07 19:29:04 -07:00
};
template<s32 Size> inline
AllocatorInfo fixed_arena_allocator_info( FixedArena<Size>* fixed_arena ) {
GEN_ASSERT(fixed_arena);
return { arena_allocator_proc, & fixed_arena->arena };
}
2024-11-30 10:14:47 -08:00
template<s32 Size> inline
void fixed_arena_init(FixedArena<Size>* result) {
zero_size(& result->memory[0], Size);
result->arena = arena_init_from_memory(& result->memory[0], Size);
}
template<s32 Size> inline
void fixed_arena_free(FixedArena<Size>* fixed_arena) {
arena_free( & fixed_arena->arena);
}
template<s32 Size> inline
ssize fixed_arena_size_remaining(FixedArena<Size>* fixed_arena, ssize alignment) {
return size_remaining(fixed_arena->arena, alignment);
}
2023-09-07 19:29:04 -07:00
using Arena_1KB = FixedArena< kilobytes( 1 ) >;
using Arena_4KB = FixedArena< kilobytes( 4 ) >;
using Arena_8KB = FixedArena< kilobytes( 8 ) >;
using Arena_16KB = FixedArena< kilobytes( 16 ) >;
using Arena_32KB = FixedArena< kilobytes( 32 ) >;
using Arena_64KB = FixedArena< kilobytes( 64 ) >;
using Arena_128KB = FixedArena< kilobytes( 128 ) >;
using Arena_256KB = FixedArena< kilobytes( 256 ) >;
using Arena_512KB = FixedArena< kilobytes( 512 ) >;
using Arena_1MB = FixedArena< megabytes( 1 ) >;
using Arena_2MB = FixedArena< megabytes( 2 ) >;
using Arena_4MB = FixedArena< megabytes( 4 ) >;
#pragma endregion FixedArena
2023-09-07 19:29:04 -07:00
#pragma region Pool
struct Pool;
2023-07-24 15:19:37 -07:00
void* pool_allocator_proc(void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags);
Pool pool_init(AllocatorInfo backing, ssize num_blocks, ssize block_size);
Pool pool_init_align(AllocatorInfo backing, ssize num_blocks, ssize block_size, ssize block_align);
AllocatorInfo pool_allocator_info(Pool* pool);
void pool_clear(Pool* pool);
void pool_free(Pool* pool);
#if 0
2024-12-04 08:30:54 -08:00
AllocatorInfo allocator_info(Pool& pool) { return pool_allocator_info(& pool); }
void clear(Pool& pool) { return pool_clear(& pool); }
void free(Pool& pool) { return pool_free(& pool); }
#endif
2023-07-24 15:19:37 -07:00
struct Pool
{
2023-07-24 15:19:37 -07:00
AllocatorInfo Backing;
void* PhysicalStart;
void* FreeList;
ssize BlockSize;
ssize BlockAlign;
ssize TotalSize;
ssize NumBlocks;
2023-07-24 15:19:37 -07:00
#if ! GEN_C_LIKE_CPP
#pragma region Member Mapping
forceinline operator AllocatorInfo() { return GEN_NS pool_allocator_info(this); }
forceinline static void* allocator_proc(void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags) { return GEN_NS pool_allocator_proc(allocator_data, type, size, alignment, old_memory, old_size, flags); }
forceinline static Pool init(AllocatorInfo backing, ssize num_blocks, ssize block_size) { return GEN_NS pool_init(backing, num_blocks, block_size); }
forceinline static Pool init_align(AllocatorInfo backing, ssize num_blocks, ssize block_size, ssize block_align) { return GEN_NS pool_init_align(backing, num_blocks, block_size, block_align); }
forceinline void clear() { GEN_NS pool_clear( this); }
forceinline void free() { GEN_NS pool_free( this); }
#pragma endregion
#endif
2023-07-24 15:19:37 -07:00
};
inline
AllocatorInfo pool_allocator_info(Pool* pool) {
AllocatorInfo info = { pool_allocator_proc, pool };
return info;
}
inline
Pool pool_init(AllocatorInfo backing, ssize num_blocks, ssize block_size) {
return pool_init_align(backing, num_blocks, block_size, GEN_DEFAULT_MEMORY_ALIGNMENT);
}
inline
void pool_free(Pool* pool) {
if(pool->Backing.Proc) {
allocator_free(pool->Backing, pool->PhysicalStart);
}
}
#pragma endregion Pool
inline
b32 is_power_of_two( ssize x ) {
if ( x <= 0 )
return false;
return ! ( x & ( x - 1 ) );
}
inline
mem_ptr align_forward( void* ptr, ssize alignment )
{
GEN_ASSERT( is_power_of_two( alignment ) );
uptr p = to_uptr(ptr);
uptr forward = (p + ( alignment - 1 ) ) & ~( alignment - 1 );
return to_mem_ptr(forward);
}
inline s64 align_forward_s64( s64 value, ssize alignment ) { return value + ( alignment - value % alignment ) % alignment; }
inline void* pointer_add ( void* ptr, ssize bytes ) { return rcast(void*, rcast( u8*, ptr) + bytes ); }
inline void const* pointer_add_const( void const* ptr, ssize bytes ) { return rcast(void const*, rcast( u8 const*, ptr) + bytes ); }
inline sptr pointer_diff( mem_ptr_const begin, mem_ptr_const end ) {
return scast( ssize, rcast( u8 const*, end) - rcast(u8 const*, begin) );
}
inline
void* mem_move( void* destination, void const* source, ssize byte_count )
{
if ( destination == NULL )
{
return NULL;
}
u8* dest_ptr = rcast( u8*, destination);
u8 const* src_ptr = rcast( u8 const*, source);
if ( dest_ptr == src_ptr )
return dest_ptr;
if ( src_ptr + byte_count <= dest_ptr || dest_ptr + byte_count <= src_ptr ) // NOTE: Non-overlapping
return mem_copy( dest_ptr, src_ptr, byte_count );
if ( dest_ptr < src_ptr )
{
if ( to_uptr(src_ptr) % size_of( ssize ) == to_uptr(dest_ptr) % size_of( ssize ) )
{
while ( pcast( uptr, dest_ptr) % size_of( ssize ) )
{
if ( ! byte_count-- )
return destination;
*dest_ptr++ = *src_ptr++;
}
while ( byte_count >= size_of( ssize ) )
{
* rcast(ssize*, dest_ptr) = * rcast(ssize const*, src_ptr);
byte_count -= size_of( ssize );
dest_ptr += size_of( ssize );
src_ptr += size_of( ssize );
}
}
for ( ; byte_count; byte_count-- )
*dest_ptr++ = *src_ptr++;
}
else
{
if ( ( to_uptr(src_ptr) % size_of( ssize ) ) == ( to_uptr(dest_ptr) % size_of( ssize ) ) )
{
while ( to_uptr( dest_ptr + byte_count ) % size_of( ssize ) )
{
if ( ! byte_count-- )
return destination;
dest_ptr[ byte_count ] = src_ptr[ byte_count ];
}
while ( byte_count >= size_of( ssize ) )
{
byte_count -= size_of( ssize );
* rcast(ssize*, dest_ptr + byte_count ) = * rcast( ssize const*, src_ptr + byte_count );
}
}
while ( byte_count )
byte_count--, dest_ptr[ byte_count ] = src_ptr[ byte_count ];
}
return destination;
}
inline
void* mem_set( void* destination, u8 fill_byte, ssize byte_count )
{
if ( destination == NULL )
{
return NULL;
}
ssize align_offset;
u8* dest_ptr = rcast( u8*, destination);
u32 fill_word = ( ( u32 )-1 ) / 255 * fill_byte;
if ( byte_count == 0 )
return destination;
dest_ptr[ 0 ] = dest_ptr[ byte_count - 1 ] = fill_byte;
if ( byte_count < 3 )
return destination;
dest_ptr[ 1 ] = dest_ptr[ byte_count - 2 ] = fill_byte;
dest_ptr[ 2 ] = dest_ptr[ byte_count - 3 ] = fill_byte;
if ( byte_count < 7 )
return destination;
dest_ptr[ 3 ] = dest_ptr[ byte_count - 4 ] = fill_byte;
if ( byte_count < 9 )
return destination;
align_offset = -to_sptr( dest_ptr ) & 3;
dest_ptr += align_offset;
byte_count -= align_offset;
byte_count &= -4;
* rcast( u32*, ( dest_ptr + 0 ) ) = fill_word;
* rcast( u32*, ( dest_ptr + byte_count - 4 ) ) = fill_word;
if ( byte_count < 9 )
return destination;
* rcast( u32*, dest_ptr + 4 ) = fill_word;
* rcast( u32*, dest_ptr + 8 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 12 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 8 ) = fill_word;
if ( byte_count < 25 )
return destination;
* rcast( u32*, dest_ptr + 12 ) = fill_word;
* rcast( u32*, dest_ptr + 16 ) = fill_word;
* rcast( u32*, dest_ptr + 20 ) = fill_word;
* rcast( u32*, dest_ptr + 24 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 28 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 24 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 20 ) = fill_word;
* rcast( u32*, dest_ptr + byte_count - 16 ) = fill_word;
align_offset = 24 + to_uptr( dest_ptr ) & 4;
dest_ptr += align_offset;
byte_count -= align_offset;
{
u64 fill_doubleword = ( scast( u64, fill_word) << 32 ) | fill_word;
while ( byte_count > 31 )
{
* rcast( u64*, dest_ptr + 0 ) = fill_doubleword;
* rcast( u64*, dest_ptr + 8 ) = fill_doubleword;
* rcast( u64*, dest_ptr + 16 ) = fill_doubleword;
* rcast( u64*, dest_ptr + 24 ) = fill_doubleword;
byte_count -= 32;
dest_ptr += 32;
}
}
return destination;
}
inline
void* alloc_align( AllocatorInfo a, ssize size, ssize alignment ) {
return a.Proc( a.Data, EAllocation_ALLOC, size, alignment, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
inline
void* alloc( AllocatorInfo a, ssize size ) {
return alloc_align( a, size, GEN_DEFAULT_MEMORY_ALIGNMENT );
}
inline
void allocator_free( AllocatorInfo a, void* ptr ) {
if ( ptr != nullptr )
a.Proc( a.Data, EAllocation_FREE, 0, 0, ptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
inline
void free_all( AllocatorInfo a ) {
a.Proc( a.Data, EAllocation_FREE_ALL, 0, 0, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
inline
void* resize( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size ) {
return resize_align( a, ptr, old_size, new_size, GEN_DEFAULT_MEMORY_ALIGNMENT );
}
inline
void* resize_align( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size, ssize alignment ) {
return a.Proc( a.Data, EAllocation_RESIZE, new_size, alignment, ptr, old_size, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
inline
void* default_resize_align( AllocatorInfo a, void* old_memory, ssize old_size, ssize new_size, ssize alignment )
{
if ( ! old_memory )
return alloc_align( a, new_size, alignment );
if ( new_size == 0 )
{
allocator_free( a, old_memory );
return nullptr;
}
if ( new_size < old_size )
new_size = old_size;
if ( old_size == new_size )
{
return old_memory;
}
else
{
void* new_memory = alloc_align( a, new_size, alignment );
if ( ! new_memory )
return nullptr;
mem_move( new_memory, old_memory, min( new_size, old_size ) );
allocator_free( a, old_memory );
return new_memory;
}
}
inline
void zero_size( void* ptr, ssize size ) {
mem_set( ptr, 0, size );
}
#pragma endregion Memory