Compare commits

...

8 Commits

Author SHA1 Message Date
Ed_
bd9d2b3a7b misc 2025-11-08 10:42:04 -05:00
Ed_
f5330c686b llm refinement attempt 2025-11-07 14:53:45 -05:00
Ed_
a48681fc00 preparing for curation and runtime testing 2025-11-07 14:32:04 -05:00
Ed_
acb5e916c1 missing changes (llm) 2025-11-07 13:56:15 -05:00
Ed_
5a44788b4a WIP(compiles, untested, to review): Another attempt at using llms to codegen very tedius stuff. 2025-11-07 13:51:12 -05:00
Ed_
dbb1367acb oops 2 2025-11-06 19:39:33 -05:00
Ed_
aab3a3f689 oops 2025-11-06 19:25:28 -05:00
Ed_
d7790795dd stuff 2025-11-06 19:23:58 -05:00
7 changed files with 1859 additions and 410 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -278,7 +278,6 @@ void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidt
iter.cursor op iter.r.end; \
++ iter.cursor \
)
#define def_span(type) \
def_struct(tmpl( Span,type)) { type begin; type end; }; \
typedef def_struct(tmpl(Iter_Span,type)) { tmpl(Span,type) r; type cursor; }
@@ -1005,6 +1004,7 @@ void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
#define MS_ANYSIZE_ARRAY 1
#define MS_MEM_COMMIT 0x00001000
#define MS_MEM_RESERVE 0x00002000
#define MS_MEM_RELEASE 0x00008000
#define MS_MEM_LARGE_PAGES 0x20000000
#define MS_PAGE_READWRITE 0x04
#define MS_TOKEN_ADJUST_PRIVILEGES (0x0020)
@@ -1091,7 +1091,7 @@ finline B4 os__vmem_commit(U8 vm, U8 size, Opts_vmem*R_ opts) {
B4 result = (VirtualAlloc(cast(MS_LPVOID, vm), size, MS_MEM_COMMIT, MS_PAGE_READWRITE) != 0);
return result;
}
internal inline void os_vmem_release(U8 vm, U8 size) { VirtualFree(cast(MS_LPVOID, vm), 0, MS_MEM_RESERVE); }
internal inline void os_vmem_release(U8 vm, U8 size) { VirtualFree(cast(MS_LPVOID, vm), 0, MS_MEM_RELEASE); }
#pragma endregion OS
#pragma region VArena (Virutal Address Space Arena)
@@ -2179,6 +2179,7 @@ Str8 watl_dump_listing(AllocatorInfo buffer, Slice_WATL_Line lines)
#pragma endregion WATL
#pragma endregion Implementation
int main(void)
{
os_init();

View File

@@ -930,6 +930,7 @@ void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
#define MS_ANYSIZE_ARRAY 1
#define MS_MEM_COMMIT 0x00001000
#define MS_MEM_RESERVE 0x00002000
#define MS_MEM_RELEASE 0x00002000
#define MS_MEM_LARGE_PAGES 0x20000000
#define MS_PAGE_READWRITE 0x04
#define MS_TOKEN_ADJUST_PRIVILEGES (0x0020)

View File

@@ -0,0 +1,61 @@
package watl
import "core:os/os2"
import "core:mem/virtual"
import "core:mem"
main :: proc()
{
os_init()
// Note(Ed): Possible compiler bug, cannot resolve proc map with named arguments.
vm_file: virtual.Arena; virtual.arena_init_static(& vm_file, reserved = mem.Gigabytes * 4)
data, err := os2.read_entire_file_from_path("watl.v0.ideomatic.odin", virtual.arena_allocator(& vm_file), )
assert(err != .None)
a_msgs := arena_make()
a_toks := arena_make()
// lex_res := watl_lex(transmute(string) file.content,
// ainfo_msgs = ainfo(a_msgs),
// ainfo_toks = ainfo(a_toks),
// )
lex_res := watl_lex(transmute(string) file.content,
ainfo(a_msgs),
ainfo(a_toks),
)
assert(lex_res.signal & { .MemFail_SliceConstraintFail } == {})
str8_cache_kt1_ainfo := arena_make()
str_cache := str8cache_make(
str_reserve = ainfo(arena_make()),
cell_reserve = ainfo(str8_cache_kt1_ainfo),
tbl_backing = ainfo(str8_cache_kt1_ainfo),
cell_pool_size = Kilo * 4,
table_size = Kilo * 32,
)
a_lines := arena_make()
// parse_res := watl_parse(lex_res.toks,
// ainfo_msgs = ainfo(a_msgs),
// ainfo_nodes = ainfo(a_toks),
// ainfo_lines = ainfo(a_lines),
// str_cache = & str_cache
// )
parse_res := watl_parse(lex_res.toks,
ainfo(a_msgs),
ainfo(a_toks),
ainfo(a_lines),
& str_cache
)
assert(parse_res.signal & { .MemFail_SliceConstraintFail } == {})
arena_reset(a_msgs)
arena_reset(a_toks)
listing := watl_dump_listing(ainfo(a_msgs), parse_res.lines)
file_write_str8("watl.v0.win32.odin.listing.txt", listing)
return
}

View File

@@ -100,23 +100,14 @@ align_pow2 :: #force_inline proc(x: int, b: int) -> int {
assert((b & (b - 1)) == 0) // Check power of 2
return ((x + b - 1) & ~(b - 1))
}
memory_zero :: #force_inline proc "contextless" (data: rawptr, len: int) -> rawptr {
intrinsics.mem_zero(data, len)
return data
}
memory_zero :: #force_inline proc "contextless" (data: rawptr, len: int) -> rawptr { intrinsics.mem_zero(data, len); return data }
memory_zero_explicit :: #force_inline proc "contextless" (data: rawptr, len: int) -> rawptr {
intrinsics.mem_zero_volatile(data, len) // Use the volatile mem_zero
intrinsics.atomic_thread_fence(.Seq_Cst) // Prevent reordering
return data
}
memory_copy_overlapping :: #force_inline proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
intrinsics.mem_copy(dst, src, len)
return dst
}
memory_copy :: #force_inline proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
intrinsics.mem_copy_non_overlapping(dst, src, len)
return dst
}
memory_copy_overlapping :: #force_inline proc "contextless" (dst, src: rawptr, len: int) -> rawptr { intrinsics.mem_copy(dst, src, len); return dst }
memory_copy :: #force_inline proc "contextless" (dst, src: rawptr, len: int) -> rawptr { intrinsics.mem_copy_non_overlapping(dst, src, len); return dst }
sll_stack_push_n :: proc "contextless" (curr, n, n_link: ^^$Type) {
(n_link ^) = (curr ^)
@@ -136,21 +127,13 @@ sll_queue_push_nz :: proc "contextless" (first: ^$ParentType, last, n: ^^$Type,
}
sll_queue_push_n :: #force_inline proc "contextless" (first: $ParentType, last, n: ^^$Type) { sll_queue_push_nz(first, last, n, nil) }
SliceByte :: struct {
data: [^]byte,
len: int
}
SliceRaw :: struct ($Type: typeid) {
data: [^]Type,
len: int,
}
SliceByte :: struct { data: [^]byte, len: int }
SliceRaw :: struct($Type: typeid) { data: [^]Type, len: int, }
slice :: #force_inline proc "contextless" (s: [^] $Type, num: $Some_Integer) -> [ ]Type { return transmute([]Type) SliceRaw(Type) { s, cast(int) num } }
slice_cursor :: #force_inline proc "contextless" (s: []$Type) -> [^]Type { return transmute([^]Type) raw_data(s) }
slice_assert :: #force_inline proc (s: $SliceType / []$Type) {
assert(len(s) > 0)
assert(s != nil)
}
slice_end :: #force_inline proc "contextless" (s : $SliceType / []$Type) -> ^Type { return & cursor(s)[len(s)] }
slice_end :: #force_inline proc "contextless" (s : $SliceType / []$Type) -> ^Type { return & cursor(s)[len(s)] }
slice_assert :: #force_inline proc (s: $SliceType / []$Type) { assert(len(s) > 0); assert(s != nil) }
@(require_results) slice_to_bytes :: proc "contextless" (s: []$Type) -> []byte { return ([^]byte)(raw_data(s))[:len(s) * size_of(Type)] }
@(require_results) slice_raw :: proc "contextless" (s: []$Type) -> SliceRaw(Type) { return transmute(SliceRaw(Type)) s }
@@ -270,8 +253,7 @@ mem_alloc :: proc(ainfo: AllocatorInfo, size: int, alignment: int = MEMORY_ALIGN
requested_size = size,
alignment = alignment,
}
output: AllocatorProc_Out
ainfo.procedure(input, & output)
output: AllocatorProc_Out; ainfo.procedure(input, & output)
return output.allocation
}
mem_grow :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false, give_actual: b32 = false) -> []byte {
@@ -283,8 +265,7 @@ mem_grow :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int =
alignment = alignment,
old_allocation = mem,
}
output: AllocatorProc_Out
ainfo.procedure(input, & output)
output: AllocatorProc_Out; ainfo.procedure(input, & output)
return slice(cursor(output.allocation), give_actual ? len(output.allocation) : size)
}
mem_resize :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false, give_actual: b32 = false) -> []byte {
@@ -296,8 +277,7 @@ mem_resize :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int
alignment = alignment,
old_allocation = mem,
}
output: AllocatorProc_Out
ainfo.procedure(input, & output)
output: AllocatorProc_Out; ainfo.procedure(input, & output)
return slice(cursor(output.allocation), give_actual ? len(output.allocation) : size)
}
mem_shrink :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false) -> []byte {
@@ -309,8 +289,7 @@ mem_shrink :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int
alignment = alignment,
old_allocation = mem,
}
output: AllocatorProc_Out
ainfo.procedure(input, & output)
output: AllocatorProc_Out; ainfo.procedure(input, & output)
return output.allocation
}
@@ -322,8 +301,7 @@ alloc_type :: proc(ainfo: AllocatorInfo, $Type: typeid, alignment: int = MEMORY
requested_size = size_of(Type),
alignment = alignment,
}
output: AllocatorProc_Out
ainfo.procedure(input, & output)
output: AllocatorProc_Out; ainfo.procedure(input, & output)
return transmute(^Type) raw_data(output.allocation)
}
alloc_slice :: proc(ainfo: AllocatorInfo, $SliceType: typeid / []$Type, num : int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false) -> []Type {
@@ -334,17 +312,13 @@ alloc_slice :: proc(ainfo: AllocatorInfo, $SliceType: typeid / []$Type, num : in
requested_size = size_of(Type) * num,
alignment = alignment,
}
output: AllocatorProc_Out
ainfo.procedure(input, & output)
output: AllocatorProc_Out; ainfo.procedure(input, & output)
return transmute([]Type) slice(raw_data(output.allocation), num)
}
//endregion Allocator Interface
//region Strings
Raw_String :: struct {
data: [^]byte,
len: int,
}
Raw_String :: struct { data: [^]byte, len: int, }
string_cursor :: proc(s: string) -> [^]u8 { return slice_cursor(transmute([]byte) s) }
string_copy :: proc(dst, src: string) { slice_copy (transmute([]byte) dst, transmute([]byte) src) }
string_end :: proc(s: string) -> ^u8 { return slice_end (transmute([]byte) s) }
@@ -356,10 +330,7 @@ FArena :: struct {
mem: []byte,
used: int,
}
farena_make :: proc(backing: []byte) -> FArena {
arena := FArena {mem = backing}
return arena
}
farena_make :: proc(backing: []byte) -> FArena { return {mem = backing} }
farena_init :: proc(arena: ^FArena, backing: []byte) {
assert(arena != nil)
arena.mem = backing
@@ -367,20 +338,15 @@ farena_init :: proc(arena: ^FArena, backing: []byte) {
}
farena_push :: proc(arena: ^FArena, $Type: typeid, amount: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT) -> []Type {
assert(arena != nil)
if amount == 0 {
return {}
}
if amount == 0 { return {} }
desired := size_of(Type) * amount
to_commit := align_pow2(desired, alignment)
unused := len(arena.mem) - arena.used
assert(to_commit <= unused)
unused := len(arena.mem) - arena.used; assert(to_commit <= unused)
ptr := cursor(arena.mem[arena.used:])
arena.used += to_commit
return slice(ptr, amount)
}
farena_reset :: proc(arena: ^FArena) {
arena.used = 0
}
farena_reset :: #force_inline proc(arena: ^FArena) { arena.used = 0 }
farena_rewind :: proc(arena: ^FArena, save_point: AllocatorSP) {
assert(save_point.type_sig == farena_allocator_proc)
assert(save_point.slot >= 0 && save_point.slot <= arena.used)
@@ -391,7 +357,6 @@ farena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Ou
assert(output != nil)
assert(input.data != nil)
arena := transmute(^FArena) input.data
switch input.op
{
case .Alloc, .Alloc_NoZero:
@@ -399,12 +364,9 @@ farena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Ou
if input.op == .Alloc {
zero(output.allocation)
}
case .Free:
// No-op for arena
case .Reset:
farena_reset(arena)
case .Free: // No-op for arena
case .Reset: farena_reset(arena)
case .Grow, .Grow_NoZero:
// Check if the allocation is at the end of the arena
@@ -453,11 +415,8 @@ farena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Ou
arena.used -= (aligned_original - aligned_new)
output.allocation = input.old_allocation[:input.requested_size]
case .Rewind:
farena_rewind(arena, input.save_point)
case .SavePoint:
output.save_point = farena_save(arena^)
case .Rewind: farena_rewind(arena, input.save_point)
case .SavePoint: output.save_point = farena_save(arena^)
case .Query:
output.features = {.Alloc, .Reset, .Grow, .Shrink, .Rewind}
@@ -471,14 +430,9 @@ farena_ainfo :: #force_inline proc "contextless" (arena : ^FArena) -> AllocatorI
//endregion FArena
//region OS
OS_SystemInfo :: struct {
target_page_size: int,
}
OS_Windows_State :: struct {
system_info: OS_SystemInfo,
}
@(private)
os_windows_info: OS_Windows_State
OS_SystemInfo :: struct { target_page_size: int }
OS_Windows_State :: struct { system_info: OS_SystemInfo }
@(private) os_windows_info: OS_Windows_State
// Windows API constants
MS_INVALID_HANDLE_VALUE :: ~uintptr(0)
@@ -537,12 +491,7 @@ os_enable_large_pages :: proc() {
{
priv := MS_TOKEN_PRIVILEGES {
privilege_count = 1,
privileges = {
{
luid = luid,
attributes = MS_SE_PRIVILEGE_ENABLED,
},
},
privileges = { { luid = luid, attributes = MS_SE_PRIVILEGE_ENABLED, }, },
}
AdjustTokenPrivileges(token, 0, &priv, size_of(MS_TOKEN_PRIVILEGES), nil, nil)
}
@@ -554,25 +503,19 @@ os_init :: proc() {
info := &os_windows_info.system_info
info.target_page_size = int(GetLargePageMinimum())
}
os_system_info :: proc() -> ^OS_SystemInfo {
return &os_windows_info.system_info
}
os_vmem_commit :: proc(vm: rawptr, size: int, no_large_pages: b32 = false) -> b32 {
os_system_info :: #force_inline proc "contextless" () -> ^OS_SystemInfo { return & os_windows_info.system_info }
os_vmem_commit :: #force_inline proc "contextless" (vm: rawptr, size: int, no_large_pages: b32 = false) -> b32 {
// Large pages disabled for now (not failing gracefully in original C)
result := VirtualAlloc(vm, uintptr(size), MS_MEM_COMMIT, MS_PAGE_READWRITE) != nil
return b32(result)
return cast(b32) VirtualAlloc(vm, uintptr(size), MS_MEM_COMMIT, MS_PAGE_READWRITE) != nil
}
os_vmem_reserve :: proc(size: int, base_addr: int = 0, no_large_pages: b32 = false) -> rawptr {
result := VirtualAlloc(rawptr(uintptr(base_addr)), uintptr(size),
os_vmem_reserve :: #force_inline proc "contextless" (size: int, base_addr: int = 0, no_large_pages: b32 = false) -> rawptr {
return VirtualAlloc(rawptr(uintptr(base_addr)), uintptr(size),
MS_MEM_RESERVE,
// MS_MEM_COMMIT
// | (no_large_pages ? 0 : MS_MEM_LARGE_PAGES), // Large pages disabled
MS_PAGE_READWRITE)
return result
}
os_vmem_release :: proc(vm: rawptr, size: int) {
VirtualFree(vm, 0, MS_MEM_RELEASE)
}
os_vmem_release :: #force_inline proc "contextless" (vm: rawptr, size: int) { VirtualFree(vm, 0, MS_MEM_RELEASE) }
//endregion OS
//region VArena
@@ -646,17 +589,6 @@ varena_push :: proc(va: ^VArena, $Type: typeid, amount: int, alignment: int = ME
va.commit_used = to_be_used
return slice(transmute([^]Type) uintptr(current_offset), amount)
}
varena_release :: proc(va: ^VArena) {
os_vmem_release(va, va.reserve)
}
varena_rewind :: proc(va: ^VArena, save_point: AllocatorSP) {
assert(va != nil)
assert(save_point.type_sig == varena_allocator_proc)
va.commit_used = max(save_point.slot, size_of(VArena))
}
varena_reset :: proc(va: ^VArena) {
va.commit_used = size_of(VArena)
}
varena_shrink :: proc(va: ^VArena, old_allocation: []byte, requested_size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT) -> []byte {
assert(va != nil)
current_offset := va.reserve_start + va.commit_used
@@ -668,6 +600,13 @@ varena_shrink :: proc(va: ^VArena, old_allocation: []byte, requested_size: int,
va.commit_used -= shrink_amount
return old_allocation[:requested_size]
}
varena_release :: #force_inline proc(va: ^VArena) { os_vmem_release(va, va.reserve) }
varena_reset :: #force_inline proc(va: ^VArena) { va.commit_used = size_of(VArena) }
varena_rewind :: #force_inline proc(va: ^VArena, save_point: AllocatorSP) {
assert(va != nil)
assert(save_point.type_sig == varena_allocator_proc)
va.commit_used = max(save_point.slot, size_of(VArena))
}
varena_save :: #force_inline proc "contextless" (va: ^VArena) -> AllocatorSP { return AllocatorSP { type_sig = varena_allocator_proc, slot = va.commit_used } }
varena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Out) {
assert(output != nil)
@@ -785,7 +724,7 @@ arena_push :: proc(arena: ^Arena, $Type: typeid, amount: int, alignment: int = M
active.pos = pos_pst
return slice(result_ptr, amount)
}
arena_release :: proc(arena: ^Arena) {
arena_release :: #force_inline proc(arena: ^Arena) {
assert(arena != nil)
curr := arena.current
for curr != nil {
@@ -794,9 +733,7 @@ arena_release :: proc(arena: ^Arena) {
curr = prev
}
}
arena_reset :: proc(arena: ^Arena) {
arena_rewind(arena, AllocatorSP { type_sig = arena_allocator_proc, slot = 0 })
}
arena_reset :: #force_inline proc(arena: ^Arena) { arena_rewind(arena, AllocatorSP { type_sig = arena_allocator_proc, slot = 0 }) }
arena_rewind :: proc(arena: ^Arena, save_point: AllocatorSP) {
assert(arena != nil)
assert(save_point.type_sig == arena_allocator_proc)
@@ -1025,11 +962,7 @@ kt1cx_clear :: proc(kt: KT1CX_Byte, m: KT1CX_ByteMeta) {
}
}
}
kt1cx_slot_id :: proc(kt: KT1CX_Byte, key: u64, m: KT1CX_ByteMeta) -> u64 {
cell_size := m.cell_size // dummy value
hash_index := key % u64(len(kt.table))
return hash_index
}
kt1cx_slot_id :: #force_inline proc(kt: KT1CX_Byte, key: u64, m: KT1CX_ByteMeta) -> u64 { return key % u64(len(kt.table)) }
kt1cx_get :: proc(kt: KT1CX_Byte, key: u64, m: KT1CX_ByteMeta) -> ^byte {
hash_index := kt1cx_slot_id(kt, key, m)
cell_offset := uintptr(hash_index) * uintptr(m.cell_size)
@@ -1100,28 +1033,22 @@ kt1cx_set :: proc(kt: KT1CX_Byte, key: u64, value: []byte, backing_cells: Alloca
return nil
}
}
kt1cx_assert :: proc(kt: $type / KT1CX) {
slice_assert(kt.table)
}
kt1cx_byte :: proc(kt: $type / KT1CX) -> KT1CX_Byte { return {
slice( transmute([^]byte) cursor(kt.table), len(kt.table))
} }
kt1cx_assert :: #force_inline proc(kt: $type / KT1CX) { slice_assert(kt.table) }
kt1cx_byte :: #force_inline proc(kt: $type / KT1CX) -> KT1CX_Byte { return { slice( transmute([^]byte) cursor(kt.table), len(kt.table)) } }
//endregion Key Table 1-Layer Chained-Chunked-Cells (KT1CX)
//region String Operations
char_is_upper :: proc(c: u8) -> b32 { return('A' <= c && c <= 'Z') }
char_to_lower :: proc(c: u8) -> u8 { c:=c; if (char_is_upper(c)) { c += ('a' - 'A') }; return (c) }
char_is_upper :: #force_inline proc(c: u8) -> b32 { return('A' <= c && c <= 'Z') }
char_to_lower :: #force_inline proc(c: u8) -> u8 { c:=c; if (char_is_upper(c)) { c += ('a' - 'A') }; return (c) }
integer_symbols :: proc(value: u8) -> u8 {
integer_symbols :: #force_inline proc(value: u8) -> u8 {
@static lookup_table: [16]u8 = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F', };
return lookup_table[value];
}
str8_to_cstr_capped :: proc(content: string, mem: []byte) -> cstring {
str8_to_cstr_capped :: #force_inline proc(content: string, mem: []byte) -> cstring {
copy_len := min(len(content), len(mem) - 1)
if copy_len > 0 {
copy(mem[:copy_len], transmute([]byte) content)
}
if copy_len > 0 { copy(mem[:copy_len], transmute([]byte) content) }
mem[copy_len] = 0
return transmute(cstring) raw_data(mem)
}
@@ -1184,7 +1111,6 @@ str8_from_u32 :: proc(ainfo: AllocatorInfo, num: u32, radix: u32 = 10, min_digit
}
return result
}
str8_fmt_kt1l :: proc(ainfo: AllocatorInfo, _buffer: ^[]byte, table: []KTL_Slot(string), fmt_template: string) -> string {
buffer := _buffer^
slice_assert(buffer)
@@ -1264,15 +1190,14 @@ str8_fmt_kt1l :: proc(ainfo: AllocatorInfo, _buffer: ^[]byte, table: []KTL_Slot(
result := transmute(string) slice(cursor(buffer), len(buffer) - buffer_remaining)
return result
}
str8_fmt_backed :: proc(tbl_ainfo, buf_ainfo: AllocatorInfo, fmt_template: string, entries: [][2]string) -> string {
str8_fmt_backed :: #force_inline proc(tbl_ainfo, buf_ainfo: AllocatorInfo, fmt_template: string, entries: [][2]string) -> string {
kt: []KTL_Slot(string); ktl_populate_slice_a2_str(& kt, tbl_ainfo, entries)
buf_size := Kilo * 64
buffer := mem_alloc(buf_ainfo, buf_size)
result := str8_fmt_kt1l(buf_ainfo, & buffer, kt, fmt_template)
return result
}
str8_fmt_tmp :: proc(fmt_template: string, entries: [][2]string) -> string {
str8_fmt_tmp :: #force_inline proc(fmt_template: string, entries: [][2]string) -> string {
@static tbl_mem: [Kilo * 32]byte; tbl_arena := farena_make(tbl_mem[:])
@static buf_mem: [Kilo * 64]byte; buffer := buf_mem[:]
kt: []KTL_Slot(string); ktl_populate_slice_a2_str(& kt, ainfo(& tbl_arena), entries)
@@ -1317,7 +1242,7 @@ str8cache_init :: proc(cache: ^Str8Cache, str_reserve, cell_reserve, tbl_backing
kt1cx_init(info, m, transmute(^KT1CX_Byte) & cache.kt)
return
}
str8cache_make :: proc(str_reserve, cell_reserve, tbl_backing: AllocatorInfo, cell_pool_size, table_size: int) -> Str8Cache {
str8cache_make :: #force_inline proc(str_reserve, cell_reserve, tbl_backing: AllocatorInfo, cell_pool_size, table_size: int) -> Str8Cache {
cache : Str8Cache; str8cache_init(& cache, str_reserve, cell_reserve, tbl_backing, cell_pool_size, table_size); return cache
}
str8cache_clear :: proc(kt: KT1CX_Str8) {
@@ -1368,11 +1293,10 @@ str8cache_set :: proc(kt: KT1CX_Str8, key: u64, value: string, str_reserve, cell
}
return result
}
cache_str8 :: proc(cache: ^Str8Cache, str: string) -> string {
cache_str8 :: #force_inline proc(cache: ^Str8Cache, str: string) -> string {
assert(cache != nil)
key: u64 = 0; hash64_fnv1a(& key, transmute([]byte) str)
result := str8cache_set(cache.kt, key, str, cache.str_reserve, cache.cell_reserve)
return result ^
return str8cache_set(cache.kt, key, str, cache.str_reserve, cache.cell_reserve) ^
}
Str8Gen :: struct {
@@ -1389,9 +1313,9 @@ str8gen_init :: proc(gen: ^Str8Gen, ainfo: AllocatorInfo) {
gen.len = 0
gen.cap = Kilo * 4
}
str8gen_make :: proc(ainfo: AllocatorInfo) -> Str8Gen { gen: Str8Gen; str8gen_init(& gen, ainfo); return gen }
str8gen_to_bytes :: proc(gen: Str8Gen) -> []byte { return transmute([]byte) SliceByte {data = gen.ptr, len = gen.cap} }
str8_from_str8gen :: proc(gen: Str8Gen) -> string { return transmute(string) SliceByte {data = gen.ptr, len = gen.len} }
str8gen_make :: #force_inline proc(ainfo: AllocatorInfo) -> Str8Gen { gen: Str8Gen; str8gen_init(& gen, ainfo); return gen }
str8gen_to_bytes :: #force_inline proc(gen: Str8Gen) -> []byte { return transmute([]byte) SliceByte {data = gen.ptr, len = gen.cap} }
str8_from_str8gen :: #force_inline proc(gen: Str8Gen) -> string { return transmute(string) SliceByte {data = gen.ptr, len = gen.len} }
str8gen_append_str8 :: proc(gen: ^Str8Gen, str: string) {
result := mem_grow(gen.backing, str8gen_to_bytes(gen ^), len(str) + gen.len)
@@ -1515,9 +1439,8 @@ api_file_read_contents :: proc(result: ^FileOpInfo, path: string, backing: Alloc
result.content = slice(cursor(buffer), cast(int) file_size.QuadPart)
return
}
file_read_contents_stack :: proc(path: string, backing: AllocatorInfo, zero_backing: b32 = false) -> FileOpInfo {
result : FileOpInfo; api_file_read_contents(& result, path, backing, zero_backing)
return result
file_read_contents_stack :: #force_inline proc(path: string, backing: AllocatorInfo, zero_backing: b32 = false) -> FileOpInfo {
result: FileOpInfo; api_file_read_contents(& result, path, backing, zero_backing) return result
}
file_write_str8 :: proc(path, content: string) {
string_assert(path)
@@ -1604,55 +1527,54 @@ api_watl_lex :: proc(info: ^WATL_LexInfo, source: string,
alloc_tok :: #force_inline proc(ainfo: AllocatorInfo) -> ^Raw_String {
return alloc_type(ainfo, Raw_String, align_of(Raw_String), true)
}
#partial switch cast(WATL_TokKind) code
{
case .Space: fallthrough
case .Tab:
if prev[0] != src_cursor[0] {
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil {
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return
}
tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 0)
was_formatting = true
num += 1
}
src_cursor = src_cursor[1:]
tok.len += 1
case .Line_Feed:
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil{
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
#partial switch cast(WATL_TokKind) code {
case .Space: fallthrough
case .Tab:
if prev[0] != src_cursor[0] {
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil {
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return
}
tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 1)
src_cursor = src_cursor[1:]
tok^ = transmute(Raw_String) slice(src_cursor, 0)
was_formatting = true
num += 1
case .Carriage_Return:
}
src_cursor = src_cursor[1:]
tok.len += 1
case .Line_Feed:
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil{
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return
}
tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 1)
src_cursor = src_cursor[1:]
was_formatting = true
num += 1
case .Carriage_Return:
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil {
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return
}
tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 2)
src_cursor = src_cursor[1:]
was_formatting = true
num += 1
case:
if (was_formatting) {
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil {
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return
}
tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 2)
src_cursor = src_cursor[1:]
was_formatting = true
tok^ = transmute(Raw_String) slice(src_cursor, 0)
was_formatting = false;
num += 1
case:
if (was_formatting) {
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil {
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return
}
tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 0)
was_formatting = false;
num += 1
}
src_cursor = src_cursor[1:]
tok.len += 1
}
src_cursor = src_cursor[1:]
tok.len += 1
}
prev = src_cursor[-1:]
code = src_cursor[0]
@@ -1729,28 +1651,25 @@ api_watl_parse :: proc(info: ^WATL_ParseInfo, tokens: []WATL_Tok,
info_lines ^ = { transmute([^]WATL_Node) line, 0 }
for & token in tokens
{
#partial switch cast(WATL_TokKind) token[0]
{
case .Carriage_Return: fallthrough
case .Line_Feed:
new_line := alloc_type(ainfo_lines, WATL_Line); if cursor(new_line)[-1:] != transmute(^[]string)line {
info.signal |= { .MemFail_SliceConstraintFail }
msg := alloc_type(ainfo_msgs, WATL_ParseMsg)
msg.content = "Line slice allocation was not contiguous"
msg.pos = { cast(i32) len(info.lines), cast(i32) line.len }
msg.line = transmute(^[]WATL_Node) line
msg.tok = & token
sll_queue_push_n(& info.msgs, & msg_last, & msg)
assert(failon_slice_constraint_fail == false)
return
}
line = transmute(^SliceRaw(WATL_Node)) new_line
line.data = curr
info_lines.len += 1
continue
case:
break;
#partial switch cast(WATL_TokKind) token[0] {
case .Carriage_Return: fallthrough
case .Line_Feed:
new_line := alloc_type(ainfo_lines, WATL_Line); if cursor(new_line)[-1:] != transmute(^[]string)line {
info.signal |= { .MemFail_SliceConstraintFail }
msg := alloc_type(ainfo_msgs, WATL_ParseMsg)
msg.content = "Line slice allocation was not contiguous"
msg.pos = { cast(i32) len(info.lines), cast(i32) line.len }
msg.line = transmute(^[]WATL_Node) line
msg.tok = & token
sll_queue_push_n(& info.msgs, & msg_last, & msg)
assert(failon_slice_constraint_fail == false)
return
}
line = transmute(^SliceRaw(WATL_Node)) new_line
line.data = curr
info_lines.len += 1
continue
case: break;
}
curr ^ = cache_str8(str_cache, token)
new_node := alloc_type(ainfo_nodes, WATL_Node); if cursor(new_node)[-1:] != curr {
@@ -1799,11 +1718,10 @@ watl_dump_listing :: proc(buffer: AllocatorInfo, lines: []WATL_Line) -> string {
for chunk in line
{
id : string
#partial switch cast(WATL_TokKind) chunk[0]
{
case .Space: id = "Space"
case .Tab: id = "Tab"
case: id = "Visible"
#partial switch cast(WATL_TokKind) chunk[0] {
case .Space: id = "Space"
case .Tab: id = "Tab"
case: id = "Visible"
}
str8gen_append_fmt(& result, "\t<id>(<size>): '<chunk>'\n", {
{ "id", id },