Compare commits

...

15 Commits

Author SHA1 Message Date
Ed_
bd9d2b3a7b misc 2025-11-08 10:42:04 -05:00
Ed_
f5330c686b llm refinement attempt 2025-11-07 14:53:45 -05:00
Ed_
a48681fc00 preparing for curation and runtime testing 2025-11-07 14:32:04 -05:00
Ed_
acb5e916c1 missing changes (llm) 2025-11-07 13:56:15 -05:00
Ed_
5a44788b4a WIP(compiles, untested, to review): Another attempt at using llms to codegen very tedius stuff. 2025-11-07 13:51:12 -05:00
Ed_
dbb1367acb oops 2 2025-11-06 19:39:33 -05:00
Ed_
aab3a3f689 oops 2025-11-06 19:25:28 -05:00
Ed_
d7790795dd stuff 2025-11-06 19:23:58 -05:00
Ed_
ac05262c8d finished arena (lottes.c) 2025-11-05 22:21:44 -05:00
Ed_
3bb46692e1 Update lottes hybrid 2025-11-05 20:43:42 -05:00
Ed_
a7d17a8b70 changes to watl.v0.msvc.c
Made everything internal linkage.
Moved memory operations impl to header section (keeping same loc as I have for the lottes variants).
arena__grow && arena__shirnk lifted to definitions.
2025-11-05 20:00:41 -05:00
Ed_
7aaf617b3c progress on lottes.c 2025-11-05 00:17:38 -05:00
Ed_
5e3e8970d8 get rid of register qualifier 2025-11-04 21:35:58 -05:00
Ed_
8269ea9cc5 added debug early to start testing 2025-11-04 21:23:18 -05:00
Ed_
d9bce18ccb progress on strict lottes version 2025-11-04 21:18:59 -05:00
10 changed files with 2959 additions and 1106 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -4,11 +4,14 @@ Version: 0 (From Scratch, 1-Stage Compilation, LLVM & WinAPI Only, Win CRT Mul
Host: Windows 11 (x86-64) Host: Windows 11 (x86-64)
Toolchain: LLVM (2025-08-30), C-Stanard: 11 Toolchain: LLVM (2025-08-30), C-Stanard: 11
Based on: Neokineogfx - Fixing C, personalized to include typeinfo more readily. Based on: Neokineogfx - Fixing C, personalized to utilize typeinfo.
https://youtu.be/RrL7121MOeA https://youtu.be/RrL7121MOeA
*/ */
#pragma clang diagnostic push #pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpre-c11-compat"
// #pragma clang diagnostic ignored "-Wc++-keyword"
#pragma clang diagnostic ignored "-Wcast-qual"
#pragma clang diagnostic ignored "-Wunused-const-variable" #pragma clang diagnostic ignored "-Wunused-const-variable"
#pragma clang diagnostic ignored "-Wunused-but-set-variable" #pragma clang diagnostic ignored "-Wunused-but-set-variable"
#pragma clang diagnostic ignored "-Wswitch" #pragma clang diagnostic ignored "-Wswitch"
@@ -20,14 +23,12 @@ https://youtu.be/RrL7121MOeA
#pragma clang diagnostic ignored "-W#pragma-messages" #pragma clang diagnostic ignored "-W#pragma-messages"
#pragma clang diagnostic ignored "-Wstatic-in-inline" #pragma clang diagnostic ignored "-Wstatic-in-inline"
#pragma clang diagnostic ignored "-Wkeyword-macro" #pragma clang diagnostic ignored "-Wkeyword-macro"
#pragma clang diagnostic ignored "-Wc23-compat"
#pragma clang diagnostic ignored "-Wreserved-identifier" #pragma clang diagnostic ignored "-Wreserved-identifier"
#pragma clang diagnostic ignored "-Wpre-c11-compat" #pragma clang diagnostic ignored "-Wc23-compat"
#pragma clang diagnostic ignored "-Wc23-extensions" #pragma clang diagnostic ignored "-Wc23-extensions"
#pragma clang diagnostic ignored "-Wunused-macros" #pragma clang diagnostic ignored "-Wunused-macros"
#pragma clang diagnostic ignored "-Wdeclaration-after-statement" #pragma clang diagnostic ignored "-Wdeclaration-after-statement"
#pragma clang diagnostic ignored "-Wunsafe-buffer-usage" #pragma clang diagnostic ignored "-Wunsafe-buffer-usage"
#pragma clang diagnostic ignored "-Wc++-keyword"
#pragma clang diagnostic ignored "-Wimplicit-function-declaration" #pragma clang diagnostic ignored "-Wimplicit-function-declaration"
#pragma clang diagnostic ignored "-Wcast-align" #pragma clang diagnostic ignored "-Wcast-align"
#pragma clang diagnostic ignored "-Wunused-parameter" #pragma clang diagnostic ignored "-Wunused-parameter"
@@ -39,24 +40,24 @@ https://youtu.be/RrL7121MOeA
#pragma region Header #pragma region Header
#pragma region DSL #pragma region DSL
#define align_(value) __attribute__((aligned (value))) // for easy alignment #define local_persist static
#define expect_(x, y) __builtin_expect(x, y) // so compiler knows the common path #define global static
#define finline static inline __attribute__((always_inline)) // force inline #define internal static
#define no_inline static __attribute__((noinline)) // force no inline [used in thread api]
#define R_ __restrict // pointers are either restricted or volatile and nothing else #define align_(value) __attribute__((aligned (value))) // for easy alignment
#define V_ volatile // pointers are either restricted or volatile and nothing else #define expect_(x, y) __builtin_expect(x, y) // so compiler knows the common path
#define finline internal inline __attribute__((always_inline)) // force inline
#define no_inline internal __attribute__((noinline)) // force no inline [used in thread api]
#define R_ __restrict // pointers are either restricted or volatile and nothing else
#define V_ volatile // pointers are either restricted or volatile and nothing else
#define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__)) #define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
#define glue_impl(A, B) A ## B #define glue_impl(A, B) A ## B
#define glue(A, B) glue_impl(A, B) #define glue(A, B) glue_impl(A, B)
#define stringify_impl(S) #S #define stringify_impl(S) #S
#define stringify(S) stringify_impl(S) #define stringify(S) cast(UTF8*, stringify_impl(S))
#define tmpl(prefix, type) prefix ## _ ## type #define tmpl(prefix, type) prefix ## _ ## type
#define local_persist static
#define global static
#define internal static
#define static_assert _Static_assert #define static_assert _Static_assert
#define typeof __typeof__ #define typeof __typeof__
#define typeof_ptr(ptr) typeof(ptr[0]) #define typeof_ptr(ptr) typeof(ptr[0])
@@ -176,15 +177,15 @@ typedef def_struct(Slice_Str8) { Str8* ptr; U8 len; };
{ \ { \
assert_handler( \ assert_handler( \
stringify(cond), \ stringify(cond), \
__FILE__, \ (UTF8*)__FILE__, \
__func__, \ (UTF8*)__func__, \
cast(S4, __LINE__), \ cast(S4, __LINE__), \
msg, \ msg, \
## __VA_ARGS__); \ ## __VA_ARGS__); \
debug_trap(); \ debug_trap(); \
} \ } \
} while(0) } while(0)
void assert_handler(UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line, UTF8*R_ msg, ... ); internal void assert_handler(UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line, UTF8*R_ msg, ... );
#else #else
#define debug_trap() #define debug_trap()
#define assert_trap(cond) #define assert_trap(cond)
@@ -277,7 +278,6 @@ void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidt
iter.cursor op iter.r.end; \ iter.cursor op iter.r.end; \
++ iter.cursor \ ++ iter.cursor \
) )
#define def_span(type) \ #define def_span(type) \
def_struct(tmpl( Span,type)) { type begin; type end; }; \ def_struct(tmpl( Span,type)) { type begin; type end; }; \
typedef def_struct(tmpl(Iter_Span,type)) { tmpl(Span,type) r; type cursor; } typedef def_struct(tmpl(Iter_Span,type)) { tmpl(Span,type) r; type cursor; }
@@ -403,14 +403,14 @@ typedef def_struct(FArena) {
U8 capacity; U8 capacity;
U8 used; U8 used;
}; };
finline FArena farena_make (Slice_Mem mem); finline FArena farena_make (Slice_Mem mem);
finline void farena_init (FArena_R arena, Slice_Mem byte); finline void farena_init (FArena_R arena, Slice_Mem byte);
Slice_Mem farena__push (FArena_R arena, U8 amount, U8 type_width, Opts_farena*R_ opts); internal Slice_Mem farena__push (FArena_R arena, U8 amount, U8 type_width, Opts_farena*R_ opts);
finline void farena_reset (FArena_R arena); finline void farena_reset (FArena_R arena);
finline void farena_rewind(FArena_R arena, AllocatorSP save_point); finline void farena_rewind(FArena_R arena, AllocatorSP save_point);
finline AllocatorSP farena_save (FArena arena); finline AllocatorSP farena_save (FArena arena);
void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out); internal void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out);
#define ainfo_farena(arena) (AllocatorInfo){ .proc = farena_allocator_proc, .data = u8_(& arena) } #define ainfo_farena(arena) (AllocatorInfo){ .proc = farena_allocator_proc, .data = u8_(& arena) }
#define farena_push_mem(arena, amount, ...) farena__push(arena, amount, 1, opt_args(Opts_farena, lit(stringify(B1)), __VA_ARGS__)) #define farena_push_mem(arena, amount, ...) farena__push(arena, amount, 1, opt_args(Opts_farena, lit(stringify(B1)), __VA_ARGS__))
@@ -434,8 +434,8 @@ typedef def_struct(Opts_vmem) {
B4 no_large_pages; B4 no_large_pages;
A4_B1 _PAD_; A4_B1 _PAD_;
}; };
void os_init(void); internal void os_init (void);
finline OS_SystemInfo* os_system_info(void); finline OS_SystemInfo* os_system_info(void);
finline B4 os__vmem_commit (U8 vm, U8 size, Opts_vmem*R_ opts); finline B4 os__vmem_commit (U8 vm, U8 size, Opts_vmem*R_ opts);
finline U8 os__vmem_reserve( U8 size, Opts_vmem*R_ opts); finline U8 os__vmem_reserve( U8 size, Opts_vmem*R_ opts);
@@ -466,17 +466,17 @@ typedef def_struct(Opts_varena_make) {
VArenaFlags flags; VArenaFlags flags;
A4_B1 _PAD_; A4_B1 _PAD_;
}; };
VArena* varena__make(Opts_varena_make*R_ opts); internal VArena* varena__make(Opts_varena_make*R_ opts);
#define varena_make(...) varena__make(opt_args(Opts_varena_make, __VA_ARGS__)) #define varena_make(...) varena__make(opt_args(Opts_varena_make, __VA_ARGS__))
Slice_Mem varena__push (VArena_R arena, U8 amount, U8 type_width, Opts_varena*R_ opts); internal Slice_Mem varena__push (VArena_R arena, U8 amount, U8 type_width, Opts_varena*R_ opts);
finline void varena_release(VArena_R arena); finline void varena_release(VArena_R arena);
finline void varena_rewind (VArena_R arena, AllocatorSP save_point); finline void varena_rewind (VArena_R arena, AllocatorSP save_point);
void varena_reset (VArena_R arena); internal void varena_reset (VArena_R arena);
Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size); internal Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size);
finline AllocatorSP varena_save (VArena_R arena); finline AllocatorSP varena_save (VArena_R arena);
void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out); internal void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out);
#define ainfo_varena(varena) (AllocatorInfo) { .proc = & varena_allocator_proc, .data = u8_(varena) } #define ainfo_varena(varena) (AllocatorInfo) { .proc = & varena_allocator_proc, .data = u8_(varena) }
#define varena_push_mem(arena, amount, ...) varena__push(arena, amount, 1, opt_args(Opts_varena, lit(stringify(B1)), __VA_ARGS__)) #define varena_push_mem(arena, amount, ...) varena__push(arena, amount, 1, opt_args(Opts_varena, lit(stringify(B1)), __VA_ARGS__))
@@ -504,14 +504,14 @@ typedef def_struct(Arena) {
A4_B1 _PAD_; A4_B1 _PAD_;
}; };
typedef Opts_varena_make Opts_arena_make; typedef Opts_varena_make Opts_arena_make;
Arena* arena__make (Opts_arena_make*R_ opts); internal Arena* arena__make (Opts_arena_make*R_ opts);
Slice_Mem arena__push (Arena_R arena, U8 amount, U8 type_width, Opts_arena*R_ opts); internal Slice_Mem arena__push (Arena_R arena, U8 amount, U8 type_width, Opts_arena*R_ opts);
finline void arena_release(Arena_R arena); finline void arena_release(Arena_R arena);
finline void arena_reset (Arena_R arena); finline void arena_reset (Arena_R arena);
void arena_rewind (Arena_R arena, AllocatorSP save_point); internal void arena_rewind (Arena_R arena, AllocatorSP save_point);
finline AllocatorSP arena_save (Arena_R arena); finline AllocatorSP arena_save (Arena_R arena);
void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out); internal void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out);
#define ainfo_arena(arena) (AllocatorInfo){ .proc = & arena_allocator_proc, .data = u8_(arena) } #define ainfo_arena(arena) (AllocatorInfo){ .proc = & arena_allocator_proc, .data = u8_(arena) }
#define arena_make(...) arena__make(opt_args(Opts_arena_make, __VA_ARGS__)) #define arena_make(...) arena__make(opt_args(Opts_arena_make, __VA_ARGS__))
@@ -567,7 +567,7 @@ typedef def_farray(Str8, 2);
typedef def_Slice(A2_Str8); typedef def_Slice(A2_Str8);
typedef def_KTL_Slot(Str8); typedef def_KTL_Slot(Str8);
typedef def_KTL(Str8); typedef def_KTL(Str8);
void ktl_populate_slice_a2_str8(KTL_Str8*R_ kt, AllocatorInfo backing, Slice_A2_Str8 values); finline void ktl_populate_slice_a2_str8(KTL_Str8*R_ kt, AllocatorInfo backing, Slice_A2_Str8 values);
#pragma endregion KTL #pragma endregion KTL
#pragma region Key Table 1-Layer Chained-Chunked-Cells (KT1CX) #pragma region Key Table 1-Layer Chained-Chunked-Cells (KT1CX)
@@ -622,11 +622,11 @@ typedef def_struct(KT1CX_Info) {
AllocatorInfo backing_table; AllocatorInfo backing_table;
AllocatorInfo backing_cells; AllocatorInfo backing_cells;
}; };
void kt1cx_init (KT1CX_Info info, KT1CX_InfoMeta m, KT1CX_Byte*R_ result); internal void kt1cx_init (KT1CX_Info info, KT1CX_InfoMeta m, KT1CX_Byte*R_ result);
void kt1cx_clear (KT1CX_Byte kt, KT1CX_ByteMeta meta); internal void kt1cx_clear (KT1CX_Byte kt, KT1CX_ByteMeta meta);
finline U8 kt1cx_slot_id(KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta); finline U8 kt1cx_slot_id(KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta);
U8 kt1cx_get (KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta); internal U8 kt1cx_get (KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta);
U8 kt1cx_set (KT1CX_Byte kt, U8 key, Slice_Mem value, AllocatorInfo backing_cells, KT1CX_ByteMeta meta); internal U8 kt1cx_set (KT1CX_Byte kt, U8 key, Slice_Mem value, AllocatorInfo backing_cells, KT1CX_ByteMeta meta);
#define kt1cx_assert(kt) do { \ #define kt1cx_assert(kt) do { \
slice_assert(kt.table); \ slice_assert(kt.table); \
@@ -641,14 +641,14 @@ finline U1 integer_symbols(U1 value) {
local_persist U1 lookup_table[16] = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F', }; return lookup_table[cast(U1, value)]; local_persist U1 lookup_table[16] = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F', }; return lookup_table[cast(U1, value)];
} }
finline char* str8_to_cstr_capped(Str8 content, Slice_Mem mem); finline char* str8_to_cstr_capped(Str8 content, Slice_Mem mem);
Str8 str8_from_u32(AllocatorInfo ainfo, U4 num, U4 radix, U4 min_digits, U4 digit_group_separator); internal Str8 str8_from_u32(AllocatorInfo ainfo, U4 num, U4 radix, U4 min_digits, U4 digit_group_separator);
finline Str8 str8__fmt_backed(AllocatorInfo tbl_backing, AllocatorInfo buf_backing, Str8 fmt_template, Slice_A2_Str8*R_ entries); finline Str8 str8__fmt_backed(AllocatorInfo tbl_backing, AllocatorInfo buf_backing, Str8 fmt_template, Slice_A2_Str8*R_ entries);
#define str8_fmt_backed(tbl_backing, buf_backing, fmt_template, ...) \ #define str8_fmt_backed(tbl_backing, buf_backing, fmt_template, ...) \
str8__fmt_backed(tbl_backing, buf_backing, lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__)) str8__fmt_backed(tbl_backing, buf_backing, lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__))
Str8 str8__fmt(Str8 fmt_template, Slice_A2_Str8*R_ entries); internal Str8 str8__fmt(Str8 fmt_template, Slice_A2_Str8*R_ entries);
#define str8_fmt(fmt_template, ...) str8__fmt(lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__)) #define str8_fmt(fmt_template, ...) str8__fmt(lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__))
#define Str8Cache_CELL_DEPTH 4 #define Str8Cache_CELL_DEPTH 4
@@ -671,8 +671,8 @@ typedef def_struct(Opts_str8cache_init) {
U8 cell_pool_size; U8 cell_pool_size;
U8 table_size; U8 table_size;
}; };
void str8cache__init(Str8Cache_R cache, Opts_str8cache_init*R_ opts); internal void str8cache__init(Str8Cache_R cache, Opts_str8cache_init*R_ opts);
finline Str8Cache str8cache__make( Opts_str8cache_init*R_ opts); finline Str8Cache str8cache__make( Opts_str8cache_init*R_ opts);
#define str8cache_init(cache, ...) str8cache__init(cache, opt_args(Opts_str8cache_init, __VA_ARGS__)) #define str8cache_init(cache, ...) str8cache__init(cache, opt_args(Opts_str8cache_init, __VA_ARGS__))
#define str8cache_make(...) str8cache__make( opt_args(Opts_str8cache_init, __VA_ARGS__)) #define str8cache_make(...) str8cache__make( opt_args(Opts_str8cache_init, __VA_ARGS__))
@@ -696,8 +696,8 @@ finline Str8Gen str8gen_make( AllocatorInfo backing);
finline Str8 str8_from_str8gen(Str8Gen gen) { return (Str8){ cast(UTF8_R, gen.ptr), gen.len}; } finline Str8 str8_from_str8gen(Str8Gen gen) { return (Str8){ cast(UTF8_R, gen.ptr), gen.len}; }
finline void str8gen_append_str8(Str8Gen_R gen, Str8 str); finline void str8gen_append_str8(Str8Gen_R gen, Str8 str);
void str8gen__append_fmt(Str8Gen_R gen, Str8 fmt_template, Slice_A2_Str8*R_ tokens); internal void str8gen__append_fmt(Str8Gen_R gen, Str8 fmt_template, Slice_A2_Str8*R_ tokens);
#define str8gen_append_fmt(gen, fmt_template, ...) str8gen__append_fmt(gen, lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__)) #define str8gen_append_fmt(gen, fmt_template, ...) str8gen__append_fmt(gen, lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__))
#pragma endregion String Operations #pragma endregion String Operations
@@ -711,8 +711,8 @@ typedef def_struct(Opts_read_file_contents) {
B4 zero_backing; B4 zero_backing;
A4_B1 _PAD_; A4_B1 _PAD_;
}; };
void api_file_read_contents(FileOpInfo_R result, Str8 path, Opts_read_file_contents opts); internal void api_file_read_contents(FileOpInfo_R result, Str8 path, Opts_read_file_contents opts);
void file_write_str8 (Str8 path, Str8 content); internal void file_write_str8 (Str8 path, Str8 content);
finline FileOpInfo file__read_contents(Str8 path, Opts_read_file_contents*R_ opts); finline FileOpInfo file__read_contents(Str8 path, Opts_read_file_contents*R_ opts);
#define file_read_contents(path, ...) file__read_contents(path, opt_args(Opts_read_file_contents, __VA_ARGS__)) #define file_read_contents(path, ...) file__read_contents(path, opt_args(Opts_read_file_contents, __VA_ARGS__))
@@ -755,8 +755,8 @@ typedef def_struct(Opts_watl_lex) {
B1 failon_slice_constraint_fail; B1 failon_slice_constraint_fail;
A4_B1 _PAD_; A4_B1 _PAD_;
}; };
void api_watl_lex(WATL_LexInfo_R info, Str8 source, Opts_watl_lex*R_ opts); internal void api_watl_lex(WATL_LexInfo_R info, Str8 source, Opts_watl_lex*R_ opts);
WATL_LexInfo watl__lex ( Str8 source, Opts_watl_lex*R_ opts); finline WATL_LexInfo watl__lex ( Str8 source, Opts_watl_lex*R_ opts);
#define watl_lex(source, ...) watl__lex(source, opt_args(Opts_watl_lex, __VA_ARGS__)) #define watl_lex(source, ...) watl__lex(source, opt_args(Opts_watl_lex, __VA_ARGS__))
typedef Str8 WATL_Node; typedef def_ptr_set(WATL_Node); typedef Str8 WATL_Node; typedef def_ptr_set(WATL_Node);
@@ -787,11 +787,11 @@ typedef def_struct(Opts_watl_parse) {
B4 failon_slice_constraint_fail; B4 failon_slice_constraint_fail;
A4_B1 _PAD_; A4_B1 _PAD_;
}; };
void api_watl_parse(WATL_ParseInfo_R info, Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts); internal void api_watl_parse(WATL_ParseInfo_R info, Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts);
WATL_ParseInfo watl__parse ( Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts); finline WATL_ParseInfo watl__parse ( Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts);
#define watl_parse(tokens, ...) watl__parse(tokens, opt_args(Opts_watl_parse, __VA_ARGS__)) #define watl_parse(tokens, ...) watl__parse(tokens, opt_args(Opts_watl_parse, __VA_ARGS__))
Str8 watl_dump_listing(AllocatorInfo buffer, Slice_WATL_Line lines); internal Str8 watl_dump_listing(AllocatorInfo buffer, Slice_WATL_Line lines);
#pragma endregion WATL #pragma endregion WATL
#pragma endregion Header #pragma endregion Header
@@ -823,8 +823,7 @@ void mem_rewind(AllocatorInfo ainfo, AllocatorSP save_point) {
finline finline
AllocatorSP mem_save_point(AllocatorInfo ainfo) { AllocatorSP mem_save_point(AllocatorInfo ainfo) {
assert(ainfo.proc != nullptr); assert(ainfo.proc != nullptr);
AllocatorProc_Out out; AllocatorProc_Out out; ainfo.proc((AllocatorProc_In){.data = ainfo.data, .op = AllocatorOp_SavePoint}, & out);
ainfo.proc((AllocatorProc_In){.data = ainfo.data, .op = AllocatorOp_SavePoint}, & out);
return out.save_point; return out.save_point;
} }
finline finline
@@ -837,8 +836,7 @@ Slice_Mem mem__alloc(AllocatorInfo ainfo, U8 size, Opts_mem_alloc*R_ opts) {
.requested_size = size, .requested_size = size,
.alignment = opts->alignment, .alignment = opts->alignment,
}; };
AllocatorProc_Out out; AllocatorProc_Out out; ainfo.proc(in, & out);
ainfo.proc(in, & out);
return out.allocation; return out.allocation;
} }
finline finline
@@ -852,8 +850,7 @@ Slice_Mem mem__grow(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow*R
.alignment = opts->alignment, .alignment = opts->alignment,
.old_allocation = mem .old_allocation = mem
}; };
AllocatorProc_Out out; AllocatorProc_Out out; ainfo.proc(in, & out);
ainfo.proc(in, & out);
return (Slice_Mem){ out.allocation.ptr, opts->give_actual ? out.allocation.len : in.requested_size }; return (Slice_Mem){ out.allocation.ptr, opts->give_actual ? out.allocation.len : in.requested_size };
} }
finline finline
@@ -867,8 +864,7 @@ Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resi
.alignment = opts->alignment, .alignment = opts->alignment,
.old_allocation = mem, .old_allocation = mem,
}; };
AllocatorProc_Out out; AllocatorProc_Out out; ainfo.proc(in, & out);
ainfo.proc(in, & out);
return (Slice_Mem){ out.allocation.ptr, opts->give_actual ? out.allocation.len : in.requested_size }; return (Slice_Mem){ out.allocation.ptr, opts->give_actual ? out.allocation.len : in.requested_size };
} }
finline finline
@@ -882,8 +878,7 @@ Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shri
.alignment = opts->alignment, .alignment = opts->alignment,
.old_allocation = mem .old_allocation = mem
}; };
AllocatorProc_Out out; AllocatorProc_Out out; ainfo.proc(in, & out);
ainfo.proc(in, & out);
return out.allocation; return out.allocation;
} }
#pragma endregion Allocator Interface #pragma endregion Allocator Interface
@@ -897,7 +892,7 @@ void farena_init(FArena_R arena, Slice_Mem mem) {
arena->used = 0; arena->used = 0;
} }
finline FArena farena_make(Slice_Mem mem) { FArena a; farena_init(& a, mem); return a; } finline FArena farena_make(Slice_Mem mem) { FArena a; farena_init(& a, mem); return a; }
inline internal inline
Slice_Mem farena__push(FArena_R arena, U8 amount, U8 type_width, Opts_farena*R_ opts) { Slice_Mem farena__push(FArena_R arena, U8 amount, U8 type_width, Opts_farena*R_ opts) {
assert(opts != nullptr); assert(opts != nullptr);
if (amount == 0) { return (Slice_Mem){}; } if (amount == 0) { return (Slice_Mem){}; }
@@ -908,7 +903,7 @@ Slice_Mem farena__push(FArena_R arena, U8 amount, U8 type_width, Opts_farena*R_
arena->used += to_commit; arena->used += to_commit;
return (Slice_Mem){ptr, desired}; return (Slice_Mem){ptr, desired};
} }
inline internal inline
Slice_Mem farena__grow(FArena_R arena, Slice_Mem old_allocation, U8 requested_size, U8 alignment, B4 should_zero) { Slice_Mem farena__grow(FArena_R arena, Slice_Mem old_allocation, U8 requested_size, U8 alignment, B4 should_zero) {
// Check if the allocation is at the end of the arena // Check if the allocation is at the end of the arena
U8 alloc_end = old_allocation.ptr + old_allocation.len; U8 alloc_end = old_allocation.ptr + old_allocation.len;
@@ -926,11 +921,10 @@ Slice_Mem farena__grow(FArena_R arena, Slice_Mem old_allocation, U8 requested_si
return (Slice_Mem){0}; return (Slice_Mem){0};
} }
arena->used += aligned_grow; arena->used += aligned_grow;
Slice_Mem result = (Slice_Mem){ old_allocation.ptr, aligned_grow + requested_size };
mem_zero(old_allocation.ptr + old_allocation.len, grow_amount * cast(U8, should_zero)); mem_zero(old_allocation.ptr + old_allocation.len, grow_amount * cast(U8, should_zero));
return result; return (Slice_Mem){ old_allocation.ptr, aligned_grow + requested_size };
} }
inline internal inline
Slice_Mem farena__shrink(FArena_R arena, Slice_Mem old_allocation, U8 requested_size, U8 alignment) Slice_Mem farena__shrink(FArena_R arena, Slice_Mem old_allocation, U8 requested_size, U8 alignment)
{ {
// Check if the allocation is at the end of the arena // Check if the allocation is at the end of the arena
@@ -956,6 +950,7 @@ finline
AllocatorSP farena_save (FArena arena) { AllocatorSP farena_save (FArena arena) {
return (AllocatorSP){ .type_sig = & farena_allocator_proc, .slot = arena.used }; return (AllocatorSP){ .type_sig = & farena_allocator_proc, .slot = arena.used };
} }
internal
void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out) void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
{ {
assert(out != nullptr); assert(out != nullptr);
@@ -963,38 +958,38 @@ void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
FArena_R arena = cast(FArena_R, in.data); FArena_R arena = cast(FArena_R, in.data);
switch (in.op) switch (in.op)
{ {
case AllocatorOp_Alloc: case AllocatorOp_Alloc:
case AllocatorOp_Alloc_NoZero: case AllocatorOp_Alloc_NoZero:
out->allocation = farena_push_mem(arena, in.requested_size, .alignment = in.alignment); out->allocation = farena_push_mem(arena, in.requested_size, .alignment = in.alignment);
mem_zero(out->allocation.ptr, out->allocation.len * in.op); mem_zero(out->allocation.ptr, out->allocation.len * in.op);
break; break;
case AllocatorOp_Free: break; case AllocatorOp_Free: break;
case AllocatorOp_Reset: farena_reset(arena); break; case AllocatorOp_Reset: farena_reset(arena); break;
case AllocatorOp_Grow: case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero: case AllocatorOp_Grow_NoZero:
out->allocation = farena__grow(arena, in.old_allocation, in.requested_size, in.alignment, in.op - AllocatorOp_Grow_NoZero); out->allocation = farena__grow(arena, in.old_allocation, in.requested_size, in.alignment, in.op - AllocatorOp_Grow_NoZero);
break; break;
case AllocatorOp_Shrink: case AllocatorOp_Shrink:
out->allocation = farena__shrink(arena, in.old_allocation, in.requested_size, in.alignment); out->allocation = farena__shrink(arena, in.old_allocation, in.requested_size, in.alignment);
break; break;
case AllocatorOp_Rewind: farena_rewind(arena, in.save_point); break; case AllocatorOp_Rewind: farena_rewind(arena, in.save_point); break;
case AllocatorOp_SavePoint: out->save_point = farena_save(arena[0]); break; case AllocatorOp_SavePoint: out->save_point = farena_save(arena[0]); break;
case AllocatorOp_Query: case AllocatorOp_Query:
out->features = out->features =
AllocatorQuery_Alloc AllocatorQuery_Alloc
| AllocatorQuery_Reset | AllocatorQuery_Reset
| AllocatorQuery_Resize | AllocatorQuery_Resize
| AllocatorQuery_Rewind | AllocatorQuery_Rewind
; ;
out->max_alloc = arena->capacity - arena->used; out->max_alloc = arena->capacity - arena->used;
out->min_alloc = 0; out->min_alloc = 0;
out->left = out->max_alloc; out->left = out->max_alloc;
out->save_point = farena_save(arena[0]); out->save_point = farena_save(arena[0]);
break; break;
} }
return; return;
} }
@@ -1009,6 +1004,7 @@ void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
#define MS_ANYSIZE_ARRAY 1 #define MS_ANYSIZE_ARRAY 1
#define MS_MEM_COMMIT 0x00001000 #define MS_MEM_COMMIT 0x00001000
#define MS_MEM_RESERVE 0x00002000 #define MS_MEM_RESERVE 0x00002000
#define MS_MEM_RELEASE 0x00008000
#define MS_MEM_LARGE_PAGES 0x20000000 #define MS_MEM_LARGE_PAGES 0x20000000
#define MS_PAGE_READWRITE 0x04 #define MS_PAGE_READWRITE 0x04
#define MS_TOKEN_ADJUST_PRIVILEGES (0x0020) #define MS_TOKEN_ADJUST_PRIVILEGES (0x0020)
@@ -1056,7 +1052,7 @@ typedef def_struct(OS_Windows_State) { OS_SystemInfo system_info; };
global OS_Windows_State os__windows_info; global OS_Windows_State os__windows_info;
finline OS_SystemInfo* os_system_info(void) { return & os__windows_info.system_info; } finline OS_SystemInfo* os_system_info(void) { return & os__windows_info.system_info; }
inline internal inline
void os__enable_large_pages(void) { void os__enable_large_pages(void) {
MS_HANDLE token; MS_HANDLE token;
if (OpenProcessToken(GetCurrentProcess(), MS_TOKEN_ADJUST_PRIVILEGES | MS_TOKEN_QUERY, &token)) if (OpenProcessToken(GetCurrentProcess(), MS_TOKEN_ADJUST_PRIVILEGES | MS_TOKEN_QUERY, &token))
@@ -1073,7 +1069,7 @@ void os__enable_large_pages(void) {
CloseHandle(token); CloseHandle(token);
} }
} }
inline internal inline
void os_init(void) { void os_init(void) {
os__enable_large_pages(); os__enable_large_pages();
OS_SystemInfo*R_ info = & os__windows_info.system_info; OS_SystemInfo*R_ info = & os__windows_info.system_info;
@@ -1095,13 +1091,12 @@ finline B4 os__vmem_commit(U8 vm, U8 size, Opts_vmem*R_ opts) {
B4 result = (VirtualAlloc(cast(MS_LPVOID, vm), size, MS_MEM_COMMIT, MS_PAGE_READWRITE) != 0); B4 result = (VirtualAlloc(cast(MS_LPVOID, vm), size, MS_MEM_COMMIT, MS_PAGE_READWRITE) != 0);
return result; return result;
} }
inline void os_vmem_release(U8 vm, U8 size) { VirtualFree(cast(MS_LPVOID, vm), 0, MS_MEM_RESERVE); } internal inline void os_vmem_release(U8 vm, U8 size) { VirtualFree(cast(MS_LPVOID, vm), 0, MS_MEM_RELEASE); }
#pragma endregion OS #pragma endregion OS
#pragma region VArena (Virutal Address Space Arena) #pragma region VArena (Virutal Address Space Arena)
finline U8 varena_header_size(void) { return align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); } finline U8 varena_header_size(void) { return align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); }
internal inline
inline
VArena* varena__make(Opts_varena_make*R_ opts) { VArena* varena__make(Opts_varena_make*R_ opts) {
assert(opts != nullptr); assert(opts != nullptr);
if (opts->reserve_size == 0) { opts->reserve_size = mega(64); } if (opts->reserve_size == 0) { opts->reserve_size = mega(64); }
@@ -1123,20 +1118,18 @@ VArena* varena__make(Opts_varena_make*R_ opts) {
}; };
return vm; return vm;
} }
inline internal inline
Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena*R_ opts) { Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena*R_ opts) {
assert(vm != nullptr); assert(vm != nullptr);
assert(amount != 0); assert(amount != 0);
U8 alignment = opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT; U8 alignment = opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT;
U8 requested_size = amount * type_width; U8 requested_size = amount * type_width;
U8 aligned_size = align_pow2(requested_size, alignment); U8 aligned_size = align_pow2(requested_size, alignment);
U8 current_offset = vm->reserve_start + vm->commit_used;
U8 to_be_used = vm->commit_used + aligned_size; U8 to_be_used = vm->commit_used + aligned_size;
U8 reserve_left = vm->reserve - vm->commit_used; U8 reserve_left = vm->reserve - vm->commit_used;
U8 commit_left = vm->committed - vm->commit_used; U8 commit_left = vm->committed - vm->commit_used;
B4 exhausted = commit_left < to_be_used; assert(to_be_used < reserve_left); assert(to_be_used < reserve_left);
if (exhausted) if (/*exhausted?*/commit_left < to_be_used) {
{
U8 next_commit_size = reserve_left > 0 ? U8 next_commit_size = reserve_left > 0 ?
max(vm->commit_size, to_be_used) max(vm->commit_size, to_be_used)
: align_pow2( reserve_left, os_system_info()->target_page_size); : align_pow2( reserve_left, os_system_info()->target_page_size);
@@ -1148,21 +1141,21 @@ Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena*R_ opt
vm->committed += next_commit_size; vm->committed += next_commit_size;
} }
} }
vm->commit_used = to_be_used; U8 current_offset = vm->reserve_start + vm->commit_used;
vm->commit_used = to_be_used;
return (Slice_Mem){.ptr = current_offset, .len = requested_size}; return (Slice_Mem){.ptr = current_offset, .len = requested_size};
} }
inline internal inline
Slice_Mem varena__grow(VArena_R vm, Slice_Mem old_allocation, U8 requested_size, U8 alignment, B4 no_zero) { Slice_Mem varena__grow(VArena_R vm, Slice_Mem old_allocation, U8 requested_size, U8 alignment, B4 should_zero) {
U8 grow_amount = requested_size - old_allocation.len; U8 grow_amount = requested_size - old_allocation.len;
if (grow_amount == 0) { return old_allocation; } // Growing when not the last allocation not allowed if (grow_amount == 0) { return old_allocation; } // Growing when not the last allocation not allowed
U8 current_offset = vm->reserve_start + vm->commit_used; assert(old_allocation.ptr == current_offset); U8 current_offset = vm->reserve_start + vm->commit_used; assert(old_allocation.ptr == current_offset);
Slice_Mem allocation = varena_push_mem(vm, grow_amount, alignment); assert(allocation.ptr != 0); Slice_Mem allocation = varena_push_mem(vm, grow_amount, alignment); assert(allocation.ptr != 0);
Slice_Mem result = (Slice_Mem){ old_allocation.ptr, requested_size + allocation.len }; mem_zero(allocation.ptr, allocation.len * should_zero);
mem_zero(result.ptr, result.len * no_zero); return (Slice_Mem){ old_allocation.ptr, old_allocation.len + allocation.len };
return result;
} }
finline void varena_release(VArena_R arena) { os_vmem_release(u8_(arena), arena->reserve); } finline void varena_release(VArena_R arena) { os_vmem_release(u8_(arena), arena->reserve); }
inline internal inline
Slice_Mem varena__shrink(VArena_R vm, Slice_Mem old_allocation, U8 requested_size) { Slice_Mem varena__shrink(VArena_R vm, Slice_Mem old_allocation, U8 requested_size) {
U8 shrink_amount = old_allocation.len - requested_size; U8 shrink_amount = old_allocation.len - requested_size;
if (lt_s(shrink_amount, 0)) { return old_allocation; } if (lt_s(shrink_amount, 0)) { return old_allocation; }
@@ -1177,6 +1170,7 @@ void varena_rewind(VArena_R vm, AllocatorSP sp) {
vm->commit_used = max(sp.slot, sizeof(VArena)); vm->commit_used = max(sp.slot, sizeof(VArena));
} }
finline AllocatorSP varena_save(VArena_R vm) { return (AllocatorSP){varena_allocator_proc, vm->commit_used}; } finline AllocatorSP varena_save(VArena_R vm) { return (AllocatorSP){varena_allocator_proc, vm->commit_used}; }
internal
void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out) void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
{ {
VArena_R vm = cast(VArena_R, in.data); VArena_R vm = cast(VArena_R, in.data);
@@ -1219,13 +1213,13 @@ void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
#pragma endregion VArena #pragma endregion VArena
#pragma region Arena (Chained Arena) #pragma region Arena (Chained Arena)
inline finline U8 arena_header_size(void) { return align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT); }
internal inline
Arena* arena__make(Opts_arena_make*R_ opts) { Arena* arena__make(Opts_arena_make*R_ opts) {
assert(opts != nullptr); assert(opts != nullptr);
U8 header_size = align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT); U8 header_size = arena_header_size();
VArena_R current = varena__make(opts); VArena_R current = varena__make(opts); assert(current != nullptr);
assert(current != nullptr); Arena* arena = varena_push(current, Arena); r_(arena)[0] = (Arena){
Arena* arena = varena_push(current, Arena); r_(arena)[0] = (Arena){
.backing = current, .backing = current,
.prev = nullptr, .prev = nullptr,
.current = arena, .current = arena,
@@ -1235,6 +1229,7 @@ Arena* arena__make(Opts_arena_make*R_ opts) {
}; };
return arena; return arena;
} }
internal inline
Slice_Mem arena__push(Arena_R arena, U8 amount, U8 type_width, Opts_arena* opts) { Slice_Mem arena__push(Arena_R arena, U8 amount, U8 type_width, Opts_arena* opts) {
assert(arena != nullptr); assert(arena != nullptr);
assert(opts != nullptr); assert(opts != nullptr);
@@ -1266,6 +1261,45 @@ Slice_Mem arena__push(Arena_R arena, U8 amount, U8 type_width, Opts_arena* opts)
active->pos = pos_pst; active->pos = pos_pst;
return vresult; return vresult;
} }
internal inline
Slice_Mem arena__grow(Arena_R arena, Slice_Mem old_allocation, U8 requested_size, U8 alignment, B4 should_zero) {
Arena_R active = arena->current;
U8 alloc_end = old_allocation.ptr + old_allocation.len + requested_size;
U8 arena_end = u8_(active) + active->pos;
if (alloc_end == arena_end)
{
U8 grow_amount = requested_size - old_allocation.len;
U8 aligned_grow = align_pow2(grow_amount, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
if (active->pos + aligned_grow <= active->backing->reserve) {
Slice_Mem vresult = varena_push_mem(active->backing, aligned_grow, .alignment = alignment);
if (vresult.ptr != null) {
active->pos += aligned_grow;
mem_zero(old_allocation.ptr + old_allocation.len, aligned_grow * (U8)should_zero);
return (Slice_Mem){old_allocation.ptr, aligned_grow + old_allocation.len};
}
}
}
#pragma diagnostic push
#pragma clang diagnostic ignored "-Wnrvo"
Slice_Mem new_alloc = arena__push(arena, requested_size, 1, &(Opts_arena){.alignment = alignment});
if (new_alloc.ptr == null) { return (Slice_Mem){0}; }
mem_copy(new_alloc.ptr, old_allocation.ptr, old_allocation.len);
mem_zero(new_alloc.ptr + old_allocation.len, (new_alloc.len - old_allocation.len) * (U8)should_zero);
return new_alloc;
#pragma diagnostic pop
}
internal inline
Slice_Mem arena__shrink(Arena_R arena, Slice_Mem old_allocation, U8 requested_size, U8 alignment) {
Arena_R active = arena->current;
U8 alloc_end = old_allocation.ptr + old_allocation.len;
U8 arena_end = u8_(active) + active->pos;
if (alloc_end != arena_end) { return (Slice_Mem){old_allocation.ptr, requested_size}; }
U8 aligned_original = align_pow2(old_allocation.len, MEMORY_ALIGNMENT_DEFAULT);
U8 aligned_new = align_pow2(requested_size, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
U8 pos_reduction = aligned_original - aligned_new;
active->pos -= pos_reduction;
return varena__shrink(active->backing, old_allocation, requested_size);
}
finline finline
void arena_release(Arena_R arena) { void arena_release(Arena_R arena) {
assert(arena != nullptr); assert(arena != nullptr);
@@ -1277,6 +1311,7 @@ void arena_release(Arena_R arena) {
} }
} }
finline void arena_reset(Arena_R arena) { arena_rewind(arena, (AllocatorSP){.type_sig = arena_allocator_proc, .slot = 0}); } finline void arena_reset(Arena_R arena) { arena_rewind(arena, (AllocatorSP){.type_sig = arena_allocator_proc, .slot = 0}); }
internal inline
void arena_rewind(Arena_R arena, AllocatorSP save_point) { void arena_rewind(Arena_R arena, AllocatorSP save_point) {
assert(arena != nullptr); assert(arena != nullptr);
assert(save_point.type_sig == arena_allocator_proc); assert(save_point.type_sig == arena_allocator_proc);
@@ -1288,12 +1323,12 @@ void arena_rewind(Arena_R arena, AllocatorSP save_point) {
varena_release(curr->backing); varena_release(curr->backing);
} }
arena->current = curr; arena->current = curr;
U8 new_pos = big_pos - curr->base_pos; U8 new_pos = big_pos - curr->base_pos; assert(new_pos <= curr->pos);
assert(new_pos <= curr->pos); curr->pos = new_pos;
curr->pos = new_pos;
varena_rewind(curr->backing, (AllocatorSP){varena_allocator_proc, curr->pos + size_of(VArena)}); varena_rewind(curr->backing, (AllocatorSP){varena_allocator_proc, curr->pos + size_of(VArena)});
} }
finline AllocatorSP arena_save(Arena_R arena) { return (AllocatorSP){arena_allocator_proc, arena->base_pos + arena->current->pos}; } finline AllocatorSP arena_save(Arena_R arena) { return (AllocatorSP){arena_allocator_proc, arena->base_pos + arena->current->pos}; }
internal
void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out) void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
{ {
assert(out != nullptr); assert(out != nullptr);
@@ -1311,53 +1346,11 @@ void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
case AllocatorOp_Reset: arena_reset(arena); break; case AllocatorOp_Reset: arena_reset(arena); break;
case AllocatorOp_Grow: case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero: { case AllocatorOp_Grow_NoZero:
Arena_R active = arena->current; out->allocation = arena__grow(arena, in.old_allocation, in.requested_size, in.alignment, in.op - AllocatorOp_Grow_NoZero);
U8 alloc_end = in.old_allocation.ptr + in.old_allocation.len;
U8 arena_end = u8_(active) + active->pos;
if (alloc_end == arena_end)
{
U8 grow_amount = in.requested_size - in.old_allocation.len;
U8 aligned_grow = align_pow2(grow_amount, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
if (active->pos + aligned_grow <= active->backing->reserve)
{
Slice_Mem vresult = varena_push_mem(active->backing, aligned_grow, .alignment = in.alignment);
if (vresult.ptr != null)
{
active->pos += aligned_grow;
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
mem_zero(in.old_allocation.ptr + in.old_allocation.len, grow_amount * in.op - AllocatorOp_Grow_NoZero);
break;
}
}
}
Slice_Mem new_alloc = arena__push(arena, in.requested_size, 1, &(Opts_arena){.alignment = in.alignment});
if (new_alloc.ptr == null) {
out->allocation = (Slice_Mem){0};
break;
}
mem_copy(new_alloc.ptr, in.old_allocation.ptr, in.old_allocation.len);
mem_zero(new_alloc.ptr + in.old_allocation.len, (in.requested_size - in.old_allocation.len) * in.op - AllocatorOp_Grow_NoZero);
out->allocation = new_alloc;
}
break; break;
case AllocatorOp_Shrink:
case AllocatorOp_Shrink: { out->allocation = arena__shrink(arena, in.old_allocation, in.requested_size, in.alignment);
Arena_R active = arena->current;
U8 alloc_end = in.old_allocation.ptr + in.old_allocation.len;
U8 arena_end = u8_(active) + active->pos;
if (alloc_end != arena_end) {
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
break;
}
//SSIZE shrink_amount = in.old_allocation.len - in.requested_size;
U8 aligned_original = align_pow2(in.old_allocation.len, MEMORY_ALIGNMENT_DEFAULT);
U8 aligned_new = align_pow2(in.requested_size, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
U8 pos_reduction = aligned_original - aligned_new;
active->pos -= pos_reduction;
varena__shrink(active->backing, in.old_allocation, in.requested_size);
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
}
break; break;
case AllocatorOp_Rewind: arena_rewind(arena, in.save_point); break; case AllocatorOp_Rewind: arena_rewind(arena, in.save_point); break;
@@ -1380,7 +1373,7 @@ void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
#pragma endregion Arena #pragma endregion Arena
#pragma region Key Table Linear (KTL) #pragma region Key Table Linear (KTL)
inline finline
void ktl_populate_slice_a2_str8(KTL_Str8*R_ kt, AllocatorInfo backing, Slice_A2_Str8 values) { void ktl_populate_slice_a2_str8(KTL_Str8*R_ kt, AllocatorInfo backing, Slice_A2_Str8 values) {
assert(kt != nullptr); assert(kt != nullptr);
if (values.len == 0) return; if (values.len == 0) return;
@@ -1393,7 +1386,7 @@ void ktl_populate_slice_a2_str8(KTL_Str8*R_ kt, AllocatorInfo backing, Slice_A2_
#pragma endregion KTL #pragma endregion KTL
#pragma region Key Table 1-Layer Chained-Chunked_Cells (KT1CX) #pragma region Key Table 1-Layer Chained-Chunked_Cells (KT1CX)
inline internal inline
void kt1cx_init(KT1CX_Info info, KT1CX_InfoMeta m, KT1CX_Byte*R_ result) { void kt1cx_init(KT1CX_Info info, KT1CX_InfoMeta m, KT1CX_Byte*R_ result) {
assert(result != nullptr); assert(result != nullptr);
assert(info.backing_cells.proc != nullptr); assert(info.backing_cells.proc != nullptr);
@@ -1405,7 +1398,7 @@ void kt1cx_init(KT1CX_Info info, KT1CX_InfoMeta m, KT1CX_Byte*R_ result) {
result->table = mem_alloc(info.backing_table, m.table_size * m.cell_size); slice_assert(result->table); result->table = mem_alloc(info.backing_table, m.table_size * m.cell_size); slice_assert(result->table);
result->table.len = m.table_size; // Setting to the table number of elements instead of byte length. result->table.len = m.table_size; // Setting to the table number of elements instead of byte length.
} }
inline internal inline
void kt1cx_clear(KT1CX_Byte kt, KT1CX_ByteMeta m) { void kt1cx_clear(KT1CX_Byte kt, KT1CX_ByteMeta m) {
U8 cell_cursor = kt.table.ptr; U8 cell_cursor = kt.table.ptr;
U8 table_len = kt.table.len * m.cell_size; U8 table_len = kt.table.len * m.cell_size;
@@ -1428,9 +1421,9 @@ void kt1cx_clear(KT1CX_Byte kt, KT1CX_ByteMeta m) {
} }
finline finline
U8 kt1cx_slot_id(KT1CX_Byte kt, U8 key, KT1CX_ByteMeta m) { U8 kt1cx_slot_id(KT1CX_Byte kt, U8 key, KT1CX_ByteMeta m) {
U8 hash_index = key % kt.table.len; return key % kt.table.len;
return hash_index;
} }
inline
U8 kt1cx_get(KT1CX_Byte kt, U8 key, KT1CX_ByteMeta m) { U8 kt1cx_get(KT1CX_Byte kt, U8 key, KT1CX_ByteMeta m) {
U8 hash_index = kt1cx_slot_id(kt, key, m); U8 hash_index = kt1cx_slot_id(kt, key, m);
U8 cell_offset = hash_index * m.cell_size; U8 cell_offset = hash_index * m.cell_size;
@@ -1457,7 +1450,7 @@ U8 kt1cx_get(KT1CX_Byte kt, U8 key, KT1CX_ByteMeta m) {
} }
} }
} }
inline internal
U8 kt1cx_set(KT1CX_Byte kt, U8 key, Slice_Mem value, AllocatorInfo backing_cells, KT1CX_ByteMeta m) { U8 kt1cx_set(KT1CX_Byte kt, U8 key, Slice_Mem value, AllocatorInfo backing_cells, KT1CX_ByteMeta m) {
U8 hash_index = kt1cx_slot_id(kt, key, m); U8 hash_index = kt1cx_slot_id(kt, key, m);
U8 cell_offset = hash_index * m.cell_size; U8 cell_offset = hash_index * m.cell_size;
@@ -1507,24 +1500,25 @@ char* str8_to_cstr_capped(Str8 content, Slice_Mem mem) {
u1_r(mem.ptr)[copy_len] = '\0'; u1_r(mem.ptr)[copy_len] = '\0';
return cast(char*, mem.ptr); return cast(char*, mem.ptr);
} }
internal
Str8 str8_from_u32(AllocatorInfo ainfo, U4 num, U4 radix, U4 min_digits, U4 digit_group_separator) Str8 str8_from_u32(AllocatorInfo ainfo, U4 num, U4 radix, U4 min_digits, U4 digit_group_separator)
{ {
Str8 result = {0}; Str8 result = {0};
Str8 prefix = {0}; Str8 prefix = {0};
switch (radix) { switch (radix) {
case 16: { prefix = lit("0x"); } break; case 16: { prefix = lit("0x"); } break;
case 8: { prefix = lit("0o"); } break; case 8: { prefix = lit("0o"); } break;
case 2: { prefix = lit("0b"); } break; case 2: { prefix = lit("0b"); } break;
} }
U4 digit_group_size = 3; U4 digit_group_size = 3;
switch (radix) { switch (radix) {
default: break; default: break;
case 2: case 2:
case 8: case 8:
case 16: { case 16: {
digit_group_size = 4; digit_group_size = 4;
} }
break; break;
} }
U4 needed_leading_zeros = 0; U4 needed_leading_zeros = 0;
{ {
@@ -1666,17 +1660,16 @@ finline
Str8 str8__fmt_backed(AllocatorInfo tbl_backing, AllocatorInfo buf_backing, Str8 fmt_template, Slice_A2_Str8*R_ entries) { Str8 str8__fmt_backed(AllocatorInfo tbl_backing, AllocatorInfo buf_backing, Str8 fmt_template, Slice_A2_Str8*R_ entries) {
KTL_Str8 kt; kt1l_populate_slice_a2_str8(& kt, tbl_backing, entries[0] ); KTL_Str8 kt; kt1l_populate_slice_a2_str8(& kt, tbl_backing, entries[0] );
U8 buf_size = kilo(64); Slice_Mem buffer = mem_alloc(buf_backing, buf_size); U8 buf_size = kilo(64); Slice_Mem buffer = mem_alloc(buf_backing, buf_size);
Str8 result = str8__fmt_ktl(buf_backing, & buffer, kt, fmt_template); return str8__fmt_ktl(buf_backing, & buffer, kt, fmt_template);
return result;
} }
finline
Str8 str8__fmt(Str8 fmt_template, Slice_A2_Str8*R_ entries) { Str8 str8__fmt(Str8 fmt_template, Slice_A2_Str8*R_ entries) {
local_persist B1 tbl_mem[kilo(32)]; FArena tbl_arena = farena_make(slice_fmem(tbl_mem)); local_persist B1 tbl_mem[kilo(32)]; FArena tbl_arena = farena_make(slice_fmem(tbl_mem));
local_persist B1 buf_mem[kilo(64)]; local_persist B1 buf_mem[kilo(64)];
KTL_Str8 kt = {0}; ktl_populate_slice_a2_str8(& kt, ainfo_farena(tbl_arena), entries[0] ); KTL_Str8 kt = {0}; ktl_populate_slice_a2_str8(& kt, ainfo_farena(tbl_arena), entries[0] );
Str8 result = str8__fmt_ktl((AllocatorInfo){0}, & slice_fmem(buf_mem), kt, fmt_template); return str8__fmt_ktl((AllocatorInfo){0}, & slice_fmem(buf_mem), kt, fmt_template);
return result;
} }
inline internal inline
void str8cache__init(Str8Cache_R cache, Opts_str8cache_init*R_ opts) { void str8cache__init(Str8Cache_R cache, Opts_str8cache_init*R_ opts) {
assert(cache != nullptr); assert(cache != nullptr);
assert(opts != nullptr); assert(opts != nullptr);
@@ -1764,8 +1757,7 @@ finline
Str8 cache_str8(Str8Cache_R cache, Str8 str) { Str8 cache_str8(Str8Cache_R cache, Str8 str) {
assert(cache != nullptr); assert(cache != nullptr);
U8 key = 0; hash64_fnv1a(& key, slice_mem_s(str)); U8 key = 0; hash64_fnv1a(& key, slice_mem_s(str));
Str8_R result = str8cache_set(cache->kt, key, str, cache->str_reserve, cache->cell_reserve); return str8cache_set(cache->kt, key, str, cache->str_reserve, cache->cell_reserve)[0];
return result[0];
} }
finline finline
void str8gen_init(Str8Gen_R gen, AllocatorInfo backing) { void str8gen_init(Str8Gen_R gen, AllocatorInfo backing) {
@@ -1787,6 +1779,7 @@ void str8gen_append_str8(Str8Gen_R gen, Str8 str){
gen->len += str.len; gen->len += str.len;
gen->cap = result.len; gen->cap = result.len;
} }
internal inline
void str8gen__append_fmt(Str8Gen_R gen, Str8 fmt_template, Slice_A2_Str8*R_ entries){ void str8gen__append_fmt(Str8Gen_R gen, Str8 fmt_template, Slice_A2_Str8*R_ entries){
local_persist B1 tbl_mem[kilo(32)]; FArena tbl_arena = farena_make(slice_fmem(tbl_mem)); local_persist B1 tbl_mem[kilo(32)]; FArena tbl_arena = farena_make(slice_fmem(tbl_mem));
KTL_Str8 kt = {0}; ktl_populate_slice_a2_str8(& kt, ainfo_farena(tbl_arena), entries[0] ); KTL_Str8 kt = {0}; ktl_populate_slice_a2_str8(& kt, ainfo_farena(tbl_arena), entries[0] );
@@ -1842,6 +1835,7 @@ FileOpInfo file__read_contents(Str8 path, Opts_read_file_contents*R_ opts) {
FileOpInfo result = {0}; api_file_read_contents(& result, path, opts[0]); FileOpInfo result = {0}; api_file_read_contents(& result, path, opts[0]);
return result; return result;
} }
internal
void api_file_read_contents(FileOpInfo_R result, Str8 path, Opts_read_file_contents opts) void api_file_read_contents(FileOpInfo_R result, Str8 path, Opts_read_file_contents opts)
{ {
assert(result != nullptr); assert(result != nullptr);
@@ -1901,6 +1895,7 @@ void api_file_read_contents(FileOpInfo_R result, Str8 path, Opts_read_file_conte
result->content.len = u8_(file_size.QuadPart); result->content.len = u8_(file_size.QuadPart);
return; return;
} }
internal
void file_write_str8(Str8 path, Str8 content) void file_write_str8(Str8 path, Str8 content)
{ {
slice_assert(path); slice_assert(path);
@@ -1975,6 +1970,7 @@ int printf_err(char const* fmt, ...) {
va_end(args); va_end(args);
return result; return result;
} }
internal inline
void assert_handler( UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line, UTF8*R_ msg, ... ) { void assert_handler( UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line, UTF8*R_ msg, ... ) {
printf_err( "%s - %s:(%d): Assert Failure: ", file, function, line ); printf_err( "%s - %s:(%d): Assert Failure: ", file, function, line );
if ( condition ) if ( condition )
@@ -1991,6 +1987,7 @@ void assert_handler( UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line,
#pragma endregion Debug #pragma endregion Debug
#pragma region WATL #pragma region WATL
internal
void api_watl_lex(WATL_LexInfo_R info, Str8 source, Opts_watl_lex*R_ opts) void api_watl_lex(WATL_LexInfo_R info, Str8 source, Opts_watl_lex*R_ opts)
{ {
if (source.len == 0) { return; } if (source.len == 0) { return; }
@@ -2012,52 +2009,52 @@ void api_watl_lex(WATL_LexInfo_R info, Str8 source, Opts_watl_lex*R_ opts)
#define alloc_tok() alloc_type(opts->ainfo_toks, WATL_Tok, .alignment = alignof(WATL_Tok), .no_zero = true) #define alloc_tok() alloc_type(opts->ainfo_toks, WATL_Tok, .alignment = alignof(WATL_Tok), .no_zero = true)
switch (code) switch (code)
{ {
case WATL_Tok_Space: case WATL_Tok_Space:
case WATL_Tok_Tab: case WATL_Tok_Tab:
{ {
if (prev[0] != cursor[0]) { if (prev[0] != cursor[0]) {
WATL_Tok_R new_tok = alloc_tok(); if (new_tok - 1 != tok && tok != nullptr) { goto slice_constraint_fail; }
tok = new_tok;
tok[0] = (WATL_Tok){ cursor, 0 };
was_formatting = true;
++ num;
}
cursor += 1;
tok->len += 1;
}
break;
case WATL_Tok_LineFeed: {
WATL_Tok_R new_tok = alloc_tok(); if (new_tok - 1 != tok && tok != nullptr) { goto slice_constraint_fail; } WATL_Tok_R new_tok = alloc_tok(); if (new_tok - 1 != tok && tok != nullptr) { goto slice_constraint_fail; }
tok = new_tok; tok = new_tok;
tok[0] = (WATL_Tok){ cursor, 1 }; tok[0] = (WATL_Tok){ cursor, 0 };
cursor += 1;
was_formatting = true; was_formatting = true;
++ num; ++ num;
} }
break; cursor += 1;
// Assuming what comes after is line feed. tok->len += 1;
case WATL_Tok_CarriageReturn: { }
break;
case WATL_Tok_LineFeed: {
WATL_Tok_R new_tok = alloc_tok(); if (new_tok - 1 != tok && tok != nullptr) { goto slice_constraint_fail; }
tok = new_tok;
tok[0] = (WATL_Tok){ cursor, 1 };
cursor += 1;
was_formatting = true;
++ num;
}
break;
// Assuming what comes after is line feed.
case WATL_Tok_CarriageReturn: {
WATL_Tok_R new_tok = alloc_tok(); if (new_tok - 1 != tok && tok != nullptr) { goto slice_constraint_fail; }
tok = new_tok;
tok[0] = (WATL_Tok){ cursor, 2 };
cursor += 2;
was_formatting = true;
++ num;
}
break;
default:
{
if (was_formatting) {
WATL_Tok_R new_tok = alloc_tok(); if (new_tok - 1 != tok && tok != nullptr) { goto slice_constraint_fail; } WATL_Tok_R new_tok = alloc_tok(); if (new_tok - 1 != tok && tok != nullptr) { goto slice_constraint_fail; }
tok = new_tok; tok = new_tok;
tok[0] = (WATL_Tok){ cursor, 2 }; tok[0] = (WATL_Tok){ cursor, 0 };
cursor += 2; was_formatting = false;
was_formatting = true;
++ num; ++ num;
} }
break; cursor += 1;
default: tok->len += 1;
{ }
if (was_formatting) { break;
WATL_Tok_R new_tok = alloc_tok(); if (new_tok - 1 != tok && tok != nullptr) { goto slice_constraint_fail; }
tok = new_tok;
tok[0] = (WATL_Tok){ cursor, 0 };
was_formatting = false;
++ num;
}
cursor += 1;
tok->len += 1;
}
break;
} }
prev = cursor - 1; prev = cursor - 1;
code = cursor[0]; code = cursor[0];
@@ -2080,7 +2077,7 @@ slice_constraint_fail:
return; return;
} }
inline WATL_LexInfo watl__lex(Str8 source, Opts_watl_lex*R_ opts) { WATL_LexInfo info = {0}; api_watl_lex(& info, source, opts); return info; } inline WATL_LexInfo watl__lex(Str8 source, Opts_watl_lex*R_ opts) { WATL_LexInfo info = {0}; api_watl_lex(& info, source, opts); return info; }
internal
void api_watl_parse(WATL_ParseInfo_R info, Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts) void api_watl_parse(WATL_ParseInfo_R info, Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts)
{ {
if (tokens.len == 0) { return; } if (tokens.len == 0) { return; }
@@ -2100,49 +2097,49 @@ void api_watl_parse(WATL_ParseInfo_R info, Slice_WATL_Tok tokens, Opts_watl_pars
{ {
switch(token->ptr[0]) switch(token->ptr[0])
{ {
case WATL_Tok_CarriageReturn: case WATL_Tok_CarriageReturn:
case WATL_Tok_LineFeed: case WATL_Tok_LineFeed:
{ {
WATL_Line_R new_line = alloc_type(opts->ainfo_lines, WATL_Line); if (new_line - 1 != line) { WATL_Line_R new_line = alloc_type(opts->ainfo_lines, WATL_Line); if (new_line - 1 != line) {
info->signal |= WATL_ParseStatus_MemFail_SliceConstraintFail; info->signal |= WATL_ParseStatus_MemFail_SliceConstraintFail;
WATL_ParseMsg_R msg = alloc_type(opts->ainfo_msgs, WATL_ParseMsg); WATL_ParseMsg_R msg = alloc_type(opts->ainfo_msgs, WATL_ParseMsg);
msg->content = lit("Line slice allocation was not contiguous"); msg->content = lit("Line slice allocation was not contiguous");
msg->pos = (WATL_Pos){cast(S4, info->lines.len), cast(S4, line->len)}; msg->pos = (WATL_Pos){cast(S4, info->lines.len), cast(S4, line->len)};
msg->line = line; msg->line = line;
msg->tok = token; msg->tok = token;
sll_queue_push_n(info->msgs, msg_last, msg, next); sll_queue_push_n(info->msgs, msg_last, msg, next);
assert(opts->failon_slice_constraint_fail == false); assert(opts->failon_slice_constraint_fail == false);
return; return;
}
line = new_line;
line->ptr = curr;
info->lines.len += 1;
} }
continue; line = new_line;
line->ptr = curr;
default: info->lines.len += 1;
break;
} }
curr[0] = cache_str8(opts->str_cache, token[0]);
WATL_Node_R new_node = alloc_type(opts->ainfo_nodes, WATL_Node); if (new_node - 1 != curr) {
info->signal |= WATL_ParseStatus_MemFail_SliceConstraintFail;
WATL_ParseMsg_R msg = alloc_type(opts->ainfo_msgs, WATL_ParseMsg);
msg->content = lit("Nodes slice allocation was not contiguous");
msg->pos = (WATL_Pos){cast(S4, info->lines.len), cast(S4, line->len)};
msg->line = line;
msg->tok = token;
sll_queue_push_n(info->msgs, msg_last, msg, next);
assert(opts->failon_slice_constraint_fail == false);
return;
}
curr = new_node;
line->len += 1;
continue; continue;
default:
break;
}
curr[0] = cache_str8(opts->str_cache, token[0]);
WATL_Node_R new_node = alloc_type(opts->ainfo_nodes, WATL_Node); if (new_node - 1 != curr) {
info->signal |= WATL_ParseStatus_MemFail_SliceConstraintFail;
WATL_ParseMsg_R msg = alloc_type(opts->ainfo_msgs, WATL_ParseMsg);
msg->content = lit("Nodes slice allocation was not contiguous");
msg->pos = (WATL_Pos){cast(S4, info->lines.len), cast(S4, line->len)};
msg->line = line;
msg->tok = token;
sll_queue_push_n(info->msgs, msg_last, msg, next);
assert(opts->failon_slice_constraint_fail == false);
return;
}
curr = new_node;
line->len += 1;
continue;
} }
return; return;
} }
inline WATL_ParseInfo watl__parse(Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts) { WATL_ParseInfo info = {0}; api_watl_parse(& info, tokens, opts); return info; } finline WATL_ParseInfo watl__parse(Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts) { WATL_ParseInfo info = {0}; api_watl_parse(& info, tokens, opts); return info; }
internal
Str8 watl_dump_listing(AllocatorInfo buffer, Slice_WATL_Line lines) Str8 watl_dump_listing(AllocatorInfo buffer, Slice_WATL_Line lines)
{ {
local_persist B1 scratch[kilo(64)] = {0}; FArena sarena = farena_make(slice_fmem(scratch)); AllocatorInfo sinfo = ainfo_farena(sarena); local_persist B1 scratch[kilo(64)] = {0}; FArena sarena = farena_make(slice_fmem(scratch)); AllocatorInfo sinfo = ainfo_farena(sarena);
@@ -2162,11 +2159,10 @@ Str8 watl_dump_listing(AllocatorInfo buffer, Slice_WATL_Line lines)
for slice_iter(line[0], chunk) for slice_iter(line[0], chunk)
{ {
Str8 id; Str8 id;
switch (chunk->ptr[0]) switch (chunk->ptr[0]) {
{ case WATL_Tok_Space: id = lit("Space"); break;
case WATL_Tok_Space: id = lit("Space"); break; case WATL_Tok_Tab: id = lit("Tab"); break;
case WATL_Tok_Tab: id = lit("Tab"); break; default: id = lit("Visible"); break;
default: id = lit("Visible"); break;
} }
Str8 str_chunk_len = str8_from_u32(sinfo, cast(U4, chunk->len), 10, 0, 0); Str8 str_chunk_len = str8_from_u32(sinfo, cast(U4, chunk->len), 10, 0, 0);
str8gen_append_fmt(& result, "\t<id>(<size>): '<chunk>'\n" str8gen_append_fmt(& result, "\t<id>(<size>): '<chunk>'\n"

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,61 @@
package watl
import "core:os/os2"
import "core:mem/virtual"
import "core:mem"
main :: proc()
{
os_init()
// Note(Ed): Possible compiler bug, cannot resolve proc map with named arguments.
vm_file: virtual.Arena; virtual.arena_init_static(& vm_file, reserved = mem.Gigabytes * 4)
data, err := os2.read_entire_file_from_path("watl.v0.ideomatic.odin", virtual.arena_allocator(& vm_file), )
assert(err != .None)
a_msgs := arena_make()
a_toks := arena_make()
// lex_res := watl_lex(transmute(string) file.content,
// ainfo_msgs = ainfo(a_msgs),
// ainfo_toks = ainfo(a_toks),
// )
lex_res := watl_lex(transmute(string) file.content,
ainfo(a_msgs),
ainfo(a_toks),
)
assert(lex_res.signal & { .MemFail_SliceConstraintFail } == {})
str8_cache_kt1_ainfo := arena_make()
str_cache := str8cache_make(
str_reserve = ainfo(arena_make()),
cell_reserve = ainfo(str8_cache_kt1_ainfo),
tbl_backing = ainfo(str8_cache_kt1_ainfo),
cell_pool_size = Kilo * 4,
table_size = Kilo * 32,
)
a_lines := arena_make()
// parse_res := watl_parse(lex_res.toks,
// ainfo_msgs = ainfo(a_msgs),
// ainfo_nodes = ainfo(a_toks),
// ainfo_lines = ainfo(a_lines),
// str_cache = & str_cache
// )
parse_res := watl_parse(lex_res.toks,
ainfo(a_msgs),
ainfo(a_toks),
ainfo(a_lines),
& str_cache
)
assert(parse_res.signal & { .MemFail_SliceConstraintFail } == {})
arena_reset(a_msgs)
arena_reset(a_toks)
listing := watl_dump_listing(ainfo(a_msgs), parse_res.lines)
file_write_str8("watl.v0.win32.odin.listing.txt", listing)
return
}

View File

@@ -100,23 +100,14 @@ align_pow2 :: #force_inline proc(x: int, b: int) -> int {
assert((b & (b - 1)) == 0) // Check power of 2 assert((b & (b - 1)) == 0) // Check power of 2
return ((x + b - 1) & ~(b - 1)) return ((x + b - 1) & ~(b - 1))
} }
memory_zero :: #force_inline proc "contextless" (data: rawptr, len: int) -> rawptr { memory_zero :: #force_inline proc "contextless" (data: rawptr, len: int) -> rawptr { intrinsics.mem_zero(data, len); return data }
intrinsics.mem_zero(data, len)
return data
}
memory_zero_explicit :: #force_inline proc "contextless" (data: rawptr, len: int) -> rawptr { memory_zero_explicit :: #force_inline proc "contextless" (data: rawptr, len: int) -> rawptr {
intrinsics.mem_zero_volatile(data, len) // Use the volatile mem_zero intrinsics.mem_zero_volatile(data, len) // Use the volatile mem_zero
intrinsics.atomic_thread_fence(.Seq_Cst) // Prevent reordering intrinsics.atomic_thread_fence(.Seq_Cst) // Prevent reordering
return data return data
} }
memory_copy_overlapping :: #force_inline proc "contextless" (dst, src: rawptr, len: int) -> rawptr { memory_copy_overlapping :: #force_inline proc "contextless" (dst, src: rawptr, len: int) -> rawptr { intrinsics.mem_copy(dst, src, len); return dst }
intrinsics.mem_copy(dst, src, len) memory_copy :: #force_inline proc "contextless" (dst, src: rawptr, len: int) -> rawptr { intrinsics.mem_copy_non_overlapping(dst, src, len); return dst }
return dst
}
memory_copy :: #force_inline proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
intrinsics.mem_copy_non_overlapping(dst, src, len)
return dst
}
sll_stack_push_n :: proc "contextless" (curr, n, n_link: ^^$Type) { sll_stack_push_n :: proc "contextless" (curr, n, n_link: ^^$Type) {
(n_link ^) = (curr ^) (n_link ^) = (curr ^)
@@ -136,21 +127,13 @@ sll_queue_push_nz :: proc "contextless" (first: ^$ParentType, last, n: ^^$Type,
} }
sll_queue_push_n :: #force_inline proc "contextless" (first: $ParentType, last, n: ^^$Type) { sll_queue_push_nz(first, last, n, nil) } sll_queue_push_n :: #force_inline proc "contextless" (first: $ParentType, last, n: ^^$Type) { sll_queue_push_nz(first, last, n, nil) }
SliceByte :: struct { SliceByte :: struct { data: [^]byte, len: int }
data: [^]byte, SliceRaw :: struct($Type: typeid) { data: [^]Type, len: int, }
len: int
}
SliceRaw :: struct ($Type: typeid) {
data: [^]Type,
len: int,
}
slice :: #force_inline proc "contextless" (s: [^] $Type, num: $Some_Integer) -> [ ]Type { return transmute([]Type) SliceRaw(Type) { s, cast(int) num } } slice :: #force_inline proc "contextless" (s: [^] $Type, num: $Some_Integer) -> [ ]Type { return transmute([]Type) SliceRaw(Type) { s, cast(int) num } }
slice_cursor :: #force_inline proc "contextless" (s: []$Type) -> [^]Type { return transmute([^]Type) raw_data(s) } slice_cursor :: #force_inline proc "contextless" (s: []$Type) -> [^]Type { return transmute([^]Type) raw_data(s) }
slice_assert :: #force_inline proc (s: $SliceType / []$Type) { slice_end :: #force_inline proc "contextless" (s : $SliceType / []$Type) -> ^Type { return & cursor(s)[len(s)] }
assert(len(s) > 0)
assert(s != nil) slice_assert :: #force_inline proc (s: $SliceType / []$Type) { assert(len(s) > 0); assert(s != nil) }
}
slice_end :: #force_inline proc "contextless" (s : $SliceType / []$Type) -> ^Type { return & cursor(s)[len(s)] }
@(require_results) slice_to_bytes :: proc "contextless" (s: []$Type) -> []byte { return ([^]byte)(raw_data(s))[:len(s) * size_of(Type)] } @(require_results) slice_to_bytes :: proc "contextless" (s: []$Type) -> []byte { return ([^]byte)(raw_data(s))[:len(s) * size_of(Type)] }
@(require_results) slice_raw :: proc "contextless" (s: []$Type) -> SliceRaw(Type) { return transmute(SliceRaw(Type)) s } @(require_results) slice_raw :: proc "contextless" (s: []$Type) -> SliceRaw(Type) { return transmute(SliceRaw(Type)) s }
@@ -270,8 +253,7 @@ mem_alloc :: proc(ainfo: AllocatorInfo, size: int, alignment: int = MEMORY_ALIGN
requested_size = size, requested_size = size,
alignment = alignment, alignment = alignment,
} }
output: AllocatorProc_Out output: AllocatorProc_Out; ainfo.procedure(input, & output)
ainfo.procedure(input, & output)
return output.allocation return output.allocation
} }
mem_grow :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false, give_actual: b32 = false) -> []byte { mem_grow :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false, give_actual: b32 = false) -> []byte {
@@ -283,8 +265,7 @@ mem_grow :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int =
alignment = alignment, alignment = alignment,
old_allocation = mem, old_allocation = mem,
} }
output: AllocatorProc_Out output: AllocatorProc_Out; ainfo.procedure(input, & output)
ainfo.procedure(input, & output)
return slice(cursor(output.allocation), give_actual ? len(output.allocation) : size) return slice(cursor(output.allocation), give_actual ? len(output.allocation) : size)
} }
mem_resize :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false, give_actual: b32 = false) -> []byte { mem_resize :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false, give_actual: b32 = false) -> []byte {
@@ -296,8 +277,7 @@ mem_resize :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int
alignment = alignment, alignment = alignment,
old_allocation = mem, old_allocation = mem,
} }
output: AllocatorProc_Out output: AllocatorProc_Out; ainfo.procedure(input, & output)
ainfo.procedure(input, & output)
return slice(cursor(output.allocation), give_actual ? len(output.allocation) : size) return slice(cursor(output.allocation), give_actual ? len(output.allocation) : size)
} }
mem_shrink :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false) -> []byte { mem_shrink :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false) -> []byte {
@@ -309,8 +289,7 @@ mem_shrink :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int
alignment = alignment, alignment = alignment,
old_allocation = mem, old_allocation = mem,
} }
output: AllocatorProc_Out output: AllocatorProc_Out; ainfo.procedure(input, & output)
ainfo.procedure(input, & output)
return output.allocation return output.allocation
} }
@@ -322,8 +301,7 @@ alloc_type :: proc(ainfo: AllocatorInfo, $Type: typeid, alignment: int = MEMORY
requested_size = size_of(Type), requested_size = size_of(Type),
alignment = alignment, alignment = alignment,
} }
output: AllocatorProc_Out output: AllocatorProc_Out; ainfo.procedure(input, & output)
ainfo.procedure(input, & output)
return transmute(^Type) raw_data(output.allocation) return transmute(^Type) raw_data(output.allocation)
} }
alloc_slice :: proc(ainfo: AllocatorInfo, $SliceType: typeid / []$Type, num : int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false) -> []Type { alloc_slice :: proc(ainfo: AllocatorInfo, $SliceType: typeid / []$Type, num : int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false) -> []Type {
@@ -334,17 +312,13 @@ alloc_slice :: proc(ainfo: AllocatorInfo, $SliceType: typeid / []$Type, num : in
requested_size = size_of(Type) * num, requested_size = size_of(Type) * num,
alignment = alignment, alignment = alignment,
} }
output: AllocatorProc_Out output: AllocatorProc_Out; ainfo.procedure(input, & output)
ainfo.procedure(input, & output)
return transmute([]Type) slice(raw_data(output.allocation), num) return transmute([]Type) slice(raw_data(output.allocation), num)
} }
//endregion Allocator Interface //endregion Allocator Interface
//region Strings //region Strings
Raw_String :: struct { Raw_String :: struct { data: [^]byte, len: int, }
data: [^]byte,
len: int,
}
string_cursor :: proc(s: string) -> [^]u8 { return slice_cursor(transmute([]byte) s) } string_cursor :: proc(s: string) -> [^]u8 { return slice_cursor(transmute([]byte) s) }
string_copy :: proc(dst, src: string) { slice_copy (transmute([]byte) dst, transmute([]byte) src) } string_copy :: proc(dst, src: string) { slice_copy (transmute([]byte) dst, transmute([]byte) src) }
string_end :: proc(s: string) -> ^u8 { return slice_end (transmute([]byte) s) } string_end :: proc(s: string) -> ^u8 { return slice_end (transmute([]byte) s) }
@@ -356,10 +330,7 @@ FArena :: struct {
mem: []byte, mem: []byte,
used: int, used: int,
} }
farena_make :: proc(backing: []byte) -> FArena { farena_make :: proc(backing: []byte) -> FArena { return {mem = backing} }
arena := FArena {mem = backing}
return arena
}
farena_init :: proc(arena: ^FArena, backing: []byte) { farena_init :: proc(arena: ^FArena, backing: []byte) {
assert(arena != nil) assert(arena != nil)
arena.mem = backing arena.mem = backing
@@ -367,20 +338,15 @@ farena_init :: proc(arena: ^FArena, backing: []byte) {
} }
farena_push :: proc(arena: ^FArena, $Type: typeid, amount: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT) -> []Type { farena_push :: proc(arena: ^FArena, $Type: typeid, amount: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT) -> []Type {
assert(arena != nil) assert(arena != nil)
if amount == 0 { if amount == 0 { return {} }
return {}
}
desired := size_of(Type) * amount desired := size_of(Type) * amount
to_commit := align_pow2(desired, alignment) to_commit := align_pow2(desired, alignment)
unused := len(arena.mem) - arena.used unused := len(arena.mem) - arena.used; assert(to_commit <= unused)
assert(to_commit <= unused)
ptr := cursor(arena.mem[arena.used:]) ptr := cursor(arena.mem[arena.used:])
arena.used += to_commit arena.used += to_commit
return slice(ptr, amount) return slice(ptr, amount)
} }
farena_reset :: proc(arena: ^FArena) { farena_reset :: #force_inline proc(arena: ^FArena) { arena.used = 0 }
arena.used = 0
}
farena_rewind :: proc(arena: ^FArena, save_point: AllocatorSP) { farena_rewind :: proc(arena: ^FArena, save_point: AllocatorSP) {
assert(save_point.type_sig == farena_allocator_proc) assert(save_point.type_sig == farena_allocator_proc)
assert(save_point.slot >= 0 && save_point.slot <= arena.used) assert(save_point.slot >= 0 && save_point.slot <= arena.used)
@@ -391,7 +357,6 @@ farena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Ou
assert(output != nil) assert(output != nil)
assert(input.data != nil) assert(input.data != nil)
arena := transmute(^FArena) input.data arena := transmute(^FArena) input.data
switch input.op switch input.op
{ {
case .Alloc, .Alloc_NoZero: case .Alloc, .Alloc_NoZero:
@@ -399,12 +364,9 @@ farena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Ou
if input.op == .Alloc { if input.op == .Alloc {
zero(output.allocation) zero(output.allocation)
} }
case .Free: case .Free: // No-op for arena
// No-op for arena case .Reset: farena_reset(arena)
case .Reset:
farena_reset(arena)
case .Grow, .Grow_NoZero: case .Grow, .Grow_NoZero:
// Check if the allocation is at the end of the arena // Check if the allocation is at the end of the arena
@@ -453,11 +415,8 @@ farena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Ou
arena.used -= (aligned_original - aligned_new) arena.used -= (aligned_original - aligned_new)
output.allocation = input.old_allocation[:input.requested_size] output.allocation = input.old_allocation[:input.requested_size]
case .Rewind: case .Rewind: farena_rewind(arena, input.save_point)
farena_rewind(arena, input.save_point) case .SavePoint: output.save_point = farena_save(arena^)
case .SavePoint:
output.save_point = farena_save(arena^)
case .Query: case .Query:
output.features = {.Alloc, .Reset, .Grow, .Shrink, .Rewind} output.features = {.Alloc, .Reset, .Grow, .Shrink, .Rewind}
@@ -471,14 +430,9 @@ farena_ainfo :: #force_inline proc "contextless" (arena : ^FArena) -> AllocatorI
//endregion FArena //endregion FArena
//region OS //region OS
OS_SystemInfo :: struct { OS_SystemInfo :: struct { target_page_size: int }
target_page_size: int, OS_Windows_State :: struct { system_info: OS_SystemInfo }
} @(private) os_windows_info: OS_Windows_State
OS_Windows_State :: struct {
system_info: OS_SystemInfo,
}
@(private)
os_windows_info: OS_Windows_State
// Windows API constants // Windows API constants
MS_INVALID_HANDLE_VALUE :: ~uintptr(0) MS_INVALID_HANDLE_VALUE :: ~uintptr(0)
@@ -537,12 +491,7 @@ os_enable_large_pages :: proc() {
{ {
priv := MS_TOKEN_PRIVILEGES { priv := MS_TOKEN_PRIVILEGES {
privilege_count = 1, privilege_count = 1,
privileges = { privileges = { { luid = luid, attributes = MS_SE_PRIVILEGE_ENABLED, }, },
{
luid = luid,
attributes = MS_SE_PRIVILEGE_ENABLED,
},
},
} }
AdjustTokenPrivileges(token, 0, &priv, size_of(MS_TOKEN_PRIVILEGES), nil, nil) AdjustTokenPrivileges(token, 0, &priv, size_of(MS_TOKEN_PRIVILEGES), nil, nil)
} }
@@ -554,25 +503,19 @@ os_init :: proc() {
info := &os_windows_info.system_info info := &os_windows_info.system_info
info.target_page_size = int(GetLargePageMinimum()) info.target_page_size = int(GetLargePageMinimum())
} }
os_system_info :: proc() -> ^OS_SystemInfo { os_system_info :: #force_inline proc "contextless" () -> ^OS_SystemInfo { return & os_windows_info.system_info }
return &os_windows_info.system_info os_vmem_commit :: #force_inline proc "contextless" (vm: rawptr, size: int, no_large_pages: b32 = false) -> b32 {
}
os_vmem_commit :: proc(vm: rawptr, size: int, no_large_pages: b32 = false) -> b32 {
// Large pages disabled for now (not failing gracefully in original C) // Large pages disabled for now (not failing gracefully in original C)
result := VirtualAlloc(vm, uintptr(size), MS_MEM_COMMIT, MS_PAGE_READWRITE) != nil return cast(b32) VirtualAlloc(vm, uintptr(size), MS_MEM_COMMIT, MS_PAGE_READWRITE) != nil
return b32(result)
} }
os_vmem_reserve :: proc(size: int, base_addr: int = 0, no_large_pages: b32 = false) -> rawptr { os_vmem_reserve :: #force_inline proc "contextless" (size: int, base_addr: int = 0, no_large_pages: b32 = false) -> rawptr {
result := VirtualAlloc(rawptr(uintptr(base_addr)), uintptr(size), return VirtualAlloc(rawptr(uintptr(base_addr)), uintptr(size),
MS_MEM_RESERVE, MS_MEM_RESERVE,
// MS_MEM_COMMIT // MS_MEM_COMMIT
// | (no_large_pages ? 0 : MS_MEM_LARGE_PAGES), // Large pages disabled // | (no_large_pages ? 0 : MS_MEM_LARGE_PAGES), // Large pages disabled
MS_PAGE_READWRITE) MS_PAGE_READWRITE)
return result
}
os_vmem_release :: proc(vm: rawptr, size: int) {
VirtualFree(vm, 0, MS_MEM_RELEASE)
} }
os_vmem_release :: #force_inline proc "contextless" (vm: rawptr, size: int) { VirtualFree(vm, 0, MS_MEM_RELEASE) }
//endregion OS //endregion OS
//region VArena //region VArena
@@ -646,17 +589,6 @@ varena_push :: proc(va: ^VArena, $Type: typeid, amount: int, alignment: int = ME
va.commit_used = to_be_used va.commit_used = to_be_used
return slice(transmute([^]Type) uintptr(current_offset), amount) return slice(transmute([^]Type) uintptr(current_offset), amount)
} }
varena_release :: proc(va: ^VArena) {
os_vmem_release(va, va.reserve)
}
varena_rewind :: proc(va: ^VArena, save_point: AllocatorSP) {
assert(va != nil)
assert(save_point.type_sig == varena_allocator_proc)
va.commit_used = max(save_point.slot, size_of(VArena))
}
varena_reset :: proc(va: ^VArena) {
va.commit_used = size_of(VArena)
}
varena_shrink :: proc(va: ^VArena, old_allocation: []byte, requested_size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT) -> []byte { varena_shrink :: proc(va: ^VArena, old_allocation: []byte, requested_size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT) -> []byte {
assert(va != nil) assert(va != nil)
current_offset := va.reserve_start + va.commit_used current_offset := va.reserve_start + va.commit_used
@@ -668,6 +600,13 @@ varena_shrink :: proc(va: ^VArena, old_allocation: []byte, requested_size: int,
va.commit_used -= shrink_amount va.commit_used -= shrink_amount
return old_allocation[:requested_size] return old_allocation[:requested_size]
} }
varena_release :: #force_inline proc(va: ^VArena) { os_vmem_release(va, va.reserve) }
varena_reset :: #force_inline proc(va: ^VArena) { va.commit_used = size_of(VArena) }
varena_rewind :: #force_inline proc(va: ^VArena, save_point: AllocatorSP) {
assert(va != nil)
assert(save_point.type_sig == varena_allocator_proc)
va.commit_used = max(save_point.slot, size_of(VArena))
}
varena_save :: #force_inline proc "contextless" (va: ^VArena) -> AllocatorSP { return AllocatorSP { type_sig = varena_allocator_proc, slot = va.commit_used } } varena_save :: #force_inline proc "contextless" (va: ^VArena) -> AllocatorSP { return AllocatorSP { type_sig = varena_allocator_proc, slot = va.commit_used } }
varena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Out) { varena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Out) {
assert(output != nil) assert(output != nil)
@@ -785,7 +724,7 @@ arena_push :: proc(arena: ^Arena, $Type: typeid, amount: int, alignment: int = M
active.pos = pos_pst active.pos = pos_pst
return slice(result_ptr, amount) return slice(result_ptr, amount)
} }
arena_release :: proc(arena: ^Arena) { arena_release :: #force_inline proc(arena: ^Arena) {
assert(arena != nil) assert(arena != nil)
curr := arena.current curr := arena.current
for curr != nil { for curr != nil {
@@ -794,9 +733,7 @@ arena_release :: proc(arena: ^Arena) {
curr = prev curr = prev
} }
} }
arena_reset :: proc(arena: ^Arena) { arena_reset :: #force_inline proc(arena: ^Arena) { arena_rewind(arena, AllocatorSP { type_sig = arena_allocator_proc, slot = 0 }) }
arena_rewind(arena, AllocatorSP { type_sig = arena_allocator_proc, slot = 0 })
}
arena_rewind :: proc(arena: ^Arena, save_point: AllocatorSP) { arena_rewind :: proc(arena: ^Arena, save_point: AllocatorSP) {
assert(arena != nil) assert(arena != nil)
assert(save_point.type_sig == arena_allocator_proc) assert(save_point.type_sig == arena_allocator_proc)
@@ -1025,11 +962,7 @@ kt1cx_clear :: proc(kt: KT1CX_Byte, m: KT1CX_ByteMeta) {
} }
} }
} }
kt1cx_slot_id :: proc(kt: KT1CX_Byte, key: u64, m: KT1CX_ByteMeta) -> u64 { kt1cx_slot_id :: #force_inline proc(kt: KT1CX_Byte, key: u64, m: KT1CX_ByteMeta) -> u64 { return key % u64(len(kt.table)) }
cell_size := m.cell_size // dummy value
hash_index := key % u64(len(kt.table))
return hash_index
}
kt1cx_get :: proc(kt: KT1CX_Byte, key: u64, m: KT1CX_ByteMeta) -> ^byte { kt1cx_get :: proc(kt: KT1CX_Byte, key: u64, m: KT1CX_ByteMeta) -> ^byte {
hash_index := kt1cx_slot_id(kt, key, m) hash_index := kt1cx_slot_id(kt, key, m)
cell_offset := uintptr(hash_index) * uintptr(m.cell_size) cell_offset := uintptr(hash_index) * uintptr(m.cell_size)
@@ -1100,28 +1033,22 @@ kt1cx_set :: proc(kt: KT1CX_Byte, key: u64, value: []byte, backing_cells: Alloca
return nil return nil
} }
} }
kt1cx_assert :: proc(kt: $type / KT1CX) { kt1cx_assert :: #force_inline proc(kt: $type / KT1CX) { slice_assert(kt.table) }
slice_assert(kt.table) kt1cx_byte :: #force_inline proc(kt: $type / KT1CX) -> KT1CX_Byte { return { slice( transmute([^]byte) cursor(kt.table), len(kt.table)) } }
}
kt1cx_byte :: proc(kt: $type / KT1CX) -> KT1CX_Byte { return {
slice( transmute([^]byte) cursor(kt.table), len(kt.table))
} }
//endregion Key Table 1-Layer Chained-Chunked-Cells (KT1CX) //endregion Key Table 1-Layer Chained-Chunked-Cells (KT1CX)
//region String Operations //region String Operations
char_is_upper :: proc(c: u8) -> b32 { return('A' <= c && c <= 'Z') } char_is_upper :: #force_inline proc(c: u8) -> b32 { return('A' <= c && c <= 'Z') }
char_to_lower :: proc(c: u8) -> u8 { c:=c; if (char_is_upper(c)) { c += ('a' - 'A') }; return (c) } char_to_lower :: #force_inline proc(c: u8) -> u8 { c:=c; if (char_is_upper(c)) { c += ('a' - 'A') }; return (c) }
integer_symbols :: proc(value: u8) -> u8 { integer_symbols :: #force_inline proc(value: u8) -> u8 {
@static lookup_table: [16]u8 = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F', }; @static lookup_table: [16]u8 = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F', };
return lookup_table[value]; return lookup_table[value];
} }
str8_to_cstr_capped :: proc(content: string, mem: []byte) -> cstring { str8_to_cstr_capped :: #force_inline proc(content: string, mem: []byte) -> cstring {
copy_len := min(len(content), len(mem) - 1) copy_len := min(len(content), len(mem) - 1)
if copy_len > 0 { if copy_len > 0 { copy(mem[:copy_len], transmute([]byte) content) }
copy(mem[:copy_len], transmute([]byte) content)
}
mem[copy_len] = 0 mem[copy_len] = 0
return transmute(cstring) raw_data(mem) return transmute(cstring) raw_data(mem)
} }
@@ -1184,7 +1111,6 @@ str8_from_u32 :: proc(ainfo: AllocatorInfo, num: u32, radix: u32 = 10, min_digit
} }
return result return result
} }
str8_fmt_kt1l :: proc(ainfo: AllocatorInfo, _buffer: ^[]byte, table: []KTL_Slot(string), fmt_template: string) -> string { str8_fmt_kt1l :: proc(ainfo: AllocatorInfo, _buffer: ^[]byte, table: []KTL_Slot(string), fmt_template: string) -> string {
buffer := _buffer^ buffer := _buffer^
slice_assert(buffer) slice_assert(buffer)
@@ -1264,15 +1190,14 @@ str8_fmt_kt1l :: proc(ainfo: AllocatorInfo, _buffer: ^[]byte, table: []KTL_Slot(
result := transmute(string) slice(cursor(buffer), len(buffer) - buffer_remaining) result := transmute(string) slice(cursor(buffer), len(buffer) - buffer_remaining)
return result return result
} }
str8_fmt_backed :: #force_inline proc(tbl_ainfo, buf_ainfo: AllocatorInfo, fmt_template: string, entries: [][2]string) -> string {
str8_fmt_backed :: proc(tbl_ainfo, buf_ainfo: AllocatorInfo, fmt_template: string, entries: [][2]string) -> string {
kt: []KTL_Slot(string); ktl_populate_slice_a2_str(& kt, tbl_ainfo, entries) kt: []KTL_Slot(string); ktl_populate_slice_a2_str(& kt, tbl_ainfo, entries)
buf_size := Kilo * 64 buf_size := Kilo * 64
buffer := mem_alloc(buf_ainfo, buf_size) buffer := mem_alloc(buf_ainfo, buf_size)
result := str8_fmt_kt1l(buf_ainfo, & buffer, kt, fmt_template) result := str8_fmt_kt1l(buf_ainfo, & buffer, kt, fmt_template)
return result return result
} }
str8_fmt_tmp :: proc(fmt_template: string, entries: [][2]string) -> string { str8_fmt_tmp :: #force_inline proc(fmt_template: string, entries: [][2]string) -> string {
@static tbl_mem: [Kilo * 32]byte; tbl_arena := farena_make(tbl_mem[:]) @static tbl_mem: [Kilo * 32]byte; tbl_arena := farena_make(tbl_mem[:])
@static buf_mem: [Kilo * 64]byte; buffer := buf_mem[:] @static buf_mem: [Kilo * 64]byte; buffer := buf_mem[:]
kt: []KTL_Slot(string); ktl_populate_slice_a2_str(& kt, ainfo(& tbl_arena), entries) kt: []KTL_Slot(string); ktl_populate_slice_a2_str(& kt, ainfo(& tbl_arena), entries)
@@ -1317,7 +1242,7 @@ str8cache_init :: proc(cache: ^Str8Cache, str_reserve, cell_reserve, tbl_backing
kt1cx_init(info, m, transmute(^KT1CX_Byte) & cache.kt) kt1cx_init(info, m, transmute(^KT1CX_Byte) & cache.kt)
return return
} }
str8cache_make :: proc(str_reserve, cell_reserve, tbl_backing: AllocatorInfo, cell_pool_size, table_size: int) -> Str8Cache { str8cache_make :: #force_inline proc(str_reserve, cell_reserve, tbl_backing: AllocatorInfo, cell_pool_size, table_size: int) -> Str8Cache {
cache : Str8Cache; str8cache_init(& cache, str_reserve, cell_reserve, tbl_backing, cell_pool_size, table_size); return cache cache : Str8Cache; str8cache_init(& cache, str_reserve, cell_reserve, tbl_backing, cell_pool_size, table_size); return cache
} }
str8cache_clear :: proc(kt: KT1CX_Str8) { str8cache_clear :: proc(kt: KT1CX_Str8) {
@@ -1368,11 +1293,10 @@ str8cache_set :: proc(kt: KT1CX_Str8, key: u64, value: string, str_reserve, cell
} }
return result return result
} }
cache_str8 :: proc(cache: ^Str8Cache, str: string) -> string { cache_str8 :: #force_inline proc(cache: ^Str8Cache, str: string) -> string {
assert(cache != nil) assert(cache != nil)
key: u64 = 0; hash64_fnv1a(& key, transmute([]byte) str) key: u64 = 0; hash64_fnv1a(& key, transmute([]byte) str)
result := str8cache_set(cache.kt, key, str, cache.str_reserve, cache.cell_reserve) return str8cache_set(cache.kt, key, str, cache.str_reserve, cache.cell_reserve) ^
return result ^
} }
Str8Gen :: struct { Str8Gen :: struct {
@@ -1389,9 +1313,9 @@ str8gen_init :: proc(gen: ^Str8Gen, ainfo: AllocatorInfo) {
gen.len = 0 gen.len = 0
gen.cap = Kilo * 4 gen.cap = Kilo * 4
} }
str8gen_make :: proc(ainfo: AllocatorInfo) -> Str8Gen { gen: Str8Gen; str8gen_init(& gen, ainfo); return gen } str8gen_make :: #force_inline proc(ainfo: AllocatorInfo) -> Str8Gen { gen: Str8Gen; str8gen_init(& gen, ainfo); return gen }
str8gen_to_bytes :: proc(gen: Str8Gen) -> []byte { return transmute([]byte) SliceByte {data = gen.ptr, len = gen.cap} } str8gen_to_bytes :: #force_inline proc(gen: Str8Gen) -> []byte { return transmute([]byte) SliceByte {data = gen.ptr, len = gen.cap} }
str8_from_str8gen :: proc(gen: Str8Gen) -> string { return transmute(string) SliceByte {data = gen.ptr, len = gen.len} } str8_from_str8gen :: #force_inline proc(gen: Str8Gen) -> string { return transmute(string) SliceByte {data = gen.ptr, len = gen.len} }
str8gen_append_str8 :: proc(gen: ^Str8Gen, str: string) { str8gen_append_str8 :: proc(gen: ^Str8Gen, str: string) {
result := mem_grow(gen.backing, str8gen_to_bytes(gen ^), len(str) + gen.len) result := mem_grow(gen.backing, str8gen_to_bytes(gen ^), len(str) + gen.len)
@@ -1515,9 +1439,8 @@ api_file_read_contents :: proc(result: ^FileOpInfo, path: string, backing: Alloc
result.content = slice(cursor(buffer), cast(int) file_size.QuadPart) result.content = slice(cursor(buffer), cast(int) file_size.QuadPart)
return return
} }
file_read_contents_stack :: proc(path: string, backing: AllocatorInfo, zero_backing: b32 = false) -> FileOpInfo { file_read_contents_stack :: #force_inline proc(path: string, backing: AllocatorInfo, zero_backing: b32 = false) -> FileOpInfo {
result : FileOpInfo; api_file_read_contents(& result, path, backing, zero_backing) result: FileOpInfo; api_file_read_contents(& result, path, backing, zero_backing) return result
return result
} }
file_write_str8 :: proc(path, content: string) { file_write_str8 :: proc(path, content: string) {
string_assert(path) string_assert(path)
@@ -1604,55 +1527,54 @@ api_watl_lex :: proc(info: ^WATL_LexInfo, source: string,
alloc_tok :: #force_inline proc(ainfo: AllocatorInfo) -> ^Raw_String { alloc_tok :: #force_inline proc(ainfo: AllocatorInfo) -> ^Raw_String {
return alloc_type(ainfo, Raw_String, align_of(Raw_String), true) return alloc_type(ainfo, Raw_String, align_of(Raw_String), true)
} }
#partial switch cast(WATL_TokKind) code #partial switch cast(WATL_TokKind) code {
{ case .Space: fallthrough
case .Space: fallthrough case .Tab:
case .Tab: if prev[0] != src_cursor[0] {
if prev[0] != src_cursor[0] { new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil {
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil { slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return
}
tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 0)
was_formatting = true
num += 1
}
src_cursor = src_cursor[1:]
tok.len += 1
case .Line_Feed:
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil{
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return return
} }
tok = new_tok tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 1) tok^ = transmute(Raw_String) slice(src_cursor, 0)
src_cursor = src_cursor[1:]
was_formatting = true was_formatting = true
num += 1 num += 1
case .Carriage_Return: }
src_cursor = src_cursor[1:]
tok.len += 1
case .Line_Feed:
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil{
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return
}
tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 1)
src_cursor = src_cursor[1:]
was_formatting = true
num += 1
case .Carriage_Return:
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil {
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return
}
tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 2)
src_cursor = src_cursor[1:]
was_formatting = true
num += 1
case:
if (was_formatting) {
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil { new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil {
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last); slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return return
} }
tok = new_tok tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 2) tok^ = transmute(Raw_String) slice(src_cursor, 0)
src_cursor = src_cursor[1:] was_formatting = false;
was_formatting = true
num += 1 num += 1
case: }
if (was_formatting) { src_cursor = src_cursor[1:]
new_tok := alloc_tok(ainfo_toks); if cursor(new_tok)[-1:] != tok && tok != nil { tok.len += 1
slice_constraint_fail(info, ainfo_msgs, new_tok, & msg_last);
return
}
tok = new_tok
tok^ = transmute(Raw_String) slice(src_cursor, 0)
was_formatting = false;
num += 1
}
src_cursor = src_cursor[1:]
tok.len += 1
} }
prev = src_cursor[-1:] prev = src_cursor[-1:]
code = src_cursor[0] code = src_cursor[0]
@@ -1729,28 +1651,25 @@ api_watl_parse :: proc(info: ^WATL_ParseInfo, tokens: []WATL_Tok,
info_lines ^ = { transmute([^]WATL_Node) line, 0 } info_lines ^ = { transmute([^]WATL_Node) line, 0 }
for & token in tokens for & token in tokens
{ {
#partial switch cast(WATL_TokKind) token[0] #partial switch cast(WATL_TokKind) token[0] {
{ case .Carriage_Return: fallthrough
case .Carriage_Return: fallthrough case .Line_Feed:
case .Line_Feed: new_line := alloc_type(ainfo_lines, WATL_Line); if cursor(new_line)[-1:] != transmute(^[]string)line {
new_line := alloc_type(ainfo_lines, WATL_Line); if cursor(new_line)[-1:] != transmute(^[]string)line { info.signal |= { .MemFail_SliceConstraintFail }
info.signal |= { .MemFail_SliceConstraintFail } msg := alloc_type(ainfo_msgs, WATL_ParseMsg)
msg := alloc_type(ainfo_msgs, WATL_ParseMsg) msg.content = "Line slice allocation was not contiguous"
msg.content = "Line slice allocation was not contiguous" msg.pos = { cast(i32) len(info.lines), cast(i32) line.len }
msg.pos = { cast(i32) len(info.lines), cast(i32) line.len } msg.line = transmute(^[]WATL_Node) line
msg.line = transmute(^[]WATL_Node) line msg.tok = & token
msg.tok = & token sll_queue_push_n(& info.msgs, & msg_last, & msg)
sll_queue_push_n(& info.msgs, & msg_last, & msg) assert(failon_slice_constraint_fail == false)
assert(failon_slice_constraint_fail == false) return
return }
} line = transmute(^SliceRaw(WATL_Node)) new_line
line = transmute(^SliceRaw(WATL_Node)) new_line line.data = curr
line.data = curr info_lines.len += 1
info_lines.len += 1 continue
continue case: break;
case:
break;
} }
curr ^ = cache_str8(str_cache, token) curr ^ = cache_str8(str_cache, token)
new_node := alloc_type(ainfo_nodes, WATL_Node); if cursor(new_node)[-1:] != curr { new_node := alloc_type(ainfo_nodes, WATL_Node); if cursor(new_node)[-1:] != curr {
@@ -1799,11 +1718,10 @@ watl_dump_listing :: proc(buffer: AllocatorInfo, lines: []WATL_Line) -> string {
for chunk in line for chunk in line
{ {
id : string id : string
#partial switch cast(WATL_TokKind) chunk[0] #partial switch cast(WATL_TokKind) chunk[0] {
{ case .Space: id = "Space"
case .Space: id = "Space" case .Tab: id = "Tab"
case .Tab: id = "Tab" case: id = "Visible"
case: id = "Visible"
} }
str8gen_append_fmt(& result, "\t<id>(<size>): '<chunk>'\n", { str8gen_append_fmt(& result, "\t<id>(<size>): '<chunk>'\n", {
{ "id", id }, { "id", id },

View File

@@ -118,8 +118,8 @@ $compiler_args += $flag_full_src_path
# $compiler_args += $flag_optimize_speed_max # $compiler_args += $flag_optimize_speed_max
# $compiler_args += $flag_optimize_fast # $compiler_args += $flag_optimize_fast
# $compiler_args += $flag_optimize_size # $compiler_args += $flag_optimize_size
# $compiler_args += $flag_optimize_intrinsics $compiler_args += $flag_optimize_intrinsics
$compiler_args += $flag_no_optimization # $compiler_args += $flag_no_optimization
# Debug setup # Debug setup
$compiler_args += ($flag_define + 'BUILD_DEBUG') $compiler_args += ($flag_define + 'BUILD_DEBUG')

View File

@@ -118,8 +118,8 @@ $compiler_args += $flag_full_src_path
# $compiler_args += $flag_optimize_speed_max # $compiler_args += $flag_optimize_speed_max
# $compiler_args += $flag_optimize_fast # $compiler_args += $flag_optimize_fast
# $compiler_args += $flag_optimize_size # $compiler_args += $flag_optimize_size
# $compiler_args += $flag_optimize_intrinsics $compiler_args += $flag_optimize_intrinsics
$compiler_args += $flag_no_optimization # $compiler_args += $flag_no_optimization
# Debug setup # Debug setup
$compiler_args += ($flag_define + 'BUILD_DEBUG') $compiler_args += ($flag_define + 'BUILD_DEBUG')

View File

@@ -117,8 +117,8 @@ $compiler_args += $flag_full_src_path
# $compiler_args += $flag_optimize_speed_max # $compiler_args += $flag_optimize_speed_max
# $compiler_args += $flag_optimize_fast # $compiler_args += $flag_optimize_fast
# $compiler_args += $flag_optimize_size # $compiler_args += $flag_optimize_size
# $compiler_args += $flag_optimize_intrinsics $compiler_args += $flag_optimize_intrinsics
$compiler_args += $flag_no_optimization # $compiler_args += $flag_no_optimization
# Debug setup # Debug setup
$compiler_args += ($flag_define + 'BUILD_DEBUG') $compiler_args += ($flag_define + 'BUILD_DEBUG')
@@ -139,7 +139,10 @@ $compiler_args += $flag_compile, $unit
$compiler_args | ForEach-Object { Write-Host $_ } $compiler_args | ForEach-Object { Write-Host $_ }
# Compile the unit # Compile the unit
& $compiler $compiler_args $compilation_time = Measure-Command {
& $compiler $compiler_args
}
write-host "Compilation took $($compilation_time.TotalMilliseconds)ms"
write-host write-host
$binary = join-path $path_build "$unit_name.exe" $binary = join-path $path_build "$unit_name.exe"
@@ -168,8 +171,9 @@ if ($true) {
# Diagnoistc print for the args # Diagnoistc print for the args
$linker_args | ForEach-Object { Write-Host $_ } $linker_args | ForEach-Object { Write-Host $_ }
& $linker $linker_args $linking_time = Measure-Command { & $linker $linker_args }
# & $radlink $linker_args # & $radlink $linker_args
write-host "Linking took $($linking_time.TotalMilliseconds)ms"
write-host write-host
} }