progress on strict lottes version

This commit is contained in:
2025-11-04 21:18:59 -05:00
parent 3554615244
commit d9bce18ccb
3 changed files with 203 additions and 140 deletions

View File

@@ -4,13 +4,17 @@ Version: 0 (From Scratch, 1-Stage Compilation, LLVM & WinAPI Only, Win CRT Mul
Host: Windows 11 (x86-64)
Toolchain: LLVM (2025-08-30), C-Stanard: 11
Following strictly (mostly): Neokineogfx - Fixing C
Following strictly: Neokineogfx - Fixing C
https://youtu.be/RrL7121MOeA
Unlike lottes_hybrid this file will be entirely untyped for any pointer addressing.
Win CRT imports will also be typeless signatures.
*/
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpre-c11-compat"
// #pragma clang diagnostic ignored "-Wc++-keyword"
#pragma clang diagnostic ignored "-Wcast-qual"
#pragma clang diagnostic ignored "-Wunused-const-variable"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#pragma clang diagnostic ignored "-Wswitch"
@@ -24,12 +28,10 @@ Win CRT imports will also be typeless signatures.
#pragma clang diagnostic ignored "-Wkeyword-macro"
#pragma clang diagnostic ignored "-Wc23-compat"
#pragma clang diagnostic ignored "-Wreserved-identifier"
#pragma clang diagnostic ignored "-Wpre-c11-compat"
#pragma clang diagnostic ignored "-Wc23-extensions"
#pragma clang diagnostic ignored "-Wunused-macros"
#pragma clang diagnostic ignored "-Wdeclaration-after-statement"
#pragma clang diagnostic ignored "-Wunsafe-buffer-usage"
#pragma clang diagnostic ignored "-Wc++-keyword"
#pragma clang diagnostic ignored "-Wimplicit-function-declaration"
#pragma clang diagnostic ignored "-Wcast-align"
#pragma clang diagnostic ignored "-Wunused-parameter"
@@ -59,7 +61,7 @@ Win CRT imports will also be typeless signatures.
#define glue_impl(A, B) A ## B
#define glue(A, B) glue_impl(A, B)
#define stringify_impl(S) #S
#define stringify(S) stringify_impl(S)
#define stringify(S) cast(UTF8*, stringify_impl(S))
#define tmpl(prefix, type) prefix ## _ ## type
#define static_assert _Static_assert
@@ -131,7 +133,7 @@ enum { false = 0, true = 1, true_overflow, };
#define pcast(type, data) cast(type*, & (data))[0]
#define nullptr cast(void*, 0)
#define null cast(U8, 0)
#define offset_of(type, member) cast(U8, & (((type*) 0)->member))
#define soff(type, member) cast(U8, & (((type*) 0)->member))
#define size_of(data) cast(U8, sizeof(data))
#define r_(ptr) cast(typeof_ptr(ptr)*R_, ptr)
@@ -198,8 +200,8 @@ typedef def_struct(Slice_Str8) { U8 ptr; U8 len; };
{ \
assert_handler( \
stringify(cond), \
__FILE__, \
__func__, \
(UTF8*)__FILE__, \
(UTF8*)__func__, \
cast(S4, __LINE__), \
msg, \
## __VA_ARGS__); \
@@ -230,6 +232,8 @@ I_ B4 mem_zero (U8 dest, U8 len) { if (dest == 0) return fa
#define struct_copy(type, dest, src) mem_copy(dest, src, sizeof(type))
#define struct_zero(type, dest) mem_zero(dest, sizeof(type))
#define struct_assign(type, dest, src) cast(type*R_, dest)[0] = cast(type*R_, src)[0]
I_ U8 align_pow2(U8 x, U8 b) {
assert(b != 0);
assert((b & (b - 1)) == 0); // Check power of 2
@@ -293,6 +297,19 @@ I_ void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typew
#define slice_iter(container, iter) (typeof((container).ptr) iter = (container).ptr; iter != slice_end(container); ++ iter)
#define slice_arg_from_array(type, ...) & (tmpl(Slice,type)) { .ptr = farray_init(type, __VA_ARGS__), .len = farray_len( farray_init(type, __VA_ARGS__)) }
I_ void slice_assign(U8 dest, U8 src) {
u8_r(dest + soff(Slice_Mem, ptr))[0] = u8_r(src + soff(Slice_Mem, ptr))[0];
u8_r(dest + soff(Slice_Mem, len))[0] = u8_r(src + soff(Slice_Mem, len))[0];
}
I_ void slice_assign_comp(U8 dest, U8 ptr, U8 len) {
u8_r(dest + soff(Slice_Mem, ptr))[0] = ptr;
u8_r(dest + soff(Slice_Mem, len))[0] = len;
}
I_ void slice_clear(U8 base) {
u8_r(base + soff(Slice_Mem, ptr))[0] = 0;
u8_r(base + soff(Slice_Mem, len))[0] = 0;
}
#define span_iter(type, iter, m_begin, op, m_end) \
( \
tmpl(Iter_Span,type) iter = { \
@@ -474,12 +491,12 @@ global OS_Windows_State os__windows_info;
I_ OS_SystemInfo* os_system_info(void);
I_ void os_init (void);
I_ U8 os_vmem_reserve__u( U8 size, U4 no_large_pages, U8 base_addr);
I_ B4 os_vmem_commit__u (U8 vm, U8 size);
I_ U8 os_vmem_reserve__u( U8 size, B4 no_large_pages, U8 base_addr);
I_ B4 os_vmem_commit__u (U8 vm, U8 size, B4 no_large_pages);
I_ void os_vmem_release__u(U8 vm, U8 size);
I_ U8 os__vmem_reserve( U8 size, Opts_vmem_R opts);
I_ B4 os_vmem_commit (U8 vm, U8 size);
I_ B4 os_vmem_commit (U8 vm, U8 size, Opts_vmem_R opts);
I_ void os_vmem_release (U8 vm, U8 size);
#define os_vmem_reserve(size, ...) os__vmem_reserve(size, opt_args(Opts_vmem, __VA_ARGS__))
@@ -505,7 +522,8 @@ typedef def_struct(Opts_varena_make) {
VArenaFlags flags;
};
I_ U8 varena__make__u (U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr);
U8 varena__make__u (U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr);
I_ void varena_release__u(U8 arena);
I_ void varena_reset__u (U8 arena);
I_ void varena_rewind__u (U8 arena, U8 sp_type_sig, U8 sp_slot);
@@ -522,10 +540,13 @@ I_ void varena_rewind (VArena_R arena, AllocatorSP save_point);
I_ Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size, Opts_varena*R_ opts);
I_ AllocatorSP varena_save (VArena_R arena);
#define varena_make(...) varena__make(opt_args(Opts_varena_make, __VA_ARGS__))
void varena_allocator_proc(U8 data, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out);
#define ainfo_varena(arena) (AllocatorInfo){ .proc = varena_allocator_proc, .data = u8_(arena) }
#define varena_push_mem(arena, amount, ...) varena__push(arena, amount, 1, opt_args(Opts_varena, __VA_ARGS__))
#define varena_push(arena, type, ...) \
@@ -535,6 +556,32 @@ cast(type*, varena__push(arena, size_of(type), 1, opt_args(Opts_varena, __VA_ARG
(tmpl(Slice,type)){ varena__push(arena, size_of(type), amount, opt_args(Opts_varena, __VA_ARGS__)).ptr, amount }
#pragma endregion VArena
#pragma region Arena
#pragma endregion Arena
#pragma region Hashing
I_ void hash64_fnv1a__u(U8 hash, U8 data_ptr, U8 data_len, U8 seed) {
local_persist U8 const default_seed = 0xcbf29ce484222325;
if (seed != 0) { u8_r(hash)[0] = seed; }
else { u8_r(hash)[0] = default_seed; }
U8 elem = data_ptr;
loop:
if (elem == data_ptr + data_len) goto end;
u8_r(hash)[0] ^= u1_r(elem)[0];
u8_r(hash)[0] *= 0x100000001b3;
elem += 1;
goto loop;
end:
return;
}
typedef def_struct(Opts_hash64_fnv1a) { U8 seed; };
I_ void hash64__fnv1a(U8_R hash, Slice_Mem data, Opts_hash64_fnv1a*R_ opts) {
assert(opts != nullptr);
hash64_fnv1a__u(u8_(hash), data.ptr, data.len, opts->seed);
}
#define hash64_fnv1a(hash, data, ...) hash64__fnv1a(hash, data, opt_args(Opts_hash64_fnv1a, __VA_ARGS__))
#pragma endregion Hashing
#pragma endregion Header
#pragma region Implementation
@@ -560,29 +607,29 @@ I_ void mem_save_point__u(U8 proc, U8 data, U8 sp) {
assert(proc != null);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, 0, 0, 0, 0, AllocatorOp_SavePoint, u8_(out));
struct_copy(AllocatorSP, sp, (U8) out + offset_of(AllocatorProc_Out, save_point));
struct_assign(AllocatorSP, sp, (U8) out + soff(AllocatorProc_Out, save_point));
}
I_ void mem__alloc__u(U8 out_mem, U8 proc, U8 data, U8 size, U8 alignment, B4 no_zero) {
assert(proc != null);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, size, alignment, 0, 0, no_zero ? AllocatorOp_Alloc_NoZero : AllocatorOp_Alloc, u8_(out));
struct_copy(Slice_Mem, out_mem, (U8) out + offset_of(AllocatorProc_Out, allocation));
slice_assign(out_mem, (U8) out + soff(AllocatorProc_Out, allocation));
}
I_ void mem__grow__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_actual) {
assert(proc != null);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, size, alignment, old_ptr, old_len, no_zero ? AllocatorOp_Grow_NoZero : AllocatorOp_Grow, u8_(out));
if (give_actual == false) { u8_r(out + offset_of(AllocatorProc_Out, allocation) + offset_of(Slice_Mem, len))[0] = size; }
struct_copy(Slice_Mem, out_mem, (U8) out + offset_of(AllocatorProc_Out, allocation));
if (give_actual == false) { u8_r(out + soff(AllocatorProc_Out, allocation) + soff(Slice_Mem, len))[0] = size; }
slice_assign(out_mem, (U8) out + soff(AllocatorProc_Out, allocation));
}
I_ void mem__shrink__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment) {
assert(proc != null);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, size, alignment, old_ptr, old_len, AllocatorOp_Shrink, u8_(out));
struct_copy(Slice_Mem, out_mem, (U8) out + offset_of(AllocatorProc_Out, allocation));
slice_assign(out_mem, (U8) out + soff(AllocatorProc_Out, allocation));
}
I_ void mem__resize__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_acutal) {
if (old_len == size) { struct_copy(Slice_Mem, out_mem, (U8)& slice_mem(old_ptr, old_len)); }
if (old_len == size) { slice_assign_comp(out_mem, old_ptr, old_len); }
if (old_len < size) { mem__grow__u (out_mem, proc, data, old_ptr, old_len, size, alignment, no_zero, give_acutal); }
else { mem__shrink__u(out_mem, proc, data, old_ptr, old_len, size, alignment); }
}
@@ -621,87 +668,87 @@ I_ Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_s
#pragma region FArena (Fixed-Sized Arena)
I_ void farena_init__u(U8 arena, U8 mem_ptr, U8 mem_len) {
assert(arena != null);
u8_r(arena + offset_of(FArena, start) )[0] = mem_ptr;
u8_r(arena + offset_of(FArena, capacity))[0] = mem_len;
u8_r(arena + offset_of(FArena, used) )[0] = 0;
u8_r(arena + soff(FArena, start) )[0] = mem_ptr;
u8_r(arena + soff(FArena, capacity))[0] = mem_len;
u8_r(arena + soff(FArena, used) )[0] = 0;
}
inline void farena__push__u(U8 arena, U8 amount, U8 type_width, U8 alignment, U8 result) {
if (amount == 0) { struct_zero(Slice_Mem, result); }
U8 reg desired = type_width * amount;
U8 reg to_commit = align_pow2(desired, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
U8_R reg used = u8_r(arena + offset_of(FArena, used));
U8 reg unused = u8_r(arena + offset_of(FArena, capacity))[0] - used[0]; assert(to_commit <= unused);
U8 reg ptr = u8_r(arena + offset_of(FArena, start) )[0] + used[0];
U8_R reg used = u8_r(arena + soff(FArena, used));
U8 reg unused = u8_r(arena + soff(FArena, capacity))[0] - used[0]; assert(to_commit <= unused);
U8 reg ptr = u8_r(arena + soff(FArena, start) )[0] + used[0];
used[0] += to_commit;
struct_copy(Slice_Mem, result, (U8)& slice_mem(ptr, desired));
slice_assign_comp(result, ptr, desired);
}
inline void farena__grow__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero) {
assert(result != null);
assert(arena != null);
U8_R reg used = u8_r(arena + offset_of(FArena, used));
U8_R reg used = u8_r(arena + soff(FArena, used));
/*Check if the allocation is at the end of the arena*/{
U8 reg alloc_end = old_ptr + old_len;
U8 reg arena_end = u8_r(arena + offset_of(FArena, start))[0] + used[0];
U8 reg arena_end = u8_r(arena + soff(FArena, start))[0] + used[0];
if (alloc_end != arena_end) {
// Not at the end, can't grow in place
struct_zero(Slice_Mem, result);
slice_clear(result);
return;
}
}
// Calculate growth
U8 reg grow_amount = requested_size - old_len;
U8 reg aligned_grow = align_pow2(grow_amount, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
U8 reg unused = u8_r(arena + offset_of(FArena, capacity))[0] - used[0];
U8 reg unused = u8_r(arena + soff(FArena, capacity))[0] - used[0];
if (aligned_grow > unused) {
// Not enough space
struct_zero(Slice_Mem, result);
slice_clear(result);
return;
}
used[0] += aligned_grow;
struct_copy(Slice_Mem, result, (U8)& slice_mem(old_ptr, aligned_grow + requested_size));
memory_zero(old_ptr + old_len, grow_amount * cast(U8, should_zero));
slice_assign_comp(result, old_ptr, aligned_grow + requested_size);
mem_zero(old_ptr + old_len, grow_amount * cast(U8, should_zero));
}
inline void farena__shrink__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment) {
assert(result != null);
assert(arena != null);
U8_R reg used = u8_r(arena + offset_of(FArena, used));
U8_R reg used = u8_r(arena + soff(FArena, used));
/*Check if the allocation is at the end of the arena*/ {
U8 reg alloc_end = old_ptr + old_len;
U8 reg arena_end = u8_r(arena + offset_of(FArena, start))[0] + used[0];
U8 reg arena_end = u8_r(arena + soff(FArena, start))[0] + used[0];
if (alloc_end != arena_end) {
// Not at the end, can't shrink but return adjusted size
struct_copy(Slice_Mem, result, (U8)& slice_mem(old_ptr, requested_size));
slice_assign_comp(result, old_ptr, requested_size);
return;
}
}
U8 reg aligned_original = align_pow2(old_len, MEMORY_ALIGNMENT_DEFAULT);
U8 reg aligned_new = align_pow2(requested_size, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
used[0] -= (aligned_original - aligned_new);
struct_copy(Slice_Mem, result, (U8)& slice_mem(old_ptr, requested_size));
slice_assign_comp(result, old_ptr, requested_size);
}
I_ void farena_reset__u(U8 arena) { u8_r(arena + offset_of(FArena, used))[0] = 0; }
I_ void farena_reset__u(U8 arena) { u8_r(arena + soff(FArena, used))[0] = 0; }
I_ void farena_rewind__u(U8 arena, U8 sp_type_sig, U8 sp_slot) {
assert(sp_type_sig == (U8)& farena_allocator_proc);
U8 reg start = u8_r(arena + offset_of(FArena, start))[0];
U8_R reg used = u8_r(arena + offset_of(FArena, used));
U8 reg start = u8_r(arena + soff(FArena, start))[0];
U8_R reg used = u8_r(arena + soff(FArena, used));
U8 reg end = start + used[0]; assert_bounds(sp_slot, start, end);
used[0] -= sp_slot - start;
}
I_ void farena_save__u(U8 arena, U8 sp) {
u8_r(sp + offset_of(AllocatorSP, type_sig))[0] = (U8)& farena_allocator_proc;
u8_r(sp + offset_of(AllocatorSP, slot ))[0] = u8_r(arena + offset_of(FArena, used))[0];
u8_r(sp + soff(AllocatorSP, type_sig))[0] = (U8)& farena_allocator_proc;
u8_r(sp + soff(AllocatorSP, slot ))[0] = u8_r(arena + soff(FArena, used))[0];
}
void farena_allocator_proc(U8 arena, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out)
{
assert(out != null);
assert(arena != null);
U8 reg allocation = arena + offset_of(AllocatorProc_Out, allocation);
U8 reg allocation = arena + soff(AllocatorProc_Out, allocation);
switch (op)
{
case AllocatorOp_Alloc:
case AllocatorOp_Alloc_NoZero:
farena__push__u(arena, requested_size, 1, alignment, allocation);
memory_zero(u8_r(allocation + offset_of(Slice_Mem, ptr))[0], u8_r(allocation + offset_of(Slice_Mem, len))[0] * op);
mem_zero(u8_r(allocation + soff(Slice_Mem, ptr))[0], u8_r(allocation + soff(Slice_Mem, len))[0] * op);
break;
case AllocatorOp_Free: break;
case AllocatorOp_Reset: farena_reset__u(arena); break;
@@ -718,17 +765,17 @@ void farena_allocator_proc(U8 arena, U8 requested_size, U8 alignment, U8 old_ptr
case AllocatorOp_SavePoint: farena_save__u(arena, allocation); break;
case AllocatorOp_Query:
u4_r(out + offset_of(AllocatorQueryInfo, features))[0] =
u4_r(out + soff(AllocatorQueryInfo, features))[0] =
AllocatorQuery_Alloc
| AllocatorQuery_Reset
| AllocatorQuery_Resize
| AllocatorQuery_Rewind
;
U8 reg max_alloc = u8_r(arena + offset_of(FArena, capacity))[0] - u8_r(arena + offset_of(FArena, used))[0];
u8_r(out + offset_of(AllocatorQueryInfo, max_alloc))[0] = max_alloc;
u8_r(out + offset_of(AllocatorQueryInfo, min_alloc))[0] = 0;
u8_r(out + offset_of(AllocatorQueryInfo, left ))[0] = max_alloc;
farena_save__u(arena, out + offset_of(AllocatorQueryInfo, save_point));
U8 reg max_alloc = u8_r(arena + soff(FArena, capacity))[0] - u8_r(arena + soff(FArena, used))[0];
u8_r(out + soff(AllocatorQueryInfo, max_alloc))[0] = max_alloc;
u8_r(out + soff(AllocatorQueryInfo, min_alloc))[0] = 0;
u8_r(out + soff(AllocatorQueryInfo, left ))[0] = max_alloc;
farena_save__u(arena, out + soff(AllocatorQueryInfo, save_point));
break;
}
return;
@@ -815,21 +862,27 @@ I_ U8 os_vmem_reserve__u(U8 size, B4 no_large_pages, U8 base_addr) {
MS_PAGE_READWRITE /* | (opts->no_large_pages ? 0 : MS_MEM_LARGE_PAGES) */)
);
}
I_ B4 os_vmem_commit__u (U8 vm, U8 size) { return ms_virtual_alloc(cast(MS_LPVOID, vm), size, MS_MEM_COMMIT, MS_PAGE_READWRITE) != null; }
I_ B4 os_vmem_commit__u (U8 vm, U8 size, B4 no_large_pages) {
// if (no_large_pages == false ) { return 1; }
return ms_virtual_alloc(cast(MS_LPVOID, vm), size, MS_MEM_COMMIT, MS_PAGE_READWRITE) != null;
}
I_ void os_vmem_release__u(U8 vm, U8 size) { ms_virtual_free(cast(MS_LPVOID, vm), 0, MS_MEM_RESERVE); }
I_ U8 os__vmem_reserve( U8 size, Opts_vmem_R opts) {
assert(opts != nullptr);
return os_vmem_reserve__u(size, opts->no_large_pages, opts->base_addr);
}
I_ B4 os_vmem_commit (U8 vm, U8 size) { return os_vmem_commit__u(vm, size); }
I_ B4 os_vmem_commit (U8 vm, U8 size, Opts_vmem_R opts) {
assert(opts != nullptr);
return os_vmem_commit__u(vm, size, opts->no_large_pages);
}
I_ void os_vmem_release(U8 vm, U8 size) { os_vmem_release__u(vm, size); }
#pragma endregion OS
#pragma region VArena (Virtual Address Space Arena)
I_ U8 varena_header_size(void) { return align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); }
I_ U8 varena__make__u(U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr) {
inline U8 varena__make__u(U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr) {
if (reserve_size == 0) { reserve_size = mega(64); }
if (commit_size == 0) { commit_size = mega(64); }
U8 reg page = os_system_info()->target_page_size;
@@ -837,86 +890,96 @@ I_ U8 varena__make__u(U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr) {
U8 reg commit_sz = align_pow2(commit_size, page);
B4 reg no_large = (flags & VArenaFlag_NoLargePages) != 0;
U8 base = os_vmem_reserve__u(reserve_sz, no_large, base_addr); assert(base != 0);
B4 ok = os_vmem_commit__u(base, commit_sz); assert(ok != 0);
B4 ok = os_vmem_commit__u(base, commit_sz, no_large); assert(ok != 0);
U8 header = varena_header_size();
U8 data_start = base + header;
u8_r(base + offset_of(VArena, reserve_start))[0] = data_start;
u8_r(base + offset_of(VArena, reserve ))[0] = reserve_sz;
u8_r(base + offset_of(VArena, commit_size ))[0] = commit_sz;
u8_r(base + offset_of(VArena, committed ))[0] = commit_sz;
u8_r(base + offset_of(VArena, commit_used ))[0] = header;
u4_r(base + offset_of(VArena, flags ))[0] = flags;
u8_r(base + soff(VArena, reserve_start))[0] = data_start;
u8_r(base + soff(VArena, reserve ))[0] = reserve_sz;
u8_r(base + soff(VArena, commit_size ))[0] = commit_sz;
u8_r(base + soff(VArena, committed ))[0] = commit_sz;
u8_r(base + soff(VArena, commit_used ))[0] = header;
u4_r(base + soff(VArena, flags ))[0] = flags;
return base;
}
inline
void varena__push__u(U8 vm, U8 amount, U8 type_width, U8 alignment, U8 result) {
assert(result != null);
assert(vm != null);
if (amount == 0) { struct_zero(Slice_Mem, result); return; }
U8 align = alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT;
if (amount == 0) { slice_clear(result); return; }
alignment = alignment == 0 ? alignment : MEMORY_ALIGNMENT_DEFAULT;
U8 requested_size = amount * type_width;
U8 reg aligned_size = align_pow2(requested_size, align);
U8_R reg commit_used = u8_r(vm + offset_of(VArena, commit_used ));
U8 reg reserve_left = u8_r(vm + offset_of(VArena, reserve ))[0] - commit_used[0];
if (aligned_size > reserve_left) { struct_zero(Slice_Mem, result); return; }
U8 reg committed = u8_r(vm + offset_of(VArena, committed ))[0];
U8 commit_left = committed - commit_used[0];
if (commit_left < aligned_size) {
U8 reg commit_size = u8_r(vm + offset_of(VArena, commit_size))[0];
U8 reg next_commit = reserve_left > aligned_size ? max(commit_size, aligned_size) : reserve_left;
if (next_commit != 0) {
B4 no_large = (u4_r(vm + offset_of(VArena, flags))[0] & VArenaFlag_NoLargePages) != 0;
U8 reg aligned_size = align_pow2(requested_size, alignment);
U8_R reg commit_used = u8_r(vm + soff(VArena, commit_used ));
U8 to_be_used = commit_used[0] + aligned_size;
U8 reg reserve_left = u8_r(vm + soff(VArena, reserve ))[0] - commit_used[0];
U8 reg committed = u8_r(vm + soff(VArena, committed ))[0];
U8 commit_left = committed - commit_used[0];
assert(to_be_used< reserve_left);
if (/*exhausted?*/commit_left < aligned_size) {
U8 reg commit_size = u8_r(vm + soff(VArena, commit_size))[0];
U8 reg next_commit_size = reserve_left > aligned_size ? max(commit_size, aligned_size) : reserve_left;
if (next_commit_size != 0) {
B4 no_large_pages = (u4_r(vm + soff(VArena, flags))[0] & VArenaFlag_NoLargePages) != 0;
U8 reg next_commit_start = vm + committed;
if (os_vmem_commit__u(next_commit_start, next_commit) == false) {
if (os_vmem_commit__u(next_commit_start, next_commit_size, no_large_pages) == false) {
struct_zero(Slice_Mem, result);
return;
}
committed += next_commit;
u8_r(vm + offset_of(VArena, committed))[0] = committed;
committed += next_commit_size;
u8_r(vm + soff(VArena, committed))[0] = committed;
}
}
commit_used[0] += aligned_size; {
U8 reg current_offset = u8_r(vm + offset_of(VArena, reserve_start))[0] + commit_used[0];
struct_copy(Slice_Mem, result, (U8)& slice_mem(current_offset, requested_size));
}
commit_used[0] += aligned_size;
U8 reg current_offset = u8_r(vm + soff(VArena, reserve_start))[0] + commit_used[0];
slice_assign(result, (U8)& slice_mem(current_offset, requested_size));
}
inline
void varena__grow__u(U8 result, U8 vm, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero) {
assert(vm != null);
assert(result != null);
U8 reg grow_amount = requested_size - old_len;
if (grow_amount == 0) { struct_copy(Slice_Mem, result, (U8)& slice_mem(old_ptr, old_len)); return; }
U8 reg current_offset = u8_r(vm + offset_of(VArena, reserve_start))[0] + u8_r(vm + offset_of(VArena, commit_used))[0];
if (grow_amount == 0) { slice_assign(result, (U8)& slice_mem(old_ptr, old_len)); return; }
U8 reg current_offset = u8_r(vm + soff(VArena, reserve_start))[0] + u8_r(vm + soff(VArena, commit_used))[0];
// Growing when not the last allocation not allowed
assert(old_ptr == current_offset);
uvar(Slice_Mem, allocation); varena__push__u(vm, grow_amount, 1, alignment, u8_(allocation));
U8 reg a_ptr = u8_r(allocation + soff(Slice_Mem, ptr))[0];
U8 reg a_len = u8_r(allocation + soff(Slice_Mem, len))[0];
assert(a_ptr != 0);
mem_zero(a_ptr, a_len * should_zero);
slice_assign(result, (U8)& slice_mem(old_ptr, old_len + a_len));
}
inline
void varena__shrink__u(U8 result, U8 vm, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment) {
assert(vm != null);
assert(result != null);
U8 reg shrink_amount = old_len - requested_size;
if (lt_s(shrink_amount, 0)) { slice_assign(result, (U8)& slice_mem(old_ptr, old_len)); return; }
U8_R reg commit_used = u8_r(vm + soff(VArena, commit_used));
U8 reg current_offset = u8_r(vm + soff(VArena, reserve_start))[0] + commit_used[0]; assert(old_ptr == current_offset);
commit_used[0] -= shrink_amount;
slice_assign(result, (U8)& slice_mem(old_ptr, requested_size));
}
I_ void varena_release__u(U8 vm) {
assert(vm != null);
os_vmem_release__u(vm, u8_r(vm + offset_of(VArena, reserve))[0]);
os_vmem_release__u(vm, u8_r(vm + soff(VArena, reserve))[0]);
}
I_ void varena_reset__u(U8 vm) {
assert(vm != null);
u8_r(vm + offset_of(VArena, commit_used))[0] = 0;
u8_r(vm + soff(VArena, commit_used))[0] = 0;
}
I_ void varena_rewind__u(U8 vm, U8 sp_type_sig, U8 sp_slot) {
assert(vm != null);
assert(sp_type_sig == (U8) varena_allocator_proc);
U8 reg header = varena_header_size();
if (sp_slot < header) { sp_slot = header; }
u8_r(vm + offset_of(VArena, commit_used))[0] = sp_slot;
u8_r(vm + soff(VArena, commit_used))[0] = sp_slot;
}
I_ void varena_save__u(U8 vm, U8 sp_addr) {
assert(vm != null);
assert(sp_addr != null);
u8_r(sp_addr + offset_of(AllocatorSP, type_sig))[0] = (U8) varena_allocator_proc;
u8_r(sp_addr + offset_of(AllocatorSP, slot ))[0] = u8_r(vm + offset_of(VArena, commit_used))[0];
u8_r(sp_addr + soff(AllocatorSP, type_sig))[0] = (U8) varena_allocator_proc;
u8_r(sp_addr + soff(AllocatorSP, slot ))[0] = u8_r(vm + soff(VArena, commit_used))[0];
}
I_ VArena* varena__make(Opts_varena_make*R_ opts) {
@@ -944,17 +1007,17 @@ I_ AllocatorSP varena_save(VArena_R vm) { AllocatorSP sp; varena_save__u(u8_(vm)
void varena_allocator_proc(U8 vm, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, U8 out_addr)
{
assert(vm != null);
assert(vm != null);
assert(out_addr != null);
U8 out_allocation = out_addr ? out_addr + offset_of(AllocatorProc_Out, allocation) : 0;
U8 out_allocation = out_addr ? out_addr + soff(AllocatorProc_Out, allocation) : 0;
switch (op)
{
case AllocatorOp_Alloc:
case AllocatorOp_Alloc_NoZero:
varena__push__u(vm, requested_size, 1, alignment, out_allocation);
if (op == AllocatorOp_Alloc) {
U8 ptr = u8_r(out_allocation + offset_of(Slice_Mem, ptr))[0];
U8 len = u8_r(out_allocation + offset_of(Slice_Mem, len))[0];
U8 ptr = u8_r(out_allocation + soff(Slice_Mem, ptr))[0];
U8 len = u8_r(out_allocation + soff(Slice_Mem, len))[0];
if (ptr && len) { memory_zero(ptr, len); }
}
break;
@@ -970,32 +1033,37 @@ void varena_allocator_proc(U8 vm, U8 requested_size, U8 alignment, U8 old_ptr, U
varena__shrink__u(out_allocation, vm, old_ptr, old_len, requested_size, alignment);
break;
case AllocatorOp_Rewind: varena_rewind__u(vm, old_ptr, old_len); break;
case AllocatorOp_SavePoint: varena_save__u (vm, out_addr + offset_of(AllocatorProc_Out, save_point)); break;
case AllocatorOp_Rewind: varena_rewind__u(vm, old_ptr, old_len); break;
case AllocatorOp_SavePoint: varena_save__u (vm, out_addr + soff(AllocatorProc_Out, save_point)); break;
case AllocatorOp_Query:
u4_r(out_addr + offset_of(AllocatorQueryInfo, features))[0] =
u4_r(out_addr + soff(AllocatorQueryInfo, features))[0] =
AllocatorQuery_Alloc
| AllocatorQuery_Reset
| AllocatorQuery_Resize
| AllocatorQuery_Rewind;
U8 reserve = u8_r(vm + offset_of(VArena, reserve ))[0];
U8 committed = u8_r(vm + offset_of(VArena, committed))[0];
U8 reserve = u8_r(vm + soff(VArena, reserve ))[0];
U8 committed = u8_r(vm + soff(VArena, committed))[0];
U8 max_alloc = (reserve > committed) ? (reserve - committed) : 0;
u8_r(out_addr + offset_of(AllocatorQueryInfo, max_alloc))[0] = max_alloc;
u8_r(out_addr + offset_of(AllocatorQueryInfo, min_alloc))[0] = kilo(4);
u8_r(out_addr + offset_of(AllocatorQueryInfo, left ))[0] = max_alloc;
AllocatorSP sp = { .type_sig = varena_allocator_proc, .slot = u8_r(vm + offset_of(VArena, commit_used))[0] };
struct_copy(AllocatorSP, out_addr + offset_of(AllocatorQueryInfo, save_point), (U8)& sp);
u8_r(out_addr + soff(AllocatorQueryInfo, max_alloc))[0] = max_alloc;
u8_r(out_addr + soff(AllocatorQueryInfo, min_alloc))[0] = kilo(4);
u8_r(out_addr + soff(AllocatorQueryInfo, left ))[0] = max_alloc;
AllocatorSP sp = { .type_sig = varena_allocator_proc, .slot = u8_r(vm + soff(VArena, commit_used))[0] };
struct_assign(AllocatorSP, out_addr + soff(AllocatorQueryInfo, save_point), (U8)& sp);
break;
}
}
#pragma endregion VArena
#pragma region Arena
#pragma endregion Arena
#pragma endregion Implementation
int main(void)
{
os_init();
VArena_R vm_file = varena_make(.reserve_size = giga(4), .flags = VArenaFlag_NoLargePages);
return 0;
}

View File

@@ -9,6 +9,9 @@ https://youtu.be/RrL7121MOeA
*/
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpre-c11-compat"
// #pragma clang diagnostic ignored "-Wc++-keyword"
#pragma clang diagnostic ignored "-Wcast-qual"
#pragma clang diagnostic ignored "-Wunused-const-variable"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#pragma clang diagnostic ignored "-Wswitch"
@@ -20,14 +23,12 @@ https://youtu.be/RrL7121MOeA
#pragma clang diagnostic ignored "-W#pragma-messages"
#pragma clang diagnostic ignored "-Wstatic-in-inline"
#pragma clang diagnostic ignored "-Wkeyword-macro"
#pragma clang diagnostic ignored "-Wc23-compat"
#pragma clang diagnostic ignored "-Wreserved-identifier"
#pragma clang diagnostic ignored "-Wpre-c11-compat"
#pragma clang diagnostic ignored "-Wc23-compat"
#pragma clang diagnostic ignored "-Wc23-extensions"
#pragma clang diagnostic ignored "-Wunused-macros"
#pragma clang diagnostic ignored "-Wdeclaration-after-statement"
#pragma clang diagnostic ignored "-Wunsafe-buffer-usage"
#pragma clang diagnostic ignored "-Wc++-keyword"
#pragma clang diagnostic ignored "-Wimplicit-function-declaration"
#pragma clang diagnostic ignored "-Wcast-align"
#pragma clang diagnostic ignored "-Wunused-parameter"
@@ -39,24 +40,24 @@ https://youtu.be/RrL7121MOeA
#pragma region Header
#pragma region DSL
#define align_(value) __attribute__((aligned (value))) // for easy alignment
#define expect_(x, y) __builtin_expect(x, y) // so compiler knows the common path
#define finline static inline __attribute__((always_inline)) // force inline
#define no_inline static __attribute__((noinline)) // force no inline [used in thread api]
#define R_ __restrict // pointers are either restricted or volatile and nothing else
#define V_ volatile // pointers are either restricted or volatile and nothing else
#define local_persist static
#define global static
#define internal static
#define align_(value) __attribute__((aligned (value))) // for easy alignment
#define expect_(x, y) __builtin_expect(x, y) // so compiler knows the common path
#define finline internal inline __attribute__((always_inline)) // force inline
#define no_inline internal __attribute__((noinline)) // force no inline [used in thread api]
#define R_ __restrict // pointers are either restricted or volatile and nothing else
#define V_ volatile // pointers are either restricted or volatile and nothing else
#define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
#define glue_impl(A, B) A ## B
#define glue(A, B) glue_impl(A, B)
#define stringify_impl(S) #S
#define stringify(S) stringify_impl(S)
#define stringify(S) cast(UTF8*, stringify_impl(S))
#define tmpl(prefix, type) prefix ## _ ## type
#define local_persist static
#define global static
#define internal static
#define static_assert _Static_assert
#define typeof __typeof__
#define typeof_ptr(ptr) typeof(ptr[0])
@@ -176,8 +177,8 @@ typedef def_struct(Slice_Str8) { Str8* ptr; U8 len; };
{ \
assert_handler( \
stringify(cond), \
__FILE__, \
__func__, \
(UTF8*)__FILE__, \
(UTF8*)__func__, \
cast(S4, __LINE__), \
msg, \
## __VA_ARGS__); \
@@ -1100,7 +1101,6 @@ inline void os_vmem_release(U8 vm, U8 size) { VirtualFree(cast(MS_LPVOID, vm),
#pragma region VArena (Virutal Address Space Arena)
finline U8 varena_header_size(void) { return align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); }
inline
VArena* varena__make(Opts_varena_make*R_ opts) {
assert(opts != nullptr);
@@ -1130,13 +1130,11 @@ Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena*R_ opt
U8 alignment = opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT;
U8 requested_size = amount * type_width;
U8 aligned_size = align_pow2(requested_size, alignment);
U8 current_offset = vm->reserve_start + vm->commit_used;
U8 to_be_used = vm->commit_used + aligned_size;
U8 reserve_left = vm->reserve - vm->commit_used;
U8 commit_left = vm->committed - vm->commit_used;
B4 exhausted = commit_left < to_be_used; assert(to_be_used < reserve_left);
if (exhausted)
{
assert(to_be_used < reserve_left);
if (/*exhausted?*/commit_left < to_be_used) {
U8 next_commit_size = reserve_left > 0 ?
max(vm->commit_size, to_be_used)
: align_pow2( reserve_left, os_system_info()->target_page_size);
@@ -1149,17 +1147,17 @@ Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena*R_ opt
}
}
vm->commit_used = to_be_used;
U8 current_offset = vm->reserve_start + vm->commit_used;
return (Slice_Mem){.ptr = current_offset, .len = requested_size};
}
inline
Slice_Mem varena__grow(VArena_R vm, Slice_Mem old_allocation, U8 requested_size, U8 alignment, B4 no_zero) {
Slice_Mem varena__grow(VArena_R vm, Slice_Mem old_allocation, U8 requested_size, U8 alignment, B4 should_zero) {
U8 grow_amount = requested_size - old_allocation.len;
if (grow_amount == 0) { return old_allocation; } // Growing when not the last allocation not allowed
U8 current_offset = vm->reserve_start + vm->commit_used; assert(old_allocation.ptr == current_offset);
Slice_Mem allocation = varena_push_mem(vm, grow_amount, alignment); assert(allocation.ptr != 0);
Slice_Mem result = (Slice_Mem){ old_allocation.ptr, requested_size + allocation.len };
mem_zero(result.ptr, result.len * no_zero);
return result;
mem_zero(allocation.ptr, allocation.len * should_zero);
return (Slice_Mem){ old_allocation.ptr, old_allocation.len + allocation.len };
}
finline void varena_release(VArena_R arena) { os_vmem_release(u8_(arena), arena->reserve); }
inline

View File

@@ -334,9 +334,9 @@ typedef def_struct(Opts_vmem) {
void os_init(void);
OS_SystemInfo* os_system_info(void);
inline B32 os__vmem_commit(void* vm, SSIZE size, Opts_vmem* opts);
inline Byte* os__vmem_reserve(SSIZE size, Opts_vmem* opts);
inline void os_vmem_release(void* vm, SSIZE size);
inline B32 os__vmem_commit (void* vm, SSIZE size, Opts_vmem* opts);
inline Byte* os__vmem_reserve( SSIZE size, Opts_vmem* opts);
inline void os_vmem_release (void* vm, SSIZE size);
#define os_vmem_reserve(size, ...) os__vmem_reserve( size, opt_args(Opts_vmem, __VA_ARGS__))
#define os_vmem_commit(vm, size, ...) os__vmem_commit(vm, size, opt_args(Opts_vmem, __VA_ARGS__))
@@ -844,7 +844,7 @@ Slice_Byte farena__push(FArena* arena, SSIZE amount, SSIZE type_width, Opts_fare
return (Slice_Byte){ptr, desired};
}
inline
Slice_Byte farena__grow(FArena* arena, SSIZE requested_size, Slice_Byte old_allocation, SSIZE alignment, B32 no_zero) {
Slice_Byte farena__grow(FArena* arena, SSIZE requested_size, Slice_Byte old_allocation, SSIZE alignment, B32 should_zero) {
// Check if the allocation is at the end of the arena
Byte* alloc_end = old_allocation.ptr + old_allocation.len;
Byte* arena_end = cast(Byte*, cast(SSIZE, arena->start) + arena->used);
@@ -861,9 +861,8 @@ Slice_Byte farena__grow(FArena* arena, SSIZE requested_size, Slice_Byte old_allo
return (Slice_Byte){0};
}
arena->used += aligned_grow;
Slice_Byte result = (Slice_Byte){old_allocation.ptr, requested_size};
memory_zero(old_allocation.ptr + old_allocation.len, grow_amount * cast(SSIZE, no_zero));
return result;
memory_zero(old_allocation.ptr + old_allocation.len, grow_amount * cast(SSIZE, should_zero));
return (Slice_Byte){old_allocation.ptr, requested_size};
}
inline
Slice_Byte farena__shrink(FArena* arena, Slice_Byte old_allocation, SSIZE requested_size, SSIZE alignment) {
@@ -890,8 +889,7 @@ void farena_rewind(FArena* arena, AllocatorSP save_point) {
}
inline
AllocatorSP farena_save (FArena arena) {
AllocatorSP sp = { .type_sig = & farena_allocator_proc, .slot = cast(SSIZE, arena.used) };
return sp;
return (AllocatorSP){ .type_sig = & farena_allocator_proc, .slot = cast(SSIZE, arena.used) };
}
void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
{
@@ -1071,7 +1069,6 @@ Slice_Byte varena__push(VArena* vm, SSIZE amount, SSIZE type_width, Opts_varena*
SSIZE alignment = opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT;
SSIZE requested_size = amount * type_width;
SSIZE aligned_size = align_pow2(requested_size, alignment);
SSIZE current_offset = vm->reserve_start + vm->commit_used;
SSIZE to_be_used = vm->commit_used + aligned_size;
SSIZE reserve_left = vm->reserve - vm->commit_used;
SSIZE commit_left = vm->committed - vm->commit_used;
@@ -1089,18 +1086,18 @@ Slice_Byte varena__push(VArena* vm, SSIZE amount, SSIZE type_width, Opts_varena*
}
}
vm->commit_used = to_be_used;
SSIZE current_offset = vm->reserve_start + vm->commit_used;
return (Slice_Byte){.ptr = cast(Byte*, current_offset), .len = requested_size};
}
inline
Slice_Byte varena__grow(VArena* vm, SSIZE requested_size, Slice_Byte old_allocation, SSIZE alignment, B32 no_zero) {
Slice_Byte varena__grow(VArena* vm, SSIZE requested_size, Slice_Byte old_allocation, SSIZE alignment, B32 should_zero) {
assert(vm != nullptr);
SSIZE grow_amount = requested_size - old_allocation.len;
if (grow_amount == 0) { return old_allocation; } // Growing when not the last allocation not allowed
SSIZE current_offset = vm->reserve_start + vm->commit_used; assert(old_allocation.ptr == cast(Byte*, current_offset));
Slice_Byte allocation = varena_push_array(vm, Byte, grow_amount, alignment); assert(allocation.ptr != nullptr);
Slice_Byte result = (Slice_Byte){ old_allocation.ptr, requested_size };
memory_zero(allocation.ptr, allocation.len * no_zero);
return result;
memory_zero(allocation.ptr, allocation.len * should_zero);
return (Slice_Byte){ old_allocation.ptr, old_allocation.len + allocation.len };
}
inline Slice_Byte varena__shrink(VArena* vm, Slice_Byte old_allocation, SSIZE requested_size) {
SSIZE current_offset = vm->reserve_start + vm->commit_used;