need to debugt dump listing
This commit is contained in:
2025-06-01 18:51:47 -04:00
parent 798312dbaf
commit 649056e0b9
2 changed files with 252 additions and 157 deletions

View File

@@ -1,28 +1,31 @@
root = true
[*]
end_of_line = lf
[*.refactor]
indent_style = space
indent_size = 4
[*.md]
indent_style = space
indent_style = tab
indent_size = 4
[*.c]
indent_style = tab
indent_size = 4
indent_size = 2
[*.cpp]
indent_style = tab
indent_size = 4
indent_size = 2
[*.h]
indent_style = tab
indent_size = 4
indent_size = 2
[*.hpp]
indent_style = tab
indent_size = 4
indent_size = 2
[*.ps1]
indent_style = tab

View File

@@ -70,14 +70,14 @@ enum {
#define tera(n) (cast(SSIZE, n) << 40)
#define range_iter(type, iter, m_begin, op, m_end) \
tmpl(Iter_Range,type) iter = { \
.r = {(m_begin), (m_end)}, \
.cursor = (m_begin) }; \
iter.cursor op iter.r.end; \
tmpl(Iter_Range,type) iter = { \
.r = {(m_begin), (m_end)}, \
.cursor = (m_begin) }; \
iter.cursor op iter.r.end; \
++ iter.cursor
#define def_range(type) \
def_struct(tmpl( Range,type)) { type begin; type end; }; \
#define def_range(type) \
def_struct(tmpl( Range,type)) { type begin; type end; }; \
typedef def_struct(tmpl(Iter_Range,type)) { tmpl(Range,type) r; type cursor; }
typedef def_range(S32);
@@ -98,18 +98,18 @@ typedef void fn(VoidFn) (void);
#define debug_trap() __debugbreak()
#define assert_trap(cond) do { if (cond) __debug_trap(); } while(0)
#define assert(cond) assert_msg(cond, nullptr)
#define assert_msg(cond, msg, ...) do { \
if (! (cond)) \
{ \
assert_handler( \
stringify(cond), \
__FILE__, \
__func__, \
cast(S64, __LINE__), \
msg, \
## __VA_ARGS__); \
debug_trap(); \
} \
#define assert_msg(cond, msg, ...) do { \
if (! (cond)) \
{ \
assert_handler( \
stringify(cond), \
__FILE__, \
__func__, \
cast(S64, __LINE__), \
msg, \
## __VA_ARGS__); \
debug_trap(); \
} \
} while(0)
void assert_handler( char const* condition, char const* file, char const* function, S32 line, char const* msg, ... );
#endif
@@ -121,11 +121,11 @@ inline SSIZE align_pow2(SSIZE x, SSIZE b);
#define align_struct(type_width) ((SSIZE)(((type_width) + 7) / 8 * 8))
#define assert_bounds(point, start, end) do { \
SSIZE pos_point = cast(SSIZE, point); \
SSIZE pos_start = cast(SSIZE, start); \
SSIZE pos_end = cast(SSIZE, end); \
assert(pos_start <= pos_point); \
assert(pos_point <= pos_end); \
SSIZE pos_point = cast(SSIZE, point); \
SSIZE pos_start = cast(SSIZE, start); \
SSIZE pos_end = cast(SSIZE, end); \
assert(pos_start <= pos_point); \
assert(pos_point <= pos_end); \
} while(0)
void* memory_copy (void* restrict dest, void const* restrict src, USIZE length);
@@ -134,10 +134,10 @@ B32 memory_zero (void* dest, USIZE length);
#define def_Slice(type) \
def_struct(tmpl(Slice,type)) { \
type* ptr; \
SSIZE len; \
type* ptr; \
SSIZE len; \
}
#define slice_assert(slice) do { assert((slice).ptr != nullptr); assert((slice).len > 0); } while(0)
#define slice_assert(slice) do { assert((slice).ptr != nullptr); assert((slice).len > 0); } while(0)
#define slice_end(slice) ((slice).ptr + (slice).len)
#define size_of_slice_type(slice) size_of( * (slice).ptr )
@@ -148,19 +148,19 @@ typedef def_Slice(Byte);
void slice__copy(Slice_Byte dest, SSIZE dest_typewidth, Slice_Byte src, SSIZE src_typewidth);
void slice__zero(Slice_Byte mem, SSIZE typewidth);
#define slice_copy(dest, src) do { \
#define slice_copy(dest, src) do { \
static_assert(typeof_same(dest, src)); \
slice__copy(slice_byte(dest), size_of_slice_type(dest), slice_byte(src), size_of_slice_type(src)); \
} while (0)
#define slice_zero(slice) slice__zero(slice_byte(slice), size_of_slice_type(slice))
#define slice_iter(container, iter) \
#define slice_iter(container, iter) \
typeof((container).ptr) iter = (container).ptr; \
iter != slice_end(container); \
++ iter
#define slice_arg_from_array(type, ...) & (tmpl(Slice,type)) { \
.ptr = farray_init(type, __VA_ARGS__), \
.len = farray_len( farray_init(type, __VA_ARGS__)) \
.ptr = farray_init(type, __VA_ARGS__), \
.len = farray_len( farray_init(type, __VA_ARGS__)) \
}
#define check_nil(nil, p) ((p) == 0 || (p) == nil)
@@ -169,16 +169,16 @@ void slice__zero(Slice_Byte mem, SSIZE typewidth);
#define sll_stack_push_n(f, n, next) do { (n)->next = (f); (f) = (n); } while(0)
#define sll_queue_push_nz(nil, f, l, n, next) \
( \
check_nil(nil, f) ? ( \
(f) = (l) = (n), \
set_nil(nil, (n)->next) \
) \
: ( \
(l)->next=(n), \
(l) = (n), \
set_nil(nil,(n)->next) \
) \
( \
check_nil(nil, f) ? ( \
(f) = (l) = (n), \
set_nil(nil, (n)->next) \
) \
: ( \
(l)->next=(n), \
(l) = (n), \
set_nil(nil,(n)->next) \
) \
)
#define sll_queue_push_n(f, l, n, next) sll_queue_push_nz(0, f, l, n, next)
#pragma endregion Memory
@@ -367,6 +367,7 @@ Slice_Byte varena__push (VArena* arena, SSIZE amount, SSIZE type_width, Opts_v
void varena_release(VArena* arena);
void varena_rewind (VArena* arena, AllocatorSP save_point);
void varena_reset (VArena* arena);
Slice_Byte varena__shrink(VArena* arena, Slice_Byte old_allocation, SSIZE requested_size, Opts_varena* opts);
AllocatorSP varena_save (VArena* arena);
void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out);
@@ -426,11 +427,11 @@ void hash64_djb8(U64* hash, Slice_Byte bytes) {
#pragma region Key Table 1-Layer Linear (KT1L)
#define def_KT1L_Slot(type) \
def_struct(tmpl(KT1L_Slot,type)) { \
U64 key; \
type value; \
U64 key; \
type value; \
}
#define def_KT1L(type) \
def_Slice(tmpl(KT1L_Slot,type)); \
#define def_KT1L(type) \
def_Slice(tmpl(KT1L_Slot,type)); \
typedef tmpl(Slice_KT1L_Slot,type) tmpl(KT1L,type)
typedef Slice_Byte KT1L_Byte;
@@ -443,33 +444,33 @@ typedef def_struct(KT1L_Info) {
};
SSIZE kt1l__populate_slice_a2(KT1L_Byte* kt, KT1L_Info info, Slice_Byte values, SSIZE num_values );
#define kt1l_populate_slice_a2(type, kt, ainfo, values) kt1l__populate_slice_a2( \
pcast(KT1L_Byte*, kt), \
(KT1L_Info){ \
cast(KT1L_Byte*, kt), \
(KT1L_Info){ \
.backing = ainfo, \
.slot_size = size_of(KT1L_Slot_Str8), \
.kt_value_offset = offset_of(tmpl(KT1L_Slot,type), value), \
.type_width = size_of(type), \
.type_name = lit(stringify(type)) \
}, \
slice_byte(values), (values).len \
}, \
slice_byte(values), (values).len \
)
#pragma endregion KT1L
#pragma region Key Table 1-Layer Chained-Chunked-Cells (KT1CX)
#define def_KT1CX_Slot(type) \
def_struct(tmpl(KT1CX_Slot,type)) { \
type value; \
U64 key; \
B32 occupied; \
byte_pad(4); \
#define def_KT1CX_Slot(type) \
def_struct(tmpl(KT1CX_Slot,type)) { \
type value; \
U64 key; \
B32 occupied; \
byte_pad(4); \
}
#define def_KT1CX_Cell(type, depth) \
def_struct(tmpl(KT1CX_Cell,type)) { \
#define def_KT1CX_Cell(type, depth) \
def_struct(tmpl(KT1CX_Cell,type)) { \
tmpl(KT1CX_Slot,type) slots[depth]; \
tmpl(KT1CX_Cell,type)* next; \
}
#define def_KT1CX(type) \
def_struct(tmpl(KT1CX,type)) { \
#define def_KT1CX(type) \
def_struct(tmpl(KT1CX,type)) { \
tmpl(Slice_KT1CX_Cell,type) cell_pool; \
tmpl(Slice_KT1CX_Cell,type) table; \
}
@@ -508,11 +509,11 @@ typedef def_struct(KT1CX_Info) {
SSIZE type_width;
Str8 type_name;
};
void kt1cx__init (KT1CX_Info info, KT1CX_Byte* result);
void kt1cx__clear (KT1CX_Byte kt, KT1CX_ByteMeta meta);
U64 kt1cx__slot_id(KT1CX_Byte kt, U64 key, KT1CX_ByteMeta meta);
Slice_Byte kt1cx__get (KT1CX_Byte kt, U64 key, KT1CX_ByteMeta meta);
Slice_Byte kt1cx__set (KT1CX_Byte kt, U64 key, Slice_Byte value, AllocatorInfo backing_cells, KT1CX_ByteMeta meta);
void kt1cx__init (KT1CX_Info info, KT1CX_Byte* result);
void kt1cx__clear (KT1CX_Byte kt, KT1CX_ByteMeta meta);
U64 kt1cx__slot_id(KT1CX_Byte kt, U64 key, KT1CX_ByteMeta meta);
Byte* kt1cx__get (KT1CX_Byte kt, U64 key, KT1CX_ByteMeta meta);
Byte* kt1cx__set (KT1CX_Byte kt, U64 key, Slice_Byte value, AllocatorInfo backing_cells, KT1CX_ByteMeta meta);
#define kt1cx_assert(kt) do { \
slice_assert(kt.cell_pool); \
@@ -572,9 +573,9 @@ Str8Cache str8cache__make( Opts_str8cache_init* opts);
#define str8cache_init(cache, ...) str8cache__init(cache, opt_args(Opts_str8cache_init, __VA_ARGS__))
#define str8cache_make(...) str8cache__make( opt_args(Opts_str8cache_init, __VA_ARGS__))
void str8cache_clear(KT1CX_Str8 kt);
Str8 str8cache_get (KT1CX_Str8 kt, U64 key);
Str8 str8cache_set (KT1CX_Str8 kt, U64 key, Str8 value, AllocatorInfo str_reserve, AllocatorInfo backing_cells);
void str8cache_clear(KT1CX_Str8 kt);
Str8* str8cache_get (KT1CX_Str8 kt, U64 key);
Str8* str8cache_set (KT1CX_Str8 kt, U64 key, Str8 value, AllocatorInfo str_reserve, AllocatorInfo backing_cells);
Str8 cache_str8(Str8Cache* cache, Str8 str);
@@ -620,16 +621,9 @@ typedef def_enum(U32, WATL_TokKind) {
WATL_Tok_Text = 0xFFFFFFFF,
};
typedef Str8 WATL_Tok;
// typedef def_struct(WATL_Tok) {
// UTF8* code;
// byte_pad(8);
// };
typedef def_Slice(WATL_Tok);
typedef def_enum(U32, WATL_LexStatus) {
WATL_LexStatus_MemFail_SliceConstraintFail = (1 << 0),
// WATL_LexStatus_PosUntrackable = (1 << 1),
// WATL_LexStatus_UnsupportedCodepoints = (1 << 2),
// WATL_LexStatus_MessageOverflow = (1 << 3),
};
typedef def_struct(WATL_Pos) {
S32 line;
@@ -642,9 +636,9 @@ typedef def_struct(WATL_LexMsg) {
WATL_Pos pos;
};
typedef def_struct(WATL_LexInfo) {
WATL_LexMsg* msgs;
Slice_WATL_Tok toks;
WATL_LexStatus signal;
WATL_LexMsg* msgs;
Slice_WATL_Tok toks;
WATL_LexStatus signal;
byte_pad(4);
};
typedef def_struct(Opts_watl_lex) {
@@ -665,21 +659,18 @@ typedef Slice_WATL_Node WATL_Line;
typedef def_Slice(WATL_Line);
typedef def_struct(WATL_ParseMsg) {
WATL_ParseMsg* next;
Str8 content;
Str8 content;
WATL_Line* line;
WATL_Tok* tok;
WATL_Pos pos;
};
typedef def_enum(U32, WATL_ParseStatus) {
WATL_ParseStatus_MemFail_SliceConstraintFail = (1 << 0),
// WATL_ParseStatus_PosUntrackable = (1 << 1),
// WATL_ParseStatus_UnsupportedTokens = (1 << 2),
// WATL_ParseStatus_MessageOverflow = (1 << 3),
};
typedef def_struct(WATL_ParseInfo) {
Slice_WATL_Line lines;
WATL_ParseMsg* msgs;
WATL_ParseStatus signal;
Slice_WATL_Line lines;
WATL_ParseMsg* msgs;
WATL_ParseStatus signal;
byte_pad(4);
};
typedef def_struct(Opts_watl_parse) {
@@ -898,9 +889,48 @@ void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
break;
case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero:
case AllocatorOp_Shrink:
assert_msg(false, "not implemented");
case AllocatorOp_Grow_NoZero: {
// Check if the allocation is at the end of the arena
Byte* alloc_end = in.old_allocation.ptr + in.old_allocation.len;
Byte* arena_end = cast(Byte*, cast(SSIZE, arena->start) + arena->used);
if (alloc_end != arena_end) {
// Not at the end, can't grow in place
out->allocation = (Slice_Byte){0};
break;
}
// Calculate growth
SSIZE grow_amount = in.requested_size - in.old_allocation.len;
SSIZE aligned_grow = align_pow2(grow_amount, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
SSIZE unused = arena->capacity - arena->used;
if (aligned_grow > unused) {
// Not enough space
out->allocation = (Slice_Byte){0};
break;
}
arena->used += aligned_grow;
out->allocation = (Slice_Byte){in.old_allocation.ptr, in.requested_size};
memory_zero(in.old_allocation.ptr + in.old_allocation.len, grow_amount * cast(SSIZE, in.op - AllocatorOp_Grow_NoZero));
}
break;
case AllocatorOp_Shrink: {
// Check if the allocation is at the end of the arena
Byte* alloc_end = in.old_allocation.ptr + in.old_allocation.len;
Byte* arena_end = cast(Byte*, cast(SSIZE, arena->start) + arena->used);
if (alloc_end != arena_end) {
// Not at the end, can't shrink but return adjusted size
out->allocation = (Slice_Byte){in.old_allocation.ptr, in.requested_size};
break;
}
// Calculate shrinkage
//SSIZE shrink_amount = in.old_allocation.len - in.requested_size;
SSIZE aligned_original = align_pow2(in.old_allocation.len, MEMORY_ALIGNMENT_DEFAULT);
SSIZE aligned_new = align_pow2(in.requested_size, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
arena->used -= (aligned_original - aligned_new);
out->allocation = (Slice_Byte){in.old_allocation.ptr, in.requested_size};
}
break;
case AllocatorOp_Rewind:
@@ -914,7 +944,7 @@ void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
out->features =
AllocatorQuery_Alloc
| AllocatorQuery_Reset
// | AllocatorQuery_Resize
| AllocatorQuery_Resize
| AllocatorQuery_Rewind
;
out->max_alloc = arena->capacity - arena->used;
@@ -1010,7 +1040,7 @@ void os_init(void) {
info->target_page_size = (SSIZE)GetLargePageMinimum();
}
// TODO(Ed): Large pages disabled for now...
// TODO(Ed): Large pages disabled for now... (not failing gracefully)
inline Byte* os__vmem_reserve(SSIZE size, Opts_vmem* opts) {
assert(opts != nullptr);
void* result = VirtualAlloc(cast(void*, opts->base_addr), size
@@ -1082,11 +1112,25 @@ Slice_Byte varena__push(VArena* vm, SSIZE amount, SSIZE type_width, Opts_varena*
return (Slice_Byte){.ptr = cast(Byte*, current_offset), .len = requested_size};
}
inline void varena_release(VArena* arena) { os_vmem_release(arena, arena->reserve); }
inline Slice_Byte varena__shrink(VArena* vm, Slice_Byte old_allocation, SSIZE requested_size, Opts_varena* opts) {
assert(opts != nullptr);
Slice_Byte result = {0};
SSIZE current_offset = vm->reserve_start + vm->commit_used;
SSIZE shrink_amount = old_allocation.len - requested_size;
if (shrink_amount < 0) {
result = old_allocation;
return result;
}
assert(old_allocation.ptr == cast(Byte*, current_offset));
vm->commit_used -= shrink_amount;
result = (Slice_Byte){ old_allocation.ptr, requested_size };
return result;
}
inline
void varena_rewind(VArena* vm, AllocatorSP sp) {
assert(vm != nullptr);
assert(sp.type_sig == & varena_allocator_proc);
vm->commit_used = sp.slot;
vm->commit_used = max(sp.slot, sizeof(VArena));
}
inline AllocatorSP varena_save(VArena* vm) { return (AllocatorSP){varena_allocator_proc, vm->commit_used}; }
void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
@@ -1166,12 +1210,12 @@ Arena* arena__make(Opts_arena_make* opts) {
assert(current != nullptr);
Arena* arena = varena_push(current, Arena);
* arena = (Arena){
.backing = current,
.prev = nullptr,
.current = arena,
.base_pos = 0,
.pos = header_size,
.flags = opts->flags,
.backing = current,
.prev = nullptr,
.current = arena,
.base_pos = 0,
.pos = header_size,
.flags = opts->flags,
};
return arena;
}
@@ -1221,8 +1265,8 @@ void arena_rewind(Arena* arena, AllocatorSP save_point) {
assert(arena != nullptr);
assert(save_point.type_sig == arena_allocator_proc);
SSIZE header_size = align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT);
Arena* curr = arena->current;
SSIZE big_pos = clamp_bot(header_size, save_point.slot);
Arena* curr = arena->current;
SSIZE big_pos = clamp_bot(header_size, save_point.slot);
for (Arena* prev = nullptr; curr->base_pos >= big_pos; curr = prev) {
prev = curr->prev;
varena_release(curr->backing);
@@ -1231,7 +1275,7 @@ void arena_rewind(Arena* arena, AllocatorSP save_point) {
SSIZE new_pos = big_pos - curr->base_pos;
assert(new_pos <= curr->pos);
curr->pos = new_pos;
varena_rewind(curr->backing, (AllocatorSP){varena_allocator_proc, curr->pos});
varena_rewind(curr->backing, (AllocatorSP){varena_allocator_proc, curr->pos + sizeof(VArena)});
}
inline AllocatorSP arena_save(Arena* arena) { return (AllocatorSP){arena_allocator_proc, arena->base_pos + arena->current->pos}; };
void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
@@ -1251,11 +1295,59 @@ void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
case AllocatorOp_Reset:
arena_reset(arena);
break;
case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero:
case AllocatorOp_Shrink:
assert_msg(false, "not implemented");
case AllocatorOp_Grow_NoZero: {
Arena* active = arena->current;
Byte* alloc_end = in.old_allocation.ptr + in.old_allocation.len;
Byte* arena_end = cast(Byte*, active) + active->pos;
if (alloc_end == arena_end)
{
SSIZE grow_amount = in.requested_size - in.old_allocation.len;
SSIZE aligned_grow = align_pow2(grow_amount, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
if (active->pos + aligned_grow <= active->backing->reserve)
{
Slice_Byte vresult = varena_push_array(active->backing, Byte, aligned_grow, .alignment = in.alignment);
if (vresult.ptr != nullptr)
{
active->pos += aligned_grow;
out->allocation = (Slice_Byte){in.old_allocation.ptr, in.requested_size};
out->continuity_break = false;
memory_zero(in.old_allocation.ptr + in.old_allocation.len, grow_amount * (cast(SSIZE, in.op) - AllocatorOp_Grow_NoZero));
break;
}
}
}
Slice_Byte new_alloc = arena__push(arena, in.requested_size, 1, &(Opts_arena){.alignment = in.alignment});
if (new_alloc.ptr == nullptr) {
out->allocation = (Slice_Byte){0};
break;
}
memory_copy(new_alloc.ptr, in.old_allocation.ptr, in.old_allocation.len);
memory_zero(new_alloc.ptr + in.old_allocation.len, (in.requested_size - in.old_allocation.len) * (cast(SSIZE, in.op) - AllocatorOp_Grow_NoZero) );
out->allocation = new_alloc;
out->continuity_break = true;
}
break;
case AllocatorOp_Shrink: {
Arena* active = arena->current;
Byte* alloc_end = in.old_allocation.ptr + in.old_allocation.len;
Byte* arena_end = cast(Byte*, active) + active->pos;
if (alloc_end != arena_end) {
out->allocation = (Slice_Byte){in.old_allocation.ptr, in.requested_size};
break;
}
//SSIZE shrink_amount = in.old_allocation.len - in.requested_size;
SSIZE aligned_original = align_pow2(in.old_allocation.len, MEMORY_ALIGNMENT_DEFAULT);
SSIZE aligned_new = align_pow2(in.requested_size, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
SSIZE pos_reduction = aligned_original - aligned_new;
active->pos -= pos_reduction;
varena__shrink(active->backing, in.old_allocation, in.requested_size, &(Opts_varena){.alignment = in.alignment});
out->allocation = (Slice_Byte){in.old_allocation.ptr, in.requested_size};
}
break;
case AllocatorOp_Rewind:
arena_rewind(arena, * cast(AllocatorSP*, in.old_allocation.ptr));
break;
@@ -1266,7 +1358,7 @@ void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
case AllocatorOp_Query:
out->features =
AllocatorQuery_Alloc
// | AllocatorQuery_Resize
| AllocatorQuery_Resize
| AllocatorQuery_Reset
| AllocatorQuery_Rewind
;
@@ -1286,20 +1378,20 @@ SSIZE kt1l__populate_slice_a2(KT1L_Byte* kt, KT1L_Info info, Slice_Byte values,
slice_assert(* kt);
SSIZE num_bytes = 0;
for (range_iter(SSIZE, iter, 0, <, num_values)) {
SSIZE slot_offset = iter.cursor * info.slot_size;
Byte* slot_cursor = & kt->ptr[slot_offset];
Byte* a2_cursor = & values.ptr[iter.cursor * info.type_width * 2];
SSIZE slot_offset = iter.cursor * info.slot_size;
Byte* slot_cursor = & kt->ptr[slot_offset];
Byte* a2_cursor = & values.ptr[iter.cursor * info.type_width * 2];
U64* slot_key = (U64*)slot_cursor;
Slice_Byte slot_value = { slot_cursor + info.kt_value_offset, info.type_width };
U64* slot_key = (U64*)slot_cursor;
Slice_Byte slot_value = { slot_cursor + info.kt_value_offset, info.type_width };
Slice_Byte a2_key = { a2_cursor, info.type_width };
Slice_Byte a2_value = { a2_cursor + info.type_width, info.type_width };
slice_copy(slot_value, a2_value);
Slice_Byte a2_key = { a2_cursor, info.type_width };
Slice_Byte a2_value = { a2_cursor + info.type_width, info.type_width };
slice_copy(slot_value, a2_value);
* slot_key = 0; hash64_djb8(slot_key, a2_key);
num_bytes += slot_value.len;
}
}
kt->len = num_values;
return num_bytes;
}
@@ -1320,9 +1412,9 @@ void kt1cx__init(KT1CX_Info info, KT1CX_Byte* result) {
result->table.len = info.table_size;
}
void kt1cx__clear(KT1CX_Byte kt, KT1CX_ByteMeta m) {
Byte* cursor = kt.table.ptr;
Byte* cursor = kt.table.ptr;
SSIZE num_cells = kt.table.len;
kt.table.len *= m.cell_size;
kt.table.len *= m.cell_size;
for (; cursor != slice_end(kt.table); cursor += m.cell_size )
{
Slice_Byte cell = {cursor, m.cell_size};
@@ -1347,7 +1439,7 @@ U64 kt1cx__slot_id(KT1CX_Byte kt, U64 key, KT1CX_ByteMeta m) {
U64 hash_index = key % cast(U64, kt.table.len * m.cell_size);
return hash_index;
}
Slice_Byte kt1cx__get(KT1CX_Byte kt, U64 key, KT1CX_ByteMeta m) {
Byte* kt1cx__get(KT1CX_Byte kt, U64 key, KT1CX_ByteMeta m) {
U64 hash_index = kt1cx__slot_id(kt, key, m);
Slice_Byte cell = { & kt.table.ptr[hash_index], m.cell_size};
{
@@ -1357,8 +1449,8 @@ Slice_Byte kt1cx__get(KT1CX_Byte kt, U64 key, KT1CX_ByteMeta m) {
process_slots:
KT1CX_Byte_Slot* slot = cast(KT1CX_Byte_Slot*, slot_cursor + m.slot_key_offset);
if (slot->occupied && slot->key == key) {
Slice_Byte slot_value = {slot_cursor, m.type_width};
return slot_value;
//Slice_Byte slot_value = {slot_cursor, m.type_width};
return slot_cursor;
}
}
Byte* slot_next = slot_cursor + m.cell_next_offset;
@@ -1368,13 +1460,13 @@ Slice_Byte kt1cx__get(KT1CX_Byte kt, U64 key, KT1CX_ByteMeta m) {
goto process_slots;
}
else {
return (Slice_Byte){0};
return nullptr;
}
}
}
Slice_Byte kt1cx__set(KT1CX_Byte kt, U64 key, Slice_Byte value, AllocatorInfo backing_cells, KT1CX_ByteMeta m) {
U64 hash_index = kt1cx__slot_id(kt, key, m);
Slice_Byte cell = { & kt.table.ptr[hash_index], m.cell_size};
Byte* kt1cx__set(KT1CX_Byte kt, U64 key, Slice_Byte value, AllocatorInfo backing_cells, KT1CX_ByteMeta m) {
U64 hash_index = kt1cx__slot_id(kt, key, m);
Slice_Byte cell = { & kt.table.ptr[hash_index], m.cell_size};
{
Slice_Byte slots = {cell.ptr, m.cell_depth * m.slot_size};
Byte* slot_cursor = slots.ptr;
@@ -1384,12 +1476,12 @@ Slice_Byte kt1cx__set(KT1CX_Byte kt, U64 key, Slice_Byte value, AllocatorInfo ba
if (slot->occupied == false) {
slot->occupied = true;
slot->key = key;
Slice_Byte slot_value = {slot_cursor, m.type_width};
return slot_value;
//Slice_Byte slot_value = {slot_cursor, m.type_width};
return slot_cursor;
}
else if (slot->key == key) {
Slice_Byte slot_value = {slot_cursor, m.type_width};
return slot_value;
//Slice_Byte slot_value = {slot_cursor, m.type_width};
return slot_cursor;
}
}
KT1CX_Byte_Cell curr_cell = { slot_cursor + m.cell_next_offset };
@@ -1405,12 +1497,12 @@ Slice_Byte kt1cx__set(KT1CX_Byte kt, U64 key, Slice_Byte value, AllocatorInfo ba
KT1CX_Byte_Slot* slot = cast(KT1CX_Byte_Slot*, new_cell.ptr + m.slot_key_offset);
slot->occupied = true;
slot->key = key;
Slice_Byte slot_value = {new_cell.ptr, m.type_width};
return slot_value;
//Slice_Byte slot_value = {new_cell.ptr, m.type_width};
return new_cell.ptr;
}
}
assert_msg(false, "impossible path");
return (Slice_Byte){0};
return nullptr;
}
#pragma endregion Key Table
@@ -1418,9 +1510,9 @@ Slice_Byte kt1cx__set(KT1CX_Byte kt, U64 key, Slice_Byte value, AllocatorInfo ba
inline
char* str8_to_cstr_capped(Str8 content, Slice_Byte mem) {
SSIZE copy_len = min(content.len, mem.len - 1);
memory_copy(mem.ptr, content.ptr, copy_len);
mem.ptr[copy_len] = '\0';
return cast(char*, mem.ptr);
memory_copy(mem.ptr, content.ptr, copy_len);
mem.ptr[copy_len] = '\0';
return cast(char*, mem.ptr);
}
Str8 str8_from_u32(AllocatorInfo ainfo, U32 num, U32 radix, U8 min_digits, U8 digit_group_separator)
{
@@ -1513,7 +1605,7 @@ Str8 str8__fmt_kt1l(AllocatorInfo ainfo, Slice_Byte buffer, KT1L_Str8 table, Str
{
// Forward until we hit the delimiter '<' or the template's contents are exhausted.
while (curr_code && curr_code != '<' && cursor_fmt != slice_end(fmt_template)) {
* cursor_buffer = * cursor_fmt;
* cursor_buffer = * cursor_fmt;
++ cursor_buffer;
++ cursor_fmt;
-- buffer_remaining;
@@ -1554,7 +1646,7 @@ Str8 str8__fmt_kt1l(AllocatorInfo ainfo, Slice_Byte buffer, KT1L_Str8 table, Str
U8* cursor_value = value->ptr;
while (left && buffer_remaining) {
* cursor_buffer = * cursor_value;
* cursor_buffer = * cursor_value;
++ cursor_buffer;
++ cursor_value;
-- buffer_remaining;
@@ -1566,7 +1658,7 @@ Str8 str8__fmt_kt1l(AllocatorInfo ainfo, Slice_Byte buffer, KT1L_Str8 table, Str
left_fmt -= potential_token_length + 2; // The 2 here are the '<' & '>' delimiters being omitted.
continue;
}
* cursor_buffer = * cursor_fmt;
* cursor_buffer = * cursor_fmt;
++ cursor_buffer;
++ cursor_fmt;
-- buffer_remaining;
@@ -1579,7 +1671,7 @@ Str8 str8__fmt_kt1l(AllocatorInfo ainfo, Slice_Byte buffer, KT1L_Str8 table, Str
}
inline
Str8 str8__fmt_backed(AllocatorInfo tbl_backing, AllocatorInfo buf_backing, Str8 fmt_template, Slice_A2_Str8* entries) {
KT1L_Str8 kt; SSIZE num_bytes = kt1l_populate_slice_a2(Str8, kt, tbl_backing, *entries );
KT1L_Str8 kt; SSIZE num_bytes = kt1l_populate_slice_a2(Str8, & kt, tbl_backing, *entries );
SSIZE buf_size = fmt_template.len + num_bytes; buf_size = buf_size > kilo(16) ? buf_size : kilo(16);
Slice_Byte buffer = mem_alloc(buf_backing, buf_size);
Str8 result = str8__fmt_kt1l(buf_backing, buffer, kt, fmt_template);
@@ -1588,7 +1680,7 @@ Str8 str8__fmt_backed(AllocatorInfo tbl_backing, AllocatorInfo buf_backing, Str8
Str8 str8__fmt(Str8 fmt_template, Slice_A2_Str8* entries) {
local_persist Byte tbl_mem[kilo(32)]; FArena tbl_arena = farena_make(slice_fmem(tbl_mem));
local_persist Byte buf_mem[kilo(128)];
KT1L_Str8 kt = {0}; kt1l_populate_slice_a2(Str8, kt, ainfo_farena(tbl_arena), *entries );
KT1L_Str8 kt = {0}; kt1l_populate_slice_a2(Str8, & kt, ainfo_farena(tbl_arena), *entries );
Str8 result = str8__fmt_kt1l((AllocatorInfo){0}, slice_fmem(buf_mem), kt, fmt_template);
return result;
}
@@ -1634,9 +1726,9 @@ void str8cache_clear(KT1CX_Str8 kt) {
});
}
inline
Str8 str8cache_get(KT1CX_Str8 kt, U64 key) {
Str8* str8cache_get(KT1CX_Str8 kt, U64 key) {
kt1cx_assert(kt);
Slice_Byte result = kt1cx__get(kt1cx_byte(kt), key
Byte* result = kt1cx__get(kt1cx_byte(kt), key
, (KT1CX_ByteMeta){
.slot_size = size_of(KT1CX_Slot_Str8),
.slot_key_offset = offset_of(KT1CX_Slot_Str8, key),
@@ -1646,15 +1738,15 @@ Str8 str8cache_get(KT1CX_Str8 kt, U64 key) {
.type_width = size_of(Str8),
.type_name = lit(stringify(Str8))
});
return pcast(Str8, result);
return cast(Str8*, result);
}
inline
Str8 str8cache_set(KT1CX_Str8 kt, U64 key, Str8 value, AllocatorInfo str_reserve, AllocatorInfo backing_cells) {
Str8* str8cache_set(KT1CX_Str8 kt, U64 key, Str8 value, AllocatorInfo str_reserve, AllocatorInfo backing_cells) {
kt1cx_assert(kt);
slice_assert(value);
assert(str_reserve.proc != nullptr);
assert(backing_cells.proc != nullptr);
Slice_Byte entry = kt1cx__set(kt1cx_byte(kt), key, slice_byte(value), backing_cells, (KT1CX_ByteMeta){
Byte* entry = kt1cx__set(kt1cx_byte(kt), key, slice_byte(value), backing_cells, (KT1CX_ByteMeta){
.slot_size = size_of(KT1CX_Slot_Str8),
.slot_key_offset = offset_of(KT1CX_Slot_Str8, key),
.cell_next_offset = offset_of(KT1CX_Cell_Str8, next),
@@ -1663,21 +1755,21 @@ Str8 str8cache_set(KT1CX_Str8 kt, U64 key, Str8 value, AllocatorInfo str_reserve
.type_width = size_of(Str8),
.type_name = lit(stringify(Str8))
});
slice_assert(entry);
Str8* result = pcast(Str8*, entry.ptr);
assert(entry != nullptr);
Str8* result = pcast(Str8*, entry);
B32 is_empty = (result->len == 0);
if (is_empty) {
* result = alloc_slice(str_reserve, UTF8, value.len);
slice_copy(* result, value);
}
return * result;
return result;
}
inline
Str8 cache_str8(Str8Cache* cache, Str8 str) {
assert(cache != nullptr);
U64 key = 0; hash64_djb8(& key, slice_byte(str));
Str8 result = str8cache_set(cache->kt, key, str, cache->str_reserve, cache->cell_reserve);
return result;
Str8* result = str8cache_set(cache->kt, key, str, cache->str_reserve, cache->cell_reserve);
return * result;
}
inline
@@ -1701,7 +1793,7 @@ void str8gen_append_str8(Str8Gen* gen, Str8 str){
}
void str8gen__append_fmt(Str8Gen* gen, Str8 fmt_template, Slice_A2_Str8* entries){
local_persist Byte tbl_mem[kilo(32)]; FArena tbl_arena = farena_make(slice_fmem(tbl_mem));
KT1L_Str8 kt = {0}; kt1l_populate_slice_a2(Str8, kt, ainfo_farena(tbl_arena), *entries );
KT1L_Str8 kt = {0}; kt1l_populate_slice_a2(Str8, & kt, ainfo_farena(tbl_arena), *entries );
Slice_Byte buffer = { gen->ptr + gen->len, gen->cap - gen->len };
if (buffer.len < kilo(16)) {
Slice_Byte result = mem_grow(gen->backing, str8gen_slice_byte(* gen), kilo(16) + gen->cap );
@@ -1852,9 +1944,9 @@ void file_write_str8(Str8 path, Str8 content)
#define MS_CRT_INTERNAL_LOCAL_PRINTF_OPTIONS (*__local_stdio_printf_options())
#define MS_stderr (__acrt_iob_func(2))
#define MS__crt_va_start_a(ap, x) ((void)(__va_start(&ap, x)))
#define MS__crt_va_arg(ap, t) \
#define MS__crt_va_arg(ap, t) \
((sizeof(t) > sizeof(__int64) || (sizeof(t) & (sizeof(t) - 1)) != 0) \
? **(t**)((ap += sizeof(__int64)) - sizeof(__int64)) \
? **(t**)((ap += sizeof(__int64)) - sizeof(__int64)) \
: *(t* )((ap += sizeof(__int64)) - sizeof(__int64)))
#define MS__crt_va_end(ap) ((void)(ap = (va_list)0))
#define va_start(ap, x) MS__crt_va_start_a(ap, x)
@@ -2039,10 +2131,10 @@ void api_watl_parse(WATL_ParseInfo* info, Slice_WATL_Tok tokens, Opts_watl_parse
default:
break;
}
* curr = cache_str8(opts->str_cache, * token);
curr = alloc_type(opts->ainfo_nodes, WATL_Node);
* curr = (WATL_Node){0};
line->len += 1;
* curr = cache_str8(opts->str_cache, * token);
curr = alloc_type(opts->ainfo_nodes, WATL_Node);
* curr = (WATL_Node){0};
line->len += 1;
continue;
}
AllocatorQueryInfo end_lines_snapshot = allocator_query(opts->ainfo_lines);