Compare commits
9 Commits
0f621b4e1b
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
| a0ddc3c26e | |||
| 2303866c81 | |||
| 96c6d58ea0 | |||
| f63b52f910 | |||
| 6d5215ac1e | |||
| 1e18592ff5 | |||
| 43141183a6 | |||
| 0607d81f70 | |||
| 58ba273dd1 |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -35,3 +35,4 @@ ols.json
|
||||
*.spall
|
||||
sectr.user
|
||||
sectr.proj
|
||||
.idea
|
||||
|
||||
46
Readme.md
46
Readme.md
@@ -2,7 +2,10 @@
|
||||
|
||||
This prototype aims to flesh out ideas I've wanted to explore futher on code editing & related tooling.
|
||||
|
||||
The things to explore:
|
||||
Current goal with the prototype is just making a good visualizer & note aggregation for codebases & libraries.
|
||||
My note repos with affine links give an idea of what that would look like.
|
||||
|
||||
The things to explore (future):
|
||||
|
||||
* 2D canvas for laying out code visualized in various types of ASTs
|
||||
* WYSIWYG frontend ASTs
|
||||
@@ -28,55 +31,14 @@ The dependencies are:
|
||||
* [sokol-odin (Sectr Fork)](https://github.com/Ed94/sokol-odin)
|
||||
* [sokol-tools](https://github.com/floooh/sokol-tools)
|
||||
* Powershell (if you want to use my build scripts)
|
||||
* backtrace (not used yet)
|
||||
* freetype (not used yet)
|
||||
* Eventually some config parser (maybe I'll use metadesk, or [ini](https://github.com/laytan/odin-ini-parser))
|
||||
|
||||
The project is so far in a "codebase boostrapping" phase. Most the work being done right now is setting up high performance linear zoom rendering for text and UI.
|
||||
Text has recently hit sufficient peformance targets, and now inital UX has become the focus.
|
||||
|
||||
The project's is organized into 2 runtime modules sectr_host & sectr.
|
||||
The host module loads the main module & its memory. Hot-reloading it's dll when it detects a change.
|
||||
|
||||
Codebase organization:
|
||||
|
||||
* App: General app config, state, and operations.
|
||||
* Engine: client interface for host, tick, update, rendering.
|
||||
* Has the following definitions: startup, shutdown, reload, tick, clean_frame (which host hooks up to when managing the client dll)
|
||||
* Will handle async ops.
|
||||
* Font Provider: Manages fonts.
|
||||
* Bulk of implementation maintained as a separate library: [VEFontCache-Odin](https://github.com/Ed94/VEFontCache-Odin)
|
||||
* Grime: Name speaks for itself, stuff not directly related to the target features to iterate upon for the prototype.
|
||||
* Defining dependency aliases or procedure overload tables, rolling own allocator, data structures, etc.
|
||||
* Input: All human input related features
|
||||
* Base input features (polling & related) are platform abstracted from sokol_app
|
||||
* Entirely user rebindable
|
||||
* Math: The usual for 2D/3D.
|
||||
* Parsers:
|
||||
* AST generation, editing, and serialization.
|
||||
* Parsers for different levels of "synatitic & semantic awareness", Formatting -> Domain Specific AST
|
||||
* Figure out pragmatic transformations between ASTs.
|
||||
* Project: Encpasulation of user config/context/state separate from persistent app's
|
||||
* Manages the codebase (database & model view controller)
|
||||
* Manages workspaces : View compositions of the codebase
|
||||
* UI: Core graphic user interface framework, AST visualzation & editing, backend visualization
|
||||
* PIMGUI (Persistent Immediate Mode User Interface)
|
||||
* Auto-layout
|
||||
* Supports heavy procedural generation of box widgets
|
||||
* Viewports
|
||||
* Docking/Tiling, Floating, Canvas
|
||||
|
||||
Due to the nature of the prototype there are 'sub-groups' such as the codebase being its own ordeal as well as the workspace.
|
||||
They'll be elaborated in their own documentation
|
||||
|
||||
## Gallery
|
||||
|
||||

|
||||

|
||||

|
||||

|
||||

|
||||

|
||||
|
||||
## Notes
|
||||
|
||||
|
||||
@@ -115,8 +115,8 @@ AllocatorInfo :: struct {
|
||||
// Listing of every single allocator (used on hot-reloadable builds)
|
||||
AllocatorProcID :: enum uintptr {
|
||||
FArena,
|
||||
// VArena,
|
||||
// CArena,
|
||||
VArena,
|
||||
Arena,
|
||||
// Pool,
|
||||
// Slab,
|
||||
// Odin_Arena,
|
||||
@@ -127,8 +127,8 @@ resolve_allocator_proc :: #force_inline proc "contextless" (procedure: $Allocato
|
||||
when ODIN_DEBUG {
|
||||
switch (transmute(AllocatorProcID)procedure) {
|
||||
case .FArena: return farena_allocator_proc
|
||||
// case .VArena: return varena_allocaotr_proc
|
||||
// case .CArena: return carena_allocator_proc
|
||||
case .VArena: return varena_allocator_proc
|
||||
case .Arena: return arena_allocator_proc
|
||||
// case .Pool: return pool_allocator_proc
|
||||
// case .Slab: return slab_allocator_proc
|
||||
// case .Odin_Arena: return odin_arena_allocator_proc
|
||||
@@ -145,8 +145,8 @@ resolve_odin_allocator :: #force_inline proc "contextless" (allocator: Odin_Allo
|
||||
when ODIN_DEBUG {
|
||||
switch (transmute(AllocatorProcID)allocator.procedure) {
|
||||
case .FArena: return { farena_odin_allocator_proc, allocator.data }
|
||||
// case .VArena: return { varena_odin_allocaotr_proc, allocator.data }
|
||||
// case .CArena: return { carena_odin_allocator_proc, allocator.data }
|
||||
case .VArena: return { varena_odin_allocator_proc, allocator.data }
|
||||
case .Arena: return { arena_odin_allocator_proc, allocator.data }
|
||||
// case .Pool: return nil // pool_allocator_proc
|
||||
// case .Slab: return nil // slab_allocator_proc
|
||||
// case .Odin_Arena: return nil // odin_arena_allocator_proc
|
||||
@@ -157,7 +157,7 @@ resolve_odin_allocator :: #force_inline proc "contextless" (allocator: Odin_Allo
|
||||
switch (allocator.procedure) {
|
||||
case farena_allocator_proc: return { farena_odin_allocator_proc, allocator.data }
|
||||
case varena_allocator_proc: return { varena_odin_allocator_proc, allocator.data }
|
||||
case carena_allocator_proc: return { carena_odin_allocator_proc, allocator.data }
|
||||
case arena_allocator_proc: return { arena_odin_allocator_proc, allocator.data }
|
||||
}
|
||||
}
|
||||
panic_contextless("Unresolvable procedure")
|
||||
@@ -177,6 +177,7 @@ odin_allocator_mode_to_allocator_op :: #force_inline proc "contextless" (mode: O
|
||||
panic_contextless("Impossible path")
|
||||
}
|
||||
|
||||
// TODO(Ed): Change to DEFAULT_ALIGNMENT
|
||||
MEMORY_ALIGNMENT_DEFAULT :: 2 * size_of(rawptr)
|
||||
|
||||
allocatorinfo :: #force_inline proc(ainfo := context.allocator) -> AllocatorInfo { return transmute(AllocatorInfo) ainfo }
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
package grime
|
||||
|
||||
// Below should be defined per-package
|
||||
// TODO(Ed): Below should be defined per-package?
|
||||
|
||||
ensure :: #force_inline proc(condition: bool, msg: string, location := #caller_location) -> bool {
|
||||
if condition do return true
|
||||
|
||||
@@ -128,7 +128,7 @@ array_append_value :: proc(self: ^Array($Type), value: Type) -> AllocatorError {
|
||||
|
||||
// Asumes non-overlapping for items.
|
||||
array_append_at_slice :: proc(self : ^Array($Type ), items: []Type, id: int) -> AllocatorError {
|
||||
ensure(id < self.num, "Why are we doing an append at beyond the bounds of the current element count")
|
||||
assert(id < self.num, "Why are we doing an append at beyond the bounds of the current element count")
|
||||
id := id
|
||||
if id >= self.num { return array_append_slice(items) }
|
||||
if len(items) > self.capacity {
|
||||
@@ -143,7 +143,7 @@ array_append_at_slice :: proc(self : ^Array($Type ), items: []Type, id: int) ->
|
||||
return AllocatorError.None
|
||||
}
|
||||
array_append_at_value :: proc(self: ^Array($Type), item: Type, id: int) -> AllocatorError {
|
||||
ensure(id < self.num, "Why are we doing an append at beyond the bounds of the current element count")
|
||||
assert(id < self.num, "Why are we doing an append at beyond the bounds of the current element count")
|
||||
id := id; {
|
||||
// TODO(Ed): Not sure I want this...
|
||||
if id >= self.num do id = self.num
|
||||
@@ -167,8 +167,8 @@ array_clear :: #force_inline proc "contextless" (self: Array($Type), zero_data:
|
||||
}
|
||||
|
||||
array_fill :: proc(self: Array($Type), begin, end: u64, value: Type) -> bool {
|
||||
ensure(end - begin <= num)
|
||||
ensure(end <= num)
|
||||
assert(end - begin <= num)
|
||||
assert(end <= num)
|
||||
if (end - begin > num) || (end > num) do return false
|
||||
mem_fill(data[begin:], value, end - begin)
|
||||
return true
|
||||
@@ -183,7 +183,7 @@ array_push_back :: #force_inline proc "contextless" (self: Array($Type)) -> bool
|
||||
}
|
||||
|
||||
array_remove_at :: proc(self: Array($Type), id: int) {
|
||||
verify( id < self.num, "Attempted to remove from an index larger than the array" )
|
||||
assert( id < self.num, "Attempted to remove from an index larger than the array" )
|
||||
mem_copy(self.data[id:], self.data[id + 1:], (self.num - id) * size_of(Type))
|
||||
self.num -= 1
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
package grime
|
||||
// TODO(Ed): Review when os2 is done.
|
||||
|
||||
// TODO(Ed): Make an async option...
|
||||
// TODO(Ed): Make an async option?
|
||||
file_copy_sync :: proc( path_src, path_dst: string, allocator := context.allocator ) -> b32
|
||||
{
|
||||
file_size : i64
|
||||
|
||||
29
code2/grime/fixed_stack.odin
Normal file
29
code2/grime/fixed_stack.odin
Normal file
@@ -0,0 +1,29 @@
|
||||
package grime
|
||||
|
||||
FStack :: struct ($Type: typeid, $Size: u32) {
|
||||
items: [Size]Type,
|
||||
idx: u32,
|
||||
}
|
||||
stack_clear :: #force_inline proc "contextless" (stack: ^FStack($Type, $Size)) { stack.idx = 0 }
|
||||
stack_push :: #force_inline proc "contextless" (stack: ^FStack($Type, $Size ), value: Type) {
|
||||
assert_contextless(stack.idx < u32(len( stack.items )), "Attempted to push on a full stack")
|
||||
stack.items[stack.idx] = value
|
||||
stack.idx += 1
|
||||
}
|
||||
stack_pop :: #force_inline proc "contextless" (stack: ^FStack($Type, $Size)) {
|
||||
assert(stack.idx > 0, "Attempted to pop an empty stack")
|
||||
stack.idx -= 1
|
||||
if stack.idx == 0 {
|
||||
stack.items[stack.idx] = {}
|
||||
}
|
||||
}
|
||||
stack_peek_ref :: #force_inline proc "contextless" (s: ^FStack($Type, $Size)) -> (^Type) {
|
||||
return & s.items[/*last_idx*/ max( 0, s.idx - 1 )]
|
||||
}
|
||||
stack_peek :: #force_inline proc "contextless" (s: ^FStack($Type, $Size)) -> Type {
|
||||
return s.items[/*last_idx*/ max( 0, s.idx - 1 )]
|
||||
}
|
||||
stack_push_contextless :: #force_inline proc "contextless" (s: ^FStack($Type, $Size), value: Type) {
|
||||
s.items[s.idx] = value
|
||||
s.idx += 1
|
||||
}
|
||||
@@ -1,9 +1,20 @@
|
||||
package grime
|
||||
|
||||
hash32_djb8 :: #force_inline proc "contextless" ( hash : ^u32, bytes : []byte ) {
|
||||
hash32_djb8 :: #force_inline proc "contextless" (hash: ^u32, bytes: []byte ) {
|
||||
for value in bytes do (hash^) = (( (hash^) << 8) + (hash^) ) + u32(value)
|
||||
}
|
||||
|
||||
hash64_djb8 :: #force_inline proc "contextless" ( hash : ^u64, bytes : []byte ) {
|
||||
hash64_djb8 :: #force_inline proc "contextless" (hash: ^u64, bytes: []byte ) {
|
||||
for value in bytes do (hash^) = (( (hash^) << 8) + (hash^) ) + u64(value)
|
||||
}
|
||||
|
||||
// Ripped from core:hash, fnv32a
|
||||
@(optimization_mode="favor_size")
|
||||
hash32_fnv1a :: #force_inline proc "contextless" (hash: ^u32, data: []byte, seed := u32(0x811c9dc5)) {
|
||||
hash^ = seed; for b in data { hash^ = (hash^ ~ u32(b)) * 0x01000193 }
|
||||
}
|
||||
// Ripped from core:hash, fnv64a
|
||||
@(optimization_mode="favor_size")
|
||||
hash64_fnv1a :: #force_inline proc "contextless" (hash: ^u64, data: []byte, seed := u64(0xcbf29ce484222325)) {
|
||||
hash^ = seed; for b in data { hash^ = (hash^ ~ u64(b)) * 0x100000001b3 }
|
||||
}
|
||||
|
||||
@@ -1,164 +0,0 @@
|
||||
package grime
|
||||
|
||||
import "base:intrinsics"
|
||||
|
||||
/*
|
||||
Key Table 1-Layer Chained-Chunked-Cells
|
||||
*/
|
||||
|
||||
KT1CX_Slot :: struct($type: typeid) {
|
||||
value: type,
|
||||
key: u64,
|
||||
occupied: b32,
|
||||
}
|
||||
KT1CX_Cell :: struct($type: typeid, $depth: int) {
|
||||
slots: [depth]KT1CX_Slot(type),
|
||||
next: ^KT1CX_Cell(type, depth),
|
||||
}
|
||||
KT1CX :: struct($cell: typeid) {
|
||||
table: []cell,
|
||||
}
|
||||
KT1CX_Byte_Slot :: struct {
|
||||
key: u64,
|
||||
occupied: b32,
|
||||
}
|
||||
KT1CX_Byte_Cell :: struct {
|
||||
next: ^byte,
|
||||
}
|
||||
KT1CX_Byte :: struct {
|
||||
table: []byte,
|
||||
}
|
||||
KT1CX_ByteMeta :: struct {
|
||||
slot_size: int,
|
||||
slot_key_offset: uintptr,
|
||||
cell_next_offset: uintptr,
|
||||
cell_depth: int,
|
||||
cell_size: int,
|
||||
type_width: int,
|
||||
type: typeid,
|
||||
}
|
||||
KT1CX_InfoMeta :: struct {
|
||||
table_size: int,
|
||||
slot_size: int,
|
||||
slot_key_offset: uintptr,
|
||||
cell_next_offset: uintptr,
|
||||
cell_depth: int,
|
||||
cell_size: int,
|
||||
type_width: int,
|
||||
type: typeid,
|
||||
}
|
||||
KT1CX_Info :: struct {
|
||||
backing_table: AllocatorInfo,
|
||||
}
|
||||
kt1cx_init :: proc(info: KT1CX_Info, m: KT1CX_InfoMeta, result: ^KT1CX_Byte) {
|
||||
assert(result != nil)
|
||||
assert(info.backing_table.procedure != nil)
|
||||
assert(m.cell_depth > 0)
|
||||
assert(m.table_size >= 4 * Kilo)
|
||||
assert(m.type_width > 0)
|
||||
table_raw, error := mem_alloc(m.table_size * m.cell_size, ainfo = allocator(info.backing_table))
|
||||
assert(error == .None); slice_assert(transmute([]byte) table_raw)
|
||||
(transmute(^SliceByte) & table_raw).len = m.table_size
|
||||
result.table = table_raw
|
||||
}
|
||||
kt1cx_clear :: proc(kt: KT1CX_Byte, m: KT1CX_ByteMeta) {
|
||||
cell_cursor := cursor(kt.table)
|
||||
table_len := len(kt.table) * m.cell_size
|
||||
for ; cell_cursor != end(kt.table); cell_cursor = cell_cursor[m.cell_size:] // for cell, cell_id in kt.table.cells
|
||||
{
|
||||
slots := SliceByte { cell_cursor, m.cell_depth * m.slot_size } // slots = cell.slots
|
||||
slot_cursor := slots.data
|
||||
for;; {
|
||||
slot := slice(slot_cursor, m.slot_size) // slot = slots[slot_id]
|
||||
zero(slot) // slot = {}
|
||||
if slot_cursor == end(slots) { // if slot == end(slot)
|
||||
next := slot_cursor[m.cell_next_offset:] // next = kt.table.cells[cell_id + 1]
|
||||
if next != nil { // if next != nil
|
||||
slots.data = next // slots = next.slots
|
||||
slot_cursor = next
|
||||
continue
|
||||
}
|
||||
}
|
||||
slot_cursor = slot_cursor[m.slot_size:] // slot = slots[slot_id + 1]
|
||||
}
|
||||
}
|
||||
}
|
||||
kt1cx_slot_id :: proc(kt: KT1CX_Byte, key: u64, m: KT1CX_ByteMeta) -> u64 {
|
||||
cell_size := m.cell_size // dummy value
|
||||
hash_index := key % u64(len(kt.table))
|
||||
return hash_index
|
||||
}
|
||||
kt1cx_get :: proc(kt: KT1CX_Byte, key: u64, m: KT1CX_ByteMeta) -> ^byte {
|
||||
hash_index := kt1cx_slot_id(kt, key, m)
|
||||
cell_offset := uintptr(hash_index) * uintptr(m.cell_size)
|
||||
cell_cursor := cursor(kt.table)[cell_offset:] // cell_id = 0
|
||||
{
|
||||
slots := slice(cell_cursor, m.cell_depth * m.slot_size) // slots = cell[cell_id].slots
|
||||
slot_cursor := cell_cursor // slot_id = 0
|
||||
for;;
|
||||
{
|
||||
slot := transmute(^KT1CX_Byte_Slot) slot_cursor[m.slot_key_offset:] // slot = cell[slot_id]
|
||||
if slot.occupied && slot.key == key {
|
||||
return cast(^byte) slot_cursor
|
||||
}
|
||||
if slot_cursor == end(slots)
|
||||
{
|
||||
cell_next := cell_cursor[m.cell_next_offset:] // cell.next
|
||||
if cell_next != nil {
|
||||
slots = slice(cell_next, len(slots)) // slots = cell.next
|
||||
slot_cursor = cell_next
|
||||
cell_cursor = cell_next // cell = cell.next
|
||||
continue
|
||||
}
|
||||
else {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
slot_cursor = slot_cursor[m.slot_size:]
|
||||
}
|
||||
}
|
||||
}
|
||||
kt1cx_set :: proc(kt: KT1CX_Byte, key: u64, value: []byte, backing_cells: Odin_Allocator, m: KT1CX_ByteMeta) -> ^byte {
|
||||
hash_index := kt1cx_slot_id(kt, key, m)
|
||||
cell_offset := uintptr(hash_index) * uintptr(m.cell_size)
|
||||
cell_cursor := cursor(kt.table)[cell_offset:] // KT1CX_Cell(Type) cell = kt.table[hash_index]
|
||||
{
|
||||
slots := SliceByte {cell_cursor, m.cell_depth * m.slot_size} // cell.slots
|
||||
slot_cursor := slots.data
|
||||
for ;;
|
||||
{
|
||||
slot := transmute(^KT1CX_Byte_Slot) slot_cursor[m.slot_key_offset:]
|
||||
if slot.occupied == false {
|
||||
slot.occupied = true
|
||||
slot.key = key
|
||||
return cast(^byte) slot_cursor
|
||||
}
|
||||
else if slot.key == key {
|
||||
return cast(^byte) slot_cursor
|
||||
}
|
||||
if slot_cursor == end(slots) {
|
||||
curr_cell := transmute(^KT1CX_Byte_Cell) (uintptr(cell_cursor) + m.cell_next_offset) // curr_cell = cell
|
||||
if curr_cell != nil {
|
||||
slots.data = curr_cell.next
|
||||
slot_cursor = curr_cell.next
|
||||
cell_cursor = curr_cell.next
|
||||
continue
|
||||
}
|
||||
else {
|
||||
new_cell, _ := mem_alloc(m.cell_size, ainfo = backing_cells)
|
||||
curr_cell.next = raw_data(new_cell)
|
||||
slot = transmute(^KT1CX_Byte_Slot) cursor(new_cell)[m.slot_key_offset:]
|
||||
slot.occupied = true
|
||||
slot.key = key
|
||||
return raw_data(new_cell)
|
||||
}
|
||||
}
|
||||
slot_cursor = slot_cursor[m.slot_size:]
|
||||
}
|
||||
return nil
|
||||
}
|
||||
}
|
||||
kt1cx_assert :: proc(kt: $type / KT1CX) {
|
||||
slice_assert(kt.table)
|
||||
}
|
||||
kt1cx_byte :: proc(kt: $type / KT1CX) -> KT1CX_Byte { return { slice( transmute([^]byte) cursor(kt.table), len(kt.table)) } }
|
||||
@@ -1,48 +0,0 @@
|
||||
package grime
|
||||
|
||||
/*
|
||||
Key Table 1-Layer Linear (KT1L)
|
||||
*/
|
||||
|
||||
KT1L_Slot :: struct($Type: typeid) {
|
||||
key: u64,
|
||||
value: Type,
|
||||
}
|
||||
KT1L_Meta :: struct {
|
||||
slot_size: uintptr,
|
||||
kt_value_offset: uintptr,
|
||||
type_width: uintptr,
|
||||
type: typeid,
|
||||
}
|
||||
kt1l_populate_slice_a2_Slice_Byte :: proc(kt: ^[]byte, backing: AllocatorInfo, values: []byte, num_values: int, m: KT1L_Meta) {
|
||||
assert(kt != nil)
|
||||
if num_values == 0 { return }
|
||||
table_size_bytes := num_values * int(m.slot_size)
|
||||
kt^, _ = mem_alloc(table_size_bytes, ainfo = transmute(Odin_Allocator) backing)
|
||||
slice_assert(kt ^)
|
||||
kt_raw : SliceByte = transmute(SliceByte) kt^
|
||||
for id in 0 ..< cast(uintptr) num_values {
|
||||
slot_offset := id * m.slot_size // slot id
|
||||
slot_cursor := kt_raw.data[slot_offset:] // slots[id] type: KT1L_<Type>
|
||||
// slot_key := transmute(^u64) slot_cursor // slots[id].key type: U64
|
||||
// slot_value := slice(slot_cursor[m.kt_value_offset:], m.type_width) // slots[id].value type: <Type>
|
||||
a2_offset := id * m.type_width * 2 // a2 entry id
|
||||
a2_cursor := cursor(values)[a2_offset:] // a2_entries[id] type: A2_<Type>
|
||||
// a2_key := (transmute(^[]byte) a2_cursor) ^ // a2_entries[id].key type: <Type>
|
||||
// a2_value := slice(a2_cursor[m.type_width:], m.type_width) // a2_entries[id].value type: <Type>
|
||||
mem_copy_non_overlapping(slot_cursor[m.kt_value_offset:], a2_cursor[m.type_width:], cast(int) m.type_width) // slots[id].value = a2_entries[id].value
|
||||
(transmute([^]u64) slot_cursor)[0] = 0;
|
||||
hash64_djb8(transmute(^u64) slot_cursor, (transmute(^[]byte) a2_cursor) ^) // slots[id].key = hash64_djb8(a2_entries[id].key)
|
||||
}
|
||||
kt_raw.len = num_values
|
||||
}
|
||||
kt1l_populate_slice_a2 :: proc($Type: typeid, kt: ^[]KT1L_Slot(Type), backing: AllocatorInfo, values: [][2]Type) {
|
||||
assert(kt != nil)
|
||||
values_bytes := slice(transmute([^]u8) raw_data(values), len(values) * size_of([2]Type))
|
||||
kt1l_populate_slice_a2_Slice_Byte(transmute(^[]byte) kt, backing, values_bytes, len(values), {
|
||||
slot_size = size_of(KT1L_Slot(Type)),
|
||||
kt_value_offset = offset_of(KT1L_Slot(Type), value),
|
||||
type_width = size_of(Type),
|
||||
type = Type,
|
||||
})
|
||||
}
|
||||
196
code2/grime/key_table_chained_chunked_cells.odin
Normal file
196
code2/grime/key_table_chained_chunked_cells.odin
Normal file
@@ -0,0 +1,196 @@
|
||||
package grime
|
||||
|
||||
import "base:intrinsics"
|
||||
|
||||
/*
|
||||
Key Table Chained-Chunked-Cells
|
||||
|
||||
Table has a cell with a user-specified depth. Each cell will be a linear search if the first slot is occupied.
|
||||
Table allocated cells are looked up by hash.
|
||||
If a cell is exhausted additional are allocated singly-chained reporting to the user when it does with a "cell_overflow" counter.
|
||||
Slots track occupacy with a tombstone (occupied signal).
|
||||
|
||||
If the table ever needs to change its size, it should be a wipe and full traversal of the arena holding the values..
|
||||
or maybe a wipe of that arena as it may no longer be accessible.
|
||||
|
||||
Has a likely-hood of having cache misses (based on reading other impls about these kind of tables).
|
||||
Odin's hash-map or Jai's are designed with open-addressing and prevent that.
|
||||
Intended to be wrapped in parent interface (such as a string cache). Keys are hashed by the table's user.
|
||||
The table is not intended to directly store the type's value in it's slots (expects the slot value to be some sort of reference).
|
||||
The value should be stored in an arena.
|
||||
|
||||
Could be upgraded two a X-layer, not sure if its ever viable.
|
||||
Would essentially be segmenting the hash to address a multi-layered table lookup.
|
||||
Where one table leads to another hash resolving id for a subtable with linear search of cells after.
|
||||
*/
|
||||
|
||||
KTCX_Slot :: struct($type: typeid) {
|
||||
value: type,
|
||||
key: u64,
|
||||
occupied: b32,
|
||||
}
|
||||
KTCX_Cell :: struct($type: typeid, $depth: int) {
|
||||
slots: [depth]KTCX_Slot(type),
|
||||
next: ^KTCX_Cell(type, depth),
|
||||
}
|
||||
KTCX :: struct($cell: typeid) {
|
||||
table: []cell,
|
||||
cell_overflow: int,
|
||||
}
|
||||
KTCX_Byte_Slot :: struct {
|
||||
key: u64,
|
||||
occupied: b32,
|
||||
}
|
||||
KTCX_Byte_Cell :: struct {
|
||||
next: ^byte,
|
||||
}
|
||||
KTCX_Byte :: struct {
|
||||
table: []byte,
|
||||
cell_overflow: int,
|
||||
}
|
||||
KTCX_ByteMeta :: struct {
|
||||
slot_size: int,
|
||||
slot_key_offset: uintptr,
|
||||
cell_next_offset: uintptr,
|
||||
cell_depth: int,
|
||||
cell_size: int,
|
||||
type_width: int,
|
||||
type: typeid,
|
||||
}
|
||||
KTCX_Info :: struct {
|
||||
table_size: int,
|
||||
slot_size: int,
|
||||
slot_key_offset: uintptr,
|
||||
cell_next_offset: uintptr,
|
||||
cell_depth: int,
|
||||
cell_size: int,
|
||||
type_width: int,
|
||||
type: typeid,
|
||||
}
|
||||
ktcx_byte :: #force_inline proc "contextless" (kt: $type / KTCX) -> KTCX_Byte { return { slice( transmute([^]byte) cursor(kt.table), len(kt.table)) } }
|
||||
|
||||
ktcx_init_byte :: proc(result: ^KTCX_Byte, tbl_backing: Odin_Allocator, m: KTCX_Info) {
|
||||
assert(result != nil)
|
||||
assert(tbl_backing.procedure != nil)
|
||||
assert(m.cell_depth > 0)
|
||||
assert(m.table_size >= 4 * Kilo)
|
||||
assert(m.type_width > 0)
|
||||
table_raw, error := mem_alloc(m.table_size * m.cell_size, ainfo = tbl_backing)
|
||||
assert(error == .None); slice_assert(transmute([]byte) table_raw)
|
||||
(transmute(^SliceByte) & table_raw).len = m.table_size
|
||||
result.table = table_raw
|
||||
}
|
||||
ktcx_clear :: proc(kt: KTCX_Byte, m: KTCX_ByteMeta) {
|
||||
cell_cursor := cursor(kt.table)
|
||||
table_len := len(kt.table) * m.cell_size
|
||||
for ; cell_cursor != end(kt.table); cell_cursor = cell_cursor[m.cell_size:] // for cell, cell_id in kt.table.cells
|
||||
{
|
||||
slots := SliceByte { cell_cursor, m.cell_depth * m.slot_size } // slots = cell.slots
|
||||
slot_cursor := slots.data
|
||||
for;; {
|
||||
slot := slice(slot_cursor, m.slot_size) // slot = slots[slot_id]
|
||||
zero(slot) // slot = {}
|
||||
if slot_cursor == end(slots) { // if slot == end(slot)
|
||||
next := slot_cursor[m.cell_next_offset:] // next = kt.table.cells[cell_id + 1]
|
||||
if next != nil { // if next != nil
|
||||
slots.data = next // slots = next.slots
|
||||
slot_cursor = next
|
||||
continue
|
||||
}
|
||||
}
|
||||
slot_cursor = slot_cursor[m.slot_size:] // slot = slots[slot_id + 1]
|
||||
}
|
||||
}
|
||||
}
|
||||
ktcx_slot_id :: #force_inline proc "contextless" (table: []byte, key: u64) -> u64 {
|
||||
return key % u64(len(table))
|
||||
}
|
||||
ktcx_get :: proc(kt: KTCX_Byte, key: u64, m: KTCX_ByteMeta) -> ^byte {
|
||||
hash_index := key % u64(len(kt.table)) // ktcx_slot_id
|
||||
cell_offset := uintptr(hash_index) * uintptr(m.cell_size)
|
||||
cell_cursor := cursor(kt.table)[cell_offset:] // cell_id = 0
|
||||
{
|
||||
slots := slice(cell_cursor, m.cell_depth * m.slot_size) // slots = cell[cell_id].slots
|
||||
slot_cursor := cell_cursor // slot_id = 0
|
||||
for;;
|
||||
{
|
||||
slot := transmute(^KTCX_Byte_Slot) slot_cursor[m.slot_key_offset:] // slot = cell[slot_id]
|
||||
if slot.occupied && slot.key == key {
|
||||
return cast(^byte) slot_cursor
|
||||
}
|
||||
if slot_cursor == end(slots)
|
||||
{
|
||||
cell_next := cell_cursor[m.cell_next_offset:] // cell.next
|
||||
if cell_next != nil {
|
||||
slots = slice(cell_next, len(slots)) // slots = cell.next
|
||||
slot_cursor = cell_next
|
||||
cell_cursor = cell_next // cell = cell.next
|
||||
continue
|
||||
}
|
||||
else {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
slot_cursor = slot_cursor[m.slot_size:]
|
||||
}
|
||||
}
|
||||
}
|
||||
ktcx_set :: proc(kt: ^KTCX_Byte, key: u64, value: []byte, backing_cells: Odin_Allocator, m: KTCX_ByteMeta) -> ^byte {
|
||||
hash_index := key % u64(len(kt.table)) // ktcx_slot_id
|
||||
cell_offset := uintptr(hash_index) * uintptr(m.cell_size)
|
||||
cell_cursor := cursor(kt.table)[cell_offset:] // KTCX_Cell(Type) cell = kt.table[hash_index]
|
||||
{
|
||||
slots := SliceByte {cell_cursor, m.cell_depth * m.slot_size} // cell.slots
|
||||
slot_cursor := slots.data
|
||||
for ;;
|
||||
{
|
||||
slot := transmute(^KTCX_Byte_Slot) slot_cursor[m.slot_key_offset:]
|
||||
if slot.occupied == false {
|
||||
slot.occupied = true
|
||||
slot.key = key
|
||||
return cast(^byte) slot_cursor
|
||||
}
|
||||
else if slot.key == key {
|
||||
return cast(^byte) slot_cursor
|
||||
}
|
||||
if slot_cursor == end(slots) {
|
||||
curr_cell := transmute(^KTCX_Byte_Cell) (uintptr(cell_cursor) + m.cell_next_offset) // curr_cell = cell
|
||||
if curr_cell != nil {
|
||||
slots.data = curr_cell.next
|
||||
slot_cursor = curr_cell.next
|
||||
cell_cursor = curr_cell.next
|
||||
continue
|
||||
}
|
||||
else {
|
||||
ensure(false, "Exhausted a cell. Increase the table size?")
|
||||
new_cell, _ := mem_alloc(m.cell_size, ainfo = backing_cells)
|
||||
curr_cell.next = raw_data(new_cell)
|
||||
slot = transmute(^KTCX_Byte_Slot) cursor(new_cell)[m.slot_key_offset:]
|
||||
slot.occupied = true
|
||||
slot.key = key
|
||||
kt.cell_overflow += 1
|
||||
return raw_data(new_cell)
|
||||
}
|
||||
}
|
||||
slot_cursor = slot_cursor[m.slot_size:]
|
||||
}
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
// Type aware wrappers
|
||||
|
||||
ktcx_init :: #force_inline proc(table_size: int, tbl_backing: Odin_Allocator,
|
||||
kt: ^$kt_type / KTCX(KTCX_Cell(KTCX_Slot($Type), $Depth))
|
||||
){
|
||||
ktcx_init_byte(transmute(^KTCX_Byte) kt, tbl_backing, {
|
||||
table_size = table_size,
|
||||
slot_size = size_of(KTCX_Slot(Type)),
|
||||
slot_key_offset = offset_of(KTCX_Slot(Type), key),
|
||||
cell_next_offset = offset_of(KTCX_Cell(Type, Depth), next),
|
||||
cell_depth = Depth,
|
||||
cell_size = size_of(KTCX_Cell(Type, Depth)),
|
||||
type_width = size_of(Type),
|
||||
type = Type,
|
||||
})
|
||||
}
|
||||
37
code2/grime/key_table_inear.odin
Normal file
37
code2/grime/key_table_inear.odin
Normal file
@@ -0,0 +1,37 @@
|
||||
package grime
|
||||
|
||||
/*
|
||||
Key Table 1-Layer Linear (KT1L)
|
||||
|
||||
Mainly intended for doing linear lookup of key-paried values. IE: Arg value parsing with label ids.
|
||||
The table is built in one go from the key-value pairs. The default populate slice_a2 has the key and value as the same type.
|
||||
*/
|
||||
|
||||
KTL_Slot :: struct($Type: typeid) {
|
||||
key: u64,
|
||||
value: Type,
|
||||
}
|
||||
KTL_Meta :: struct {
|
||||
slot_size: int,
|
||||
kt_value_offset: int,
|
||||
type_width: int,
|
||||
type: typeid,
|
||||
}
|
||||
|
||||
ktl_get :: #force_inline proc "contextless" (kt: []KTL_Slot($Type), key: u64) -> ^Type {
|
||||
for & slot in kt { if key == slot.key do return & slot.value; }
|
||||
return nil
|
||||
}
|
||||
|
||||
// Unique populator for key-value pair strings
|
||||
|
||||
ktl_populate_slice_a2_str :: #force_inline proc(kt: ^[]KTL_Slot(string), backing: Odin_Allocator, values: [][2]string) {
|
||||
assert(kt != nil)
|
||||
if len(values) == 0 { return }
|
||||
raw_bytes, error := mem_alloc(size_of(KTL_Slot(string)) * len(values), ainfo = backing); assert(error == .None);
|
||||
kt^ = slice( transmute([^]KTL_Slot(string)) cursor(raw_bytes), len(raw_bytes) / size_of(KTL_Slot(string)) )
|
||||
for id in 0 ..< len(values) {
|
||||
mem_copy_non_overlapping(& kt[id].value, & values[id][1], size_of(string))
|
||||
hash64_fnv1a(& kt[id].key, transmute([]byte) values[id][0])
|
||||
}
|
||||
}
|
||||
142
code2/grime/key_table_wip.odin
Normal file
142
code2/grime/key_table_wip.odin
Normal file
@@ -0,0 +1,142 @@
|
||||
package grime
|
||||
|
||||
/*
|
||||
Hash Table based on John's Jai & Sean Barrett's
|
||||
I don't like the table definition cntaining
|
||||
the allocator, hash or compare procedure to be used.
|
||||
So it has been stripped and instead applied on procedure site,
|
||||
the parent container or is responsible for tracking that.
|
||||
|
||||
TODO(Ed): Resolve appropriate Key-Table term for it.
|
||||
TODO(Ed): Complete this later if we actually want something beyond KT1CX or Odin's map.
|
||||
*/
|
||||
|
||||
KT_Slot :: struct(
|
||||
$TypeHash: typeid,
|
||||
$TypeKey: typeid,
|
||||
$TypeValue: typeid
|
||||
) {
|
||||
hash: TypeHash,
|
||||
key: TypeKey,
|
||||
value: TypeValue,
|
||||
}
|
||||
|
||||
KT :: struct($KT_Slot: typeid) {
|
||||
load_factor_perent: int,
|
||||
count: int,
|
||||
allocated: int,
|
||||
slots_filled: int,
|
||||
slots: []KT_Slot,
|
||||
}
|
||||
|
||||
KT_Info :: struct {
|
||||
key_width: int,
|
||||
value_width: int,
|
||||
slot_width: int,
|
||||
}
|
||||
|
||||
KT_Opaque :: struct {
|
||||
count: int,
|
||||
allocated: int,
|
||||
slots_filled: int,
|
||||
slots: []byte,
|
||||
}
|
||||
|
||||
KT_ByteMeta :: struct {
|
||||
hash_width: int,
|
||||
value_width: int,
|
||||
}
|
||||
|
||||
KT_COUNT_COLLISIONS :: #config(KT_COUNT_COLLISIONS, false)
|
||||
|
||||
KT_HASH_NEVER_OCCUPIED :: 0
|
||||
KT_HASH_REMOVED :: 1
|
||||
KT_HASH_FIRST_VALID :: 2
|
||||
KT_LOAD_FACTOR_PERCENT :: 70
|
||||
|
||||
kt_byte_init :: proc(info: KT_Info, tbl_allocator: Odin_Allocator, kt: ^KT_Opaque, $HashType: typeid)
|
||||
{
|
||||
#assert(size_of(HashType) >= 32)
|
||||
assert(tbl_allocator.procedure != nil)
|
||||
assert(info.value_width >= 32)
|
||||
assert(info.slot_width >= 64)
|
||||
}
|
||||
kt_deinit :: proc(table: ^$KT / typeid, allocator: Odin_Allocator)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
kt_walk_table_body_proc :: #type proc($TypeHash: typeid, hash: TypeHash, kt: ^KT_Opaque, info: KT_Info, id: TypeHash) -> (should_break: bool)
|
||||
kt_walk_table :: proc($TypeHash: typeid, hash: TypeHash, kt: ^KT_Opaque, info: KT_Info, $walk_body: kt_walk_table_body_proc) -> (index: TypeHash)
|
||||
{
|
||||
mask := cast(TypeHash)(kt.allocated - 1) // Cast may truncate
|
||||
if hash < KT_HASH_FIRST_VALID do hash += KT_HASH_FIRST_VALID
|
||||
index : TypeHash = hash & mask
|
||||
probe_increment: TypeHash = 1
|
||||
for id := transmute(TypeHash) kt.slots[info.slot_width * index:]; id != 0;
|
||||
{
|
||||
if #force_inline walk_body(hash, kt, info, id) do break
|
||||
index = (index + probe_increment) & mask
|
||||
probe_increment += 1
|
||||
}
|
||||
}
|
||||
|
||||
// Will not expand table if capacity reached, user must do that check beforehand.
|
||||
// Will return existing if hash found
|
||||
kt_byte_add :: proc(value: [^]byte, key: [^]byte, hash: $TypeHash, kt: ^KT_Opaque, info: KT_Info)-> [^]byte
|
||||
{
|
||||
aasert(kt.slots_filled, kt.allocated)
|
||||
index := #force_inline kt_walk_table(hash, kt, info,
|
||||
proc(hash: $TypeHash, kt: ^KT_Opaque, info: KT_Info, id: TypeHash) -> (should_break: bool)
|
||||
{
|
||||
if id == KT_HASH_REMOVED {
|
||||
kt.slots_filled -= 1
|
||||
should_break = true
|
||||
return
|
||||
}
|
||||
//TODO(Ed): Add collision tracking
|
||||
return
|
||||
})
|
||||
kt.count += 1
|
||||
kt.slots_filled += 1
|
||||
slot_offset := info.slot_width * index
|
||||
entry := table.slots[info.slot_width * index:]
|
||||
mem_copy_non_overlapping(entry, hash, size_of(TypeHash))
|
||||
mem_copy_non_overlapping(entry[size_of(hash):], key, info.key_width)
|
||||
mem_copy_non_overlapping(entry[size_of(hash) + size_of(key):], value, info.value_width)
|
||||
return entry
|
||||
}
|
||||
|
||||
// Will not expand table if capacity reached, user must do that check beforehand.
|
||||
// Will override if hash exists
|
||||
kt_byte_set :: proc()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
kt_remove :: proc()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
kt_byte_contains :: proc()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
kt_byte_find_pointer :: proc()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
kt_find :: proc()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
kt_find_multiple :: proc()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
kt_next_power_of_two :: #force_inline proc(x: int) -> int { power := 1; for ;x > power; do power += power; return power }
|
||||
@@ -5,11 +5,33 @@ Mega :: Kilo * 1024
|
||||
Giga :: Mega * 1024
|
||||
Tera :: Giga * 1024
|
||||
|
||||
// Provides the nearest prime number value for the given capacity
|
||||
closest_prime :: proc(capacity: uint) -> uint
|
||||
{
|
||||
prime_table : []uint = {
|
||||
53, 97, 193, 389, 769, 1543, 3079, 6151, 12289, 24593,
|
||||
49157, 98317, 196613, 393241, 786433, 1572869, 3145739,
|
||||
6291469, 12582917, 25165843, 50331653, 100663319,
|
||||
201326611, 402653189, 805306457, 1610612741, 3221225473, 6442450941
|
||||
};
|
||||
for slot in prime_table {
|
||||
if slot >= capacity {
|
||||
return slot
|
||||
}
|
||||
}
|
||||
return prime_table[len(prime_table) - 1]
|
||||
}
|
||||
|
||||
raw_cursor :: #force_inline proc "contextless" (ptr: rawptr) -> [^]byte { return transmute([^]byte) ptr }
|
||||
ptr_cursor :: #force_inline proc "contextless" (ptr: ^$Type) -> [^]Type { return transmute([^]Type) ptr }
|
||||
|
||||
@(require_results) is_power_of_two :: #force_inline proc "contextless" (x: uintptr) -> bool { return (x > 0) && ((x & (x-1)) == 0) }
|
||||
@(require_results)
|
||||
align_pow2_uint :: #force_inline proc "contextless" (ptr, align: uint) -> uint {
|
||||
assert_contextless(is_power_of_two(uintptr(align)))
|
||||
return ptr & ~(align-1)
|
||||
}
|
||||
@(require_results)
|
||||
align_pow2 :: #force_inline proc "contextless" (ptr, align: int) -> int {
|
||||
assert_contextless(is_power_of_two(uintptr(align)))
|
||||
return ptr & ~(align-1)
|
||||
@@ -51,8 +73,8 @@ slice_copy :: #force_inline proc "contextless" (dst, src: $SliceType / []$Type)
|
||||
|
||||
slice_fill :: #force_inline proc "contextless" (s: $SliceType / []$Type, value: Type) { memory_fill(cursor(s), value, len(s)) }
|
||||
|
||||
@(require_results) slice_to_bytes :: #force_inline proc "contextless" (s: []$Type) -> []byte { return ([^]byte)(raw_data(s))[:len(s) * size_of(Type)] }
|
||||
@(require_results) slice_raw :: #force_inline proc "contextless" (s: []$Type) -> SliceRaw(Type) { return transmute(SliceRaw(Type)) s }
|
||||
@(require_results) slice_to_bytes :: #force_inline proc "contextless" (s: []$Type) -> []byte { return ([^]byte)(raw_data(s))[:len(s) * size_of(Type)] }
|
||||
@(require_results) slice_raw :: #force_inline proc "contextless" (s: []$Type) -> SliceRaw(Type) { return transmute(SliceRaw(Type)) s }
|
||||
|
||||
@(require_results) type_to_bytes :: #force_inline proc "contextless" (obj: ^$Type) -> []byte { return ([^]byte)(obj)[:size_of(Type)] }
|
||||
|
||||
|
||||
@@ -5,6 +5,8 @@
|
||||
It only makes sure that memory allocations don't collide in the allocator and deallocations don't occur for memory never allocated.
|
||||
|
||||
I'm keeping it around as an artifact & for future allocators I may make.
|
||||
|
||||
NOTE(Ed): Perfer sanitizers
|
||||
*/
|
||||
package grime
|
||||
|
||||
@@ -17,7 +19,7 @@ MemoryTracker :: struct {
|
||||
entries : Array(MemoryTrackerEntry),
|
||||
}
|
||||
|
||||
Track_Memory :: true
|
||||
Track_Memory :: false
|
||||
|
||||
@(disabled = Track_Memory == false)
|
||||
memtracker_clear :: proc (tracker: MemoryTracker) {
|
||||
|
||||
@@ -6,6 +6,7 @@ import "base:builtin"
|
||||
import "base:intrinsics"
|
||||
atomic_thread_fence :: intrinsics.atomic_thread_fence
|
||||
mem_zero_volatile :: intrinsics.mem_zero_volatile
|
||||
add_overflow :: intrinsics.overflow_add
|
||||
// mem_zero :: intrinsics.mem_zero
|
||||
// mem_copy :: intrinsics.mem_copy_non_overlapping
|
||||
// mem_copy_overlapping :: intrinsics.mem_copy
|
||||
@@ -140,7 +141,7 @@ copy :: proc {
|
||||
mem_copy,
|
||||
slice_copy,
|
||||
}
|
||||
copy_non_overlaping :: proc {
|
||||
copy_non_overlapping :: proc {
|
||||
mem_copy_non_overlapping,
|
||||
slice_copy_overlapping,
|
||||
}
|
||||
|
||||
30
code2/grime/string_cache.odin
Normal file
30
code2/grime/string_cache.odin
Normal file
@@ -0,0 +1,30 @@
|
||||
package grime
|
||||
|
||||
StrKey_U4 :: struct {
|
||||
len: u32, // Length of string
|
||||
offset: u32, // Offset in varena
|
||||
}
|
||||
|
||||
StrKT_U4_Cell_Depth :: 4
|
||||
|
||||
StrKT_U4_Slot :: KTCX_Slot(StrKey_U4)
|
||||
StrKT_U4_Cell :: KTCX_Cell(StrKT_U4_Slot, 4)
|
||||
StrKT_U4_Table :: KTCX(StrKT_U4_Cell)
|
||||
|
||||
VStrKT_U4 :: struct {
|
||||
varena: VArena, // Backed by growing vmem
|
||||
kt: StrKT_U4_Table,
|
||||
}
|
||||
|
||||
vstrkt_u4_init :: proc(varena: ^VArena, capacity: int, cache: ^VStrKT_U4)
|
||||
{
|
||||
capacity := cast(int) closest_prime(cast(uint) capacity)
|
||||
ktcx_init(capacity, varena_allocator(varena), &cache.kt)
|
||||
return
|
||||
}
|
||||
|
||||
vstrkt_u4_intern :: proc(cache: ^VStrKT_U4) -> StrKey_U4
|
||||
{
|
||||
// profile(#procedure)
|
||||
return {}
|
||||
}
|
||||
@@ -1,4 +1,10 @@
|
||||
package grime
|
||||
|
||||
// TODO(Ed): Review this
|
||||
import "base:runtime"
|
||||
|
||||
// TODO(Ed): Support address sanitizer
|
||||
|
||||
/*
|
||||
So this is a virtual memory backed arena allocator designed
|
||||
to take advantage of one large contigous reserve of memory.
|
||||
@@ -11,15 +17,259 @@ No other part of the program will directly touch the vitual memory interface dir
|
||||
Thus for the scope of this prototype the Virtual Arena are the only interfaces to dynamic address spaces for the runtime of the client app.
|
||||
The host application as well ideally (although this may not be the case for a while)
|
||||
*/
|
||||
VArena_GrowthPolicyProc :: #type proc( commit_used, committed, reserved, requested_size : uint ) -> uint
|
||||
|
||||
VArena :: struct {
|
||||
using vmem: VirtualMemoryRegion,
|
||||
tracker: MemoryTracker,
|
||||
dbg_name: string,
|
||||
commit_used: uint,
|
||||
growth_policy: VArena_GrowthPolicyProc,
|
||||
allow_any_resize: b32,
|
||||
mutex: Mutex,
|
||||
VArenaFlags :: bit_set[VArenaFlag; u32]
|
||||
VArenaFlag :: enum u32 {
|
||||
No_Large_Pages,
|
||||
}
|
||||
|
||||
VArena :: struct {
|
||||
using vmem: VirtualMemoryRegion,
|
||||
commit_size: int,
|
||||
commit_used: int,
|
||||
flags: VArenaFlags,
|
||||
}
|
||||
|
||||
// Default growth_policy is varena_default_growth_policy
|
||||
varena_make :: proc(to_reserve, commit_size: int, base_address: uintptr, flags: VArenaFlags = {}
|
||||
) -> (arena: ^VArena, alloc_error: AllocatorError)
|
||||
{
|
||||
page_size := virtual_get_page_size()
|
||||
verify( page_size > size_of(VirtualMemoryRegion), "Make sure page size is not smaller than a VirtualMemoryRegion?")
|
||||
verify( to_reserve >= page_size, "Attempted to reserve less than a page size" )
|
||||
verify( commit_size >= page_size, "Attempted to commit less than a page size")
|
||||
verify( to_reserve >= commit_size, "Attempted to commit more than there is to reserve" )
|
||||
vmem : VirtualMemoryRegion
|
||||
vmem, alloc_error = virtual_reserve_and_commit( base_address, uint(to_reserve), uint(commit_size) )
|
||||
if ensure(vmem.base_address == nil || alloc_error != .None, "Failed to allocate requested virtual memory for virtual arena") {
|
||||
return
|
||||
}
|
||||
arena = transmute(^VArena) vmem.base_address;
|
||||
arena.vmem = vmem
|
||||
arena.commit_used = align_pow2(size_of(arena), MEMORY_ALIGNMENT_DEFAULT)
|
||||
arena.flags = flags
|
||||
return
|
||||
}
|
||||
varena_alloc :: proc(self: ^VArena,
|
||||
size: int,
|
||||
alignment: int = MEMORY_ALIGNMENT_DEFAULT,
|
||||
zero_memory := true,
|
||||
location := #caller_location
|
||||
) -> (data: []byte, alloc_error: AllocatorError)
|
||||
{
|
||||
verify( alignment & (alignment - 1) == 0, "Non-power of two alignment", location = location )
|
||||
page_size := uint(virtual_get_page_size())
|
||||
requested_size := uint(size)
|
||||
if ensure(requested_size == 0, "Requested 0 size") do return nil, .Invalid_Argument
|
||||
// ensure( requested_size > page_size, "Requested less than a page size, going to allocate a page size")
|
||||
// requested_size = max(requested_size, page_size)
|
||||
|
||||
// TODO(Ed): Prevent multiple threads from entering here extrusively?
|
||||
// sync.mutex_guard( & mutex )
|
||||
|
||||
commit_used := uint(self.commit_used)
|
||||
reserved := uint(self.reserved)
|
||||
commit_size := uint(self.commit_size)
|
||||
|
||||
alignment_offset := uint(0)
|
||||
current_offset := uintptr(self.reserve_start) + uintptr(self.commit_used)
|
||||
mask := uintptr(alignment - 1)
|
||||
if (current_offset & mask != 0) do alignment_offset = uint(alignment) - uint(current_offset & mask)
|
||||
|
||||
size_to_allocate, overflow_signal := add_overflow( requested_size, alignment_offset )
|
||||
if overflow_signal do return {}, .Out_Of_Memory
|
||||
to_be_used : uint
|
||||
to_be_used, overflow_signal = add_overflow( commit_used, size_to_allocate )
|
||||
if (overflow_signal || to_be_used > reserved) do return {}, .Out_Of_Memory
|
||||
|
||||
header_offset := uint( uintptr(self.reserve_start) - uintptr(self.base_address) )
|
||||
commit_left := self.committed - commit_used - header_offset
|
||||
needs_more_committed := commit_left < size_to_allocate
|
||||
if needs_more_committed {
|
||||
profile("VArena Growing")
|
||||
next_commit_size := max(to_be_used, commit_size)
|
||||
alloc_error = virtual_commit( self.vmem, next_commit_size )
|
||||
if alloc_error != .None do return
|
||||
}
|
||||
data_ptr := ([^]byte)(current_offset + uintptr(alignment_offset))
|
||||
data = slice( data_ptr, requested_size )
|
||||
commit_used += size_to_allocate
|
||||
alloc_error = .None
|
||||
// log_backing: [Kilobyte * 16]byte; backing_slice := log_backing[:]
|
||||
// log( str_pfmt_buffer( backing_slice, "varena alloc - BASE: %p PTR: %X, SIZE: %d", cast(rawptr) self.base_address, & data[0], requested_size) )
|
||||
if zero_memory {
|
||||
// log( str_pfmt_buffer( backing_slice, "Zeroring data (Range: %p to %p)", raw_data(data), cast(rawptr) (uintptr(raw_data(data)) + uintptr(requested_size))))
|
||||
// zero( data )
|
||||
mem_zero( data_ptr, int(requested_size) )
|
||||
}
|
||||
return
|
||||
}
|
||||
varena_grow :: #force_inline proc(self: ^VArena, old_memory: []byte, requested_size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, should_zero := true, loc := #caller_location
|
||||
) -> (data: []byte, error: AllocatorError)
|
||||
{
|
||||
if ensure(old_memory == nil, "Growing without old_memory?") {
|
||||
data, error = varena_alloc(self, requested_size, alignment, should_zero, loc)
|
||||
return
|
||||
}
|
||||
if ensure(requested_size == len(old_memory), "Requested grow when none needed") {
|
||||
data = old_memory
|
||||
return
|
||||
}
|
||||
alignment_offset := uintptr(cursor(old_memory)) & uintptr(alignment - 1)
|
||||
if ensure(alignment_offset == 0 && requested_size < len(old_memory), "Requested a shrink from varena_grow") {
|
||||
data = old_memory
|
||||
return
|
||||
}
|
||||
old_memory_offset := cursor(old_memory)[len(old_memory):]
|
||||
current_offset := self.reserve_start[self.commit_used:]
|
||||
when false {
|
||||
if old_size < page_size {
|
||||
// We're dealing with an allocation that requested less than the minimum allocated on vmem.
|
||||
// Provide them more of their actual memory
|
||||
data = slice(transmute([^]byte)old_memory, size )
|
||||
return
|
||||
}
|
||||
}
|
||||
verify( old_memory_offset == current_offset,
|
||||
"Cannot grow existing allocation in vitual arena to a larger size unless it was the last allocated" )
|
||||
|
||||
if old_memory_offset != current_offset
|
||||
{
|
||||
// Give it new memory and copy the old over. Old memory is unrecoverable until clear.
|
||||
new_region : []byte
|
||||
new_region, error = varena_alloc( self, requested_size, alignment, should_zero, loc )
|
||||
if ensure(new_region == nil || error != .None, "Failed to grab new region") {
|
||||
data = old_memory
|
||||
return
|
||||
}
|
||||
copy_non_overlapping( cursor(new_region), cursor(old_memory), len(old_memory) )
|
||||
data = new_region
|
||||
// log_print_fmt("varena resize (new): old: %p %v new: %p %v", old_memory, old_size, (& data[0]), size)
|
||||
return
|
||||
}
|
||||
new_region : []byte
|
||||
new_region, error = varena_alloc( self, requested_size - len(old_memory), alignment, should_zero, loc)
|
||||
if ensure(new_region == nil || error != .None, "Failed to grab new region") {
|
||||
data = old_memory
|
||||
return
|
||||
}
|
||||
data = slice(cursor(old_memory), requested_size )
|
||||
// log_print_fmt("varena resize (expanded): old: %p %v new: %p %v", old_memory, old_size, (& data[0]), size)
|
||||
return
|
||||
}
|
||||
varena_shrink :: proc(self: ^VArena, memory: []byte, requested_size: int, loc := #caller_location) -> (data: []byte, error: AllocatorError) {
|
||||
if requested_size == len(memory) { return memory, .None }
|
||||
if ensure(memory == nil, "Shrinking without old_memory?") do return memory, .Invalid_Argument
|
||||
current_offset := self.reserve_start[self.commit_used:]
|
||||
shrink_amount := len(memory) - requested_size
|
||||
if shrink_amount < 0 { return memory, .None }
|
||||
assert(cursor(memory) == current_offset)
|
||||
self.commit_used -= shrink_amount
|
||||
return memory[:requested_size], .None
|
||||
}
|
||||
varena_reset :: #force_inline proc(self: ^VArena) {
|
||||
// TODO(Ed): Prevent multiple threads from entering here extrusively?
|
||||
// sync.mutex_guard( & mutex )
|
||||
self.commit_used = 0
|
||||
}
|
||||
varena_release :: #force_inline proc(self: ^VArena) {
|
||||
// TODO(Ed): Prevent multiple threads from entering here extrusively?
|
||||
// sync.mutex_guard( & mutex )
|
||||
virtual_release( self.vmem )
|
||||
self.commit_used = 0
|
||||
}
|
||||
varena_rewind :: #force_inline proc(arena: ^VArena, save_point: AllocatorSP, loc := #caller_location) {
|
||||
assert_contextless(save_point.type_sig == varena_allocator_proc)
|
||||
assert_contextless(save_point.slot >= 0 && save_point.slot <= int(arena.commit_used))
|
||||
arena.commit_used = save_point.slot
|
||||
}
|
||||
varena_save :: #force_inline proc(arena: ^VArena) -> AllocatorSP { return AllocatorSP { type_sig = varena_allocator_proc, slot = cast(int) arena.commit_used }}
|
||||
|
||||
varena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Out) {
|
||||
assert(output != nil)
|
||||
assert(input.data != nil)
|
||||
arena := transmute(^VArena) input.data
|
||||
switch input.op {
|
||||
case .Alloc, .Alloc_NoZero:
|
||||
output.allocation, output.error = varena_alloc(arena, input.requested_size, input.alignment, input.op == .Alloc, input.loc)
|
||||
return
|
||||
case .Free:
|
||||
output.error = .Mode_Not_Implemented
|
||||
case .Reset:
|
||||
varena_reset(arena)
|
||||
case .Grow, .Grow_NoZero:
|
||||
output.allocation, output.error = varena_grow(arena, input.old_allocation, input.requested_size, input.alignment, input.op == .Grow, input.loc)
|
||||
case .Shrink:
|
||||
output.allocation, output.error = varena_shrink(arena, input.old_allocation, input.requested_size)
|
||||
case .Rewind:
|
||||
varena_rewind(arena, input.save_point)
|
||||
case .SavePoint:
|
||||
output.save_point = varena_save(arena)
|
||||
case .Query:
|
||||
output.features = {.Alloc, .Reset, .Grow, .Shrink, .Rewind}
|
||||
output.max_alloc = int(arena.reserved) - arena.commit_used
|
||||
output.min_alloc = 0
|
||||
output.left = output.max_alloc
|
||||
output.save_point = varena_save(arena)
|
||||
}
|
||||
}
|
||||
varena_odin_allocator_proc :: proc(
|
||||
allocator_data : rawptr,
|
||||
mode : Odin_AllocatorMode,
|
||||
size : int,
|
||||
alignment : int,
|
||||
old_memory : rawptr,
|
||||
old_size : int,
|
||||
location : SourceCodeLocation = #caller_location
|
||||
) -> (data: []byte, alloc_error: AllocatorError)
|
||||
{
|
||||
arena := transmute( ^VArena) allocator_data
|
||||
page_size := uint(virtual_get_page_size())
|
||||
switch mode {
|
||||
case .Alloc, .Alloc_Non_Zeroed:
|
||||
data, alloc_error = varena_alloc( arena, size, alignment, (mode == .Alloc), location )
|
||||
return
|
||||
case .Free:
|
||||
alloc_error = .Mode_Not_Implemented
|
||||
case .Free_All:
|
||||
varena_reset( arena )
|
||||
case .Resize, .Resize_Non_Zeroed:
|
||||
if size > old_size do varena_grow (arena, slice(cursor(old_memory), old_size), size, alignment, (mode == .Alloc), location)
|
||||
else do varena_shrink(arena, slice(cursor(old_memory), old_size), size, location)
|
||||
case .Query_Features:
|
||||
set := cast( ^Odin_AllocatorModeSet) old_memory
|
||||
if set != nil do (set ^) = {.Alloc, .Alloc_Non_Zeroed, .Free_All, .Resize, .Query_Features}
|
||||
case .Query_Info:
|
||||
info := (^Odin_AllocatorQueryInfo)(old_memory)
|
||||
info.pointer = transmute(rawptr) varena_save(arena).slot
|
||||
info.size = cast(int) arena.reserved
|
||||
info.alignment = MEMORY_ALIGNMENT_DEFAULT
|
||||
return to_bytes(info), nil
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
varena_odin_allocator :: proc(arena: ^VArena) -> (allocator: Odin_Allocator) {
|
||||
allocator.procedure = varena_odin_allocator_proc
|
||||
allocator.data = arena
|
||||
return
|
||||
}
|
||||
when ODIN_DEBUG {
|
||||
varena_ainfo :: #force_inline proc "contextless" (arena: ^VArena) -> AllocatorInfo { return AllocatorInfo{proc_id = .VArena, data = arena} }
|
||||
varena_allocator :: #force_inline proc "contextless" (arena: ^VArena) -> Odin_Allocator { return transmute(Odin_Allocator) AllocatorInfo{proc_id = .VArena, data = arena} }
|
||||
}
|
||||
else {
|
||||
varena_ainfo :: #force_inline proc "contextless" (arena: ^VArena) -> AllocatorInfo { return AllocatorInfo{procedure = varena_allocator_proc, data = arena} }
|
||||
varena_allocator :: #force_inline proc "contextless" (arena: ^VArena) -> Odin_Allocator { return transmute(Odin_Allocator) AllocatorInfo{procedure = varena_allocator_proc, data = arena} }
|
||||
}
|
||||
|
||||
varena_push_item :: #force_inline proc(va: ^VArena, $Type: typeid, alignment: int = MEMORY_ALIGNMENT_DEFAULT, should_zero := true, location := #caller_location
|
||||
) -> (^Type, AllocatorError) {
|
||||
raw, error := varena_alloc(va, size_of(Type), alignment, should_zero, location)
|
||||
return transmute(^Type) cursor(raw), error
|
||||
}
|
||||
varena_push_slice :: #force_inline proc(va: ^VArena, $Type: typeid, amount: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, should_zero := true, location := #caller_location
|
||||
) -> ([]Type, AllocatorError) {
|
||||
raw, error := varena_alloc(va, size_of(Type) * amount, alignment, should_zero, location)
|
||||
return slice(transmute([^]Type) cursor(raw), len(raw) / size_of(Type)), error
|
||||
}
|
||||
|
||||
126
code2/grime/virtual_chained_arena.odin
Normal file
126
code2/grime/virtual_chained_arena.odin
Normal file
@@ -0,0 +1,126 @@
|
||||
package grime
|
||||
|
||||
/*
|
||||
Arena (Chained Virtual Areans):
|
||||
*/
|
||||
|
||||
ArenaFlags :: bit_set[ArenaFlag; u32]
|
||||
ArenaFlag :: enum u32 {
|
||||
No_Large_Pages,
|
||||
No_Chaining,
|
||||
}
|
||||
Arena :: struct {
|
||||
backing: ^VArena,
|
||||
prev: ^Arena,
|
||||
current: ^Arena,
|
||||
base_pos: int,
|
||||
pos: int,
|
||||
flags: ArenaFlags,
|
||||
}
|
||||
|
||||
arena_make :: proc(reserve_size : int = Mega * 64, commit_size : int = Mega * 64, base_addr: uintptr = 0, flags: ArenaFlags = {}) -> ^Arena {
|
||||
header_size := align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT)
|
||||
current, error := varena_make(reserve_size, commit_size, base_addr, transmute(VArenaFlags) flags)
|
||||
assert(error == .None)
|
||||
assert(current != nil)
|
||||
arena: ^Arena; arena, error = varena_push_item(current, Arena, 1)
|
||||
assert(error == .None)
|
||||
assert(arena != nil)
|
||||
arena^ = Arena {
|
||||
backing = current,
|
||||
prev = nil,
|
||||
current = arena,
|
||||
base_pos = 0,
|
||||
pos = header_size,
|
||||
flags = flags,
|
||||
}
|
||||
return arena
|
||||
}
|
||||
arena_alloc :: proc(arena: ^Arena, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT) -> []byte {
|
||||
assert(arena != nil)
|
||||
active := arena.current
|
||||
size_requested := size
|
||||
size_aligned := align_pow2(size_requested, alignment)
|
||||
pos_pre := active.pos
|
||||
pos_pst := pos_pre + size_aligned
|
||||
reserved := int(active.backing.reserved)
|
||||
should_chain := (.No_Chaining not_in arena.flags) && (reserved < pos_pst)
|
||||
if should_chain {
|
||||
new_arena := arena_make(reserved, active.backing.commit_size, 0, transmute(ArenaFlags) active.backing.flags)
|
||||
new_arena.base_pos = active.base_pos + reserved
|
||||
sll_stack_push_n(& arena.current, & new_arena, & new_arena.prev)
|
||||
new_arena.prev = active
|
||||
active = arena.current
|
||||
}
|
||||
result_ptr := transmute([^]byte) (uintptr(active) + uintptr(pos_pre))
|
||||
vresult, error := varena_alloc(active.backing, size_aligned, alignment)
|
||||
assert(error == .None)
|
||||
slice_assert(vresult)
|
||||
assert(raw_data(vresult) == result_ptr)
|
||||
active.pos = pos_pst
|
||||
return slice(result_ptr, size)
|
||||
}
|
||||
arena_release :: proc(arena: ^Arena) {
|
||||
assert(arena != nil)
|
||||
curr := arena.current
|
||||
for curr != nil {
|
||||
prev := curr.prev
|
||||
varena_release(curr.backing)
|
||||
curr = prev
|
||||
}
|
||||
}
|
||||
arena_reset :: proc(arena: ^Arena) {
|
||||
arena_rewind(arena, AllocatorSP { type_sig = arena_allocator_proc, slot = 0 })
|
||||
}
|
||||
arena_rewind :: proc(arena: ^Arena, save_point: AllocatorSP) {
|
||||
assert(arena != nil)
|
||||
assert(save_point.type_sig == arena_allocator_proc)
|
||||
header_size := align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT)
|
||||
curr := arena.current
|
||||
big_pos := max(header_size, save_point.slot)
|
||||
// Release arenas that are beyond the save point
|
||||
for curr.base_pos >= big_pos {
|
||||
prev := curr.prev
|
||||
varena_release(curr.backing)
|
||||
curr = prev
|
||||
}
|
||||
arena.current = curr
|
||||
new_pos := big_pos - curr.base_pos
|
||||
assert(new_pos <= curr.pos)
|
||||
curr.pos = new_pos
|
||||
varena_rewind(curr.backing, { type_sig = varena_allocator_proc, slot = curr.pos + size_of(VArena) })
|
||||
}
|
||||
arena_save :: #force_inline proc(arena: ^Arena) -> AllocatorSP { return { type_sig = arena_allocator_proc, slot = arena.base_pos + arena.current.pos } }
|
||||
|
||||
arena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Out) {
|
||||
panic("not implemented")
|
||||
}
|
||||
arena_odin_allocator_proc :: proc(
|
||||
allocator_data : rawptr,
|
||||
mode : Odin_AllocatorMode,
|
||||
size : int,
|
||||
alignment : int,
|
||||
old_memory : rawptr,
|
||||
old_size : int,
|
||||
location : SourceCodeLocation = #caller_location
|
||||
) -> (data: []byte, alloc_error: AllocatorError)
|
||||
{
|
||||
panic("not implemented")
|
||||
}
|
||||
when ODIN_DEBUG {
|
||||
arena_ainfo :: #force_inline proc "contextless" (arena: ^Arena) -> AllocatorInfo { return AllocatorInfo{proc_id = .Arena, data = arena} }
|
||||
arena_allocator :: #force_inline proc "contextless" (arena: ^Arena) -> Odin_Allocator { return transmute(Odin_Allocator) AllocatorInfo{proc_id = .Arena, data = arena} }
|
||||
}
|
||||
else {
|
||||
arena_ainfo :: #force_inline proc "contextless" (arena: ^Arena) -> AllocatorInfo { return AllocatorInfo{procedure = arena_allocator_proc, data = arena} }
|
||||
arena_allocator :: #force_inline proc "contextless" (arena: ^Arena) -> Odin_Allocator { return transmute(Odin_Allocator) AllocatorInfo{procedure = arena_allocator_proc, data = arena} }
|
||||
}
|
||||
|
||||
arena_push_item :: proc()
|
||||
{
|
||||
|
||||
}
|
||||
arena_push_array :: proc()
|
||||
{
|
||||
|
||||
}
|
||||
28
code2/grime/virtual_pool.odin
Normal file
28
code2/grime/virtual_pool.odin
Normal file
@@ -0,0 +1,28 @@
|
||||
package grime
|
||||
|
||||
// TODO(Ed): Review this
|
||||
import "base:runtime"
|
||||
|
||||
// TODO(Ed): Support address sanitizer
|
||||
|
||||
/*
|
||||
Pool allocator backed by chained virtual arenas.
|
||||
*/
|
||||
|
||||
Pool_FreeBlock :: struct { next: ^Pool_FreeBlock }
|
||||
|
||||
VPool :: struct {
|
||||
arenas: ^Arena,
|
||||
block_size: uint,
|
||||
// alignment: uint,
|
||||
|
||||
free_list_head: ^Pool_FreeBlock,
|
||||
}
|
||||
|
||||
pool_make :: proc() -> (pool: VPool, error: AllocatorError)
|
||||
{
|
||||
panic("not implemented")
|
||||
// return
|
||||
}
|
||||
|
||||
|
||||
15
code2/grime/virtual_slab.odin
Normal file
15
code2/grime/virtual_slab.odin
Normal file
@@ -0,0 +1,15 @@
|
||||
package grime
|
||||
|
||||
VSlabSizeClass :: struct {
|
||||
vmem_reserve: uint,
|
||||
block_size: uint,
|
||||
block_alignment: uint,
|
||||
}
|
||||
|
||||
Slab_Max_Size_Classes :: 24
|
||||
|
||||
SlabPolicy :: FStack(VSlabSizeClass, Slab_Max_Size_Classes)
|
||||
|
||||
VSlab :: struct {
|
||||
pools: FStack(VPool, Slab_Max_Size_Classes),
|
||||
}
|
||||
@@ -23,14 +23,14 @@ load_client_api :: proc(version_id: int) -> (loaded_module: Client_API) {
|
||||
file_copy_sync( Path_Sectr_Module, Path_Sectr_Live_Module, allocator = context.temp_allocator )
|
||||
did_load: bool; lib, did_load = os_lib_load( Path_Sectr_Live_Module )
|
||||
if ! did_load do panic( "Failed to load the sectr module.")
|
||||
startup = cast( type_of( host_memory.client_api.startup)) os_lib_get_proc(lib, "startup")
|
||||
shutdown = cast( type_of( host_memory.client_api.shutdown)) os_lib_get_proc(lib, "sectr_shutdown")
|
||||
tick_lane_startup = cast( type_of( host_memory.client_api.tick_lane_startup)) os_lib_get_proc(lib, "tick_lane_startup")
|
||||
job_worker_startup = cast( type_of( host_memory.client_api.job_worker_startup)) os_lib_get_proc(lib, "job_worker_startup")
|
||||
hot_reload = cast( type_of( host_memory.client_api.hot_reload)) os_lib_get_proc(lib, "hot_reload")
|
||||
tick_lane = cast( type_of( host_memory.client_api.tick_lane)) os_lib_get_proc(lib, "tick_lane")
|
||||
clean_frame = cast( type_of( host_memory.client_api.clean_frame)) os_lib_get_proc(lib, "clean_frame")
|
||||
jobsys_worker_tick = cast( type_of( host_memory.client_api.jobsys_worker_tick)) os_lib_get_proc(lib, "jobsys_worker_tick")
|
||||
startup = transmute( type_of( host_memory.client_api.startup)) os_lib_get_proc(lib, "startup")
|
||||
shutdown = transmute( type_of( host_memory.client_api.shutdown)) os_lib_get_proc(lib, "sectr_shutdown")
|
||||
tick_lane_startup = transmute( type_of( host_memory.client_api.tick_lane_startup)) os_lib_get_proc(lib, "tick_lane_startup")
|
||||
job_worker_startup = transmute( type_of( host_memory.client_api.job_worker_startup)) os_lib_get_proc(lib, "job_worker_startup")
|
||||
hot_reload = transmute( type_of( host_memory.client_api.hot_reload)) os_lib_get_proc(lib, "hot_reload")
|
||||
tick_lane = transmute( type_of( host_memory.client_api.tick_lane)) os_lib_get_proc(lib, "tick_lane")
|
||||
clean_frame = transmute( type_of( host_memory.client_api.clean_frame)) os_lib_get_proc(lib, "clean_frame")
|
||||
jobsys_worker_tick = transmute( type_of( host_memory.client_api.jobsys_worker_tick)) os_lib_get_proc(lib, "jobsys_worker_tick")
|
||||
if startup == nil do panic("Failed to load sectr.startup symbol" )
|
||||
if shutdown == nil do panic("Failed to load sectr.shutdown symbol" )
|
||||
if tick_lane_startup == nil do panic("Failed to load sectr.tick_lane_startup symbol" )
|
||||
@@ -151,6 +151,8 @@ main :: proc()
|
||||
if thread_memory.id == .Master_Prepper {
|
||||
thread_join_multiple(.. host_memory.threads[1:THREAD_TICK_LANES + THREAD_JOB_WORKERS])
|
||||
}
|
||||
|
||||
host_memory.client_api.shutdown();
|
||||
|
||||
unload_client_api( & host_memory.client_api )
|
||||
|
||||
|
||||
@@ -83,6 +83,10 @@ import grime "codebase:grime"
|
||||
grime_set_profiler_module_context :: grime.set_profiler_module_context
|
||||
grime_set_profiler_thread_buffer :: grime.set_profiler_thread_buffer
|
||||
|
||||
ensure :: grime.ensure
|
||||
fatal :: grime.fatal
|
||||
verify :: grime.verify
|
||||
|
||||
file_is_locked :: grime.file_is_locked
|
||||
logger_init :: grime.logger_init
|
||||
to_odin_logger :: grime.to_odin_logger
|
||||
@@ -137,24 +141,24 @@ import "codebase:sectr"
|
||||
ThreadMemory :: sectr.ThreadMemory
|
||||
WorkerID :: sectr.WorkerID
|
||||
|
||||
ensure :: #force_inline proc( condition : b32, msg : string, location := #caller_location ) {
|
||||
if condition do return
|
||||
log_print( msg, LoggerLevel.Warning, location )
|
||||
debug_trap()
|
||||
}
|
||||
// TODO(Ed) : Setup exit codes!
|
||||
fatal :: #force_inline proc( msg : string, exit_code : int = -1, location := #caller_location ) {
|
||||
log_print( msg, LoggerLevel.Fatal, location )
|
||||
debug_trap()
|
||||
process_exit( exit_code )
|
||||
}
|
||||
// TODO(Ed) : Setup exit codes!
|
||||
verify :: #force_inline proc( condition : b32, msg : string, exit_code : int = -1, location := #caller_location ) {
|
||||
if condition do return
|
||||
log_print( msg, LoggerLevel.Fatal, location )
|
||||
debug_trap()
|
||||
process_exit( exit_code )
|
||||
}
|
||||
// ensure :: #force_inline proc( condition : b32, msg : string, location := #caller_location ) {
|
||||
// if condition do return
|
||||
// log_print( msg, LoggerLevel.Warning, location )
|
||||
// debug_trap()
|
||||
// }
|
||||
// // TODO(Ed) : Setup exit codes!
|
||||
// fatal :: #force_inline proc( msg : string, exit_code : int = -1, location := #caller_location ) {
|
||||
// log_print( msg, LoggerLevel.Fatal, location )
|
||||
// debug_trap()
|
||||
// process_exit( exit_code )
|
||||
// }
|
||||
// // TODO(Ed) : Setup exit codes!
|
||||
// verify :: #force_inline proc( condition : b32, msg : string, exit_code : int = -1, location := #caller_location ) {
|
||||
// if condition do return
|
||||
// log_print( msg, LoggerLevel.Fatal, location )
|
||||
// debug_trap()
|
||||
// process_exit( exit_code )
|
||||
// }
|
||||
|
||||
log_print :: proc( msg : string, level := LoggerLevel.Info, loc := #caller_location ) {
|
||||
context.allocator = arena_allocator(& host_memory.host_scratch)
|
||||
|
||||
@@ -100,7 +100,8 @@ startup :: proc(host_mem: ^ProcessMemory, thread_mem: ^ThreadMemory)
|
||||
log_print_fmt("Startup time: %v ms", startup_ms)
|
||||
}
|
||||
|
||||
// For some reason odin's symbols conflict with native foreign symbols...
|
||||
// NOTE(Ed): For some reason odin's symbols conflict with native foreign symbols...
|
||||
// Called in host.main after all tick lane or job worker threads have joined.
|
||||
@export
|
||||
sectr_shutdown :: proc()
|
||||
{
|
||||
|
||||
@@ -183,11 +183,9 @@ poll_input_events :: proc( input, prev_input : ^InputState, input_events : Input
|
||||
for prev_key, id in prev_input.keyboard.keys {
|
||||
input.keyboard.keys[id].ended_down = prev_key.ended_down
|
||||
}
|
||||
|
||||
for prev_btn, id in prev_input.mouse.btns {
|
||||
input.mouse.btns[id].ended_down = prev_btn.ended_down
|
||||
}
|
||||
|
||||
input.mouse.raw_pos = prev_input.mouse.raw_pos
|
||||
input.mouse.pos = prev_input.mouse.pos
|
||||
|
||||
@@ -200,7 +198,6 @@ poll_input_events :: proc( input, prev_input : ^InputState, input_events : Input
|
||||
if events.num > 0 {
|
||||
last_frame = peek_back( events).frame_id
|
||||
}
|
||||
|
||||
// No new events, don't update
|
||||
if last_frame == prev_frame do return
|
||||
|
||||
@@ -232,7 +229,6 @@ poll_input_events :: proc( input, prev_input : ^InputState, input_events : Input
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Iterate_Mouse_Events:
|
||||
{
|
||||
iter_obj := iterator( & mouse_events ); iter := & iter_obj
|
||||
@@ -241,17 +237,13 @@ poll_input_events :: proc( input, prev_input : ^InputState, input_events : Input
|
||||
if last_frame > event.frame_id {
|
||||
break
|
||||
}
|
||||
|
||||
process_digital_btn :: proc( btn : ^DigitalBtn, prev_btn : DigitalBtn, ended_down : b32 )
|
||||
{
|
||||
first_transition := btn.half_transitions == 0
|
||||
|
||||
btn.half_transitions += 1
|
||||
btn.ended_down = ended_down
|
||||
}
|
||||
|
||||
// logf("mouse event: %v", event)
|
||||
|
||||
// log_print_fmt("mouse event: %v", event)
|
||||
#partial switch event.type {
|
||||
case .Mouse_Pressed:
|
||||
btn := & input.mouse.btns[event.btn]
|
||||
@@ -277,22 +269,18 @@ poll_input_events :: proc( input, prev_input : ^InputState, input_events : Input
|
||||
input.mouse.delta = event.delta * { 1, -1 }
|
||||
}
|
||||
}
|
||||
|
||||
prev_frame = last_frame
|
||||
}
|
||||
|
||||
input_event_iter :: #force_inline proc () -> FRingBufferIterator(InputEvent) {
|
||||
return iterator_ringbuf_fixed( & memory.client_memory.input_events.events )
|
||||
}
|
||||
|
||||
input_key_event_iter :: #force_inline proc() -> FRingBufferIterator(InputKeyEvent) {
|
||||
return iterator_ringbuf_fixed( & memory.client_memory.input_events.key_events )
|
||||
}
|
||||
|
||||
input_mouse_event_iter :: #force_inline proc() -> FRingBufferIterator(InputMouseEvent) {
|
||||
return iterator_ringbuf_fixed( & memory.client_memory.input_events.mouse_events )
|
||||
}
|
||||
|
||||
input_codes_pressed_slice :: #force_inline proc() -> []rune {
|
||||
return to_slice( memory.client_memory.input_events.codes_pressed )
|
||||
}
|
||||
|
||||
@@ -61,6 +61,10 @@ import "core:time"
|
||||
tick_now :: time.tick_now
|
||||
|
||||
import "codebase:grime"
|
||||
ensure :: grime.ensure
|
||||
fatal :: grime.fatal
|
||||
verify :: grime.verify
|
||||
|
||||
Array :: grime.Array
|
||||
array_to_slice :: grime.array_to_slice
|
||||
array_append_array :: grime.array_append_array
|
||||
@@ -117,24 +121,24 @@ Tera :: Giga * 1024
|
||||
S_To_MS :: grime.S_To_MS
|
||||
|
||||
|
||||
ensure :: #force_inline proc( condition : b32, msg : string, location := #caller_location ) {
|
||||
if condition do return
|
||||
log_print( msg, LoggerLevel.Warning, location )
|
||||
debug_trap()
|
||||
}
|
||||
// TODO(Ed) : Setup exit codes!
|
||||
fatal :: #force_inline proc( msg : string, exit_code : int = -1, location := #caller_location ) {
|
||||
log_print( msg, LoggerLevel.Fatal, location )
|
||||
debug_trap()
|
||||
process_exit( exit_code )
|
||||
}
|
||||
// TODO(Ed) : Setup exit codes!
|
||||
verify :: #force_inline proc( condition : b32, msg : string, exit_code : int = -1, location := #caller_location ) {
|
||||
if condition do return
|
||||
log_print( msg, LoggerLevel.Fatal, location )
|
||||
debug_trap()
|
||||
process_exit( exit_code )
|
||||
}
|
||||
// ensure :: #force_inline proc( condition : b32, msg : string, location := #caller_location ) {
|
||||
// if condition do return
|
||||
// log_print( msg, LoggerLevel.Warning, location )
|
||||
// debug_trap()
|
||||
// }
|
||||
// // TODO(Ed) : Setup exit codes!
|
||||
// fatal :: #force_inline proc( msg : string, exit_code : int = -1, location := #caller_location ) {
|
||||
// log_print( msg, LoggerLevel.Fatal, location )
|
||||
// debug_trap()
|
||||
// process_exit( exit_code )
|
||||
// }
|
||||
// // TODO(Ed) : Setup exit codes!
|
||||
// verify :: #force_inline proc( condition : b32, msg : string, exit_code : int = -1, location := #caller_location ) {
|
||||
// if condition do return
|
||||
// log_print( msg, LoggerLevel.Fatal, location )
|
||||
// debug_trap()
|
||||
// process_exit( exit_code )
|
||||
// }
|
||||
|
||||
log_print :: proc( msg : string, level := LoggerLevel.Info, loc := #caller_location ) {
|
||||
context.allocator = odin_arena_allocator(& memory.host_scratch)
|
||||
|
||||
@@ -216,8 +216,8 @@ push-location $path_root
|
||||
$build_args += $flag_microarch_zen5
|
||||
$build_args += $flag_use_separate_modules
|
||||
$build_args += $flag_thread_count + $CoreCount_Physical
|
||||
$build_args += $flag_optimize_none
|
||||
# $build_args += $flag_optimize_minimal
|
||||
# $build_args += $flag_optimize_none
|
||||
$build_args += $flag_optimize_minimal
|
||||
# $build_args += $flag_optimize_speed
|
||||
# $build_args += $falg_optimize_aggressive
|
||||
$build_args += $flag_debug
|
||||
|
||||
@@ -12,6 +12,8 @@ $url_odin_repo = 'https://github.com/Ed94/Odin.git'
|
||||
$url_sokol = 'https://github.com/Ed94/sokol-odin.git'
|
||||
$url_sokol_tools = 'https://github.com/floooh/sokol-tools-bin.git'
|
||||
|
||||
# TODO(Ed): https://github.com/karl-zylinski/odin-handle-map
|
||||
|
||||
$path_harfbuzz = join-path $path_thirdparty 'harfbuzz'
|
||||
$path_ini_parser = join-path $path_thirdparty 'ini'
|
||||
$path_odin = join-path $path_toolchain 'Odin'
|
||||
|
||||
Reference in New Issue
Block a user