HandmadeHero/project/dependencies/JoyShockLibrary/JoyShock.cpp
Ed_ d7399149bc Day 6 Bonus: Dualsense Edge support!
I had to temporarily make my own binaries for the JoyShockLibrary but it works!
2023-09-09 20:14:40 -04:00

1565 lines
47 KiB
C++

#pragma once
#include "JoyShockLibrary.h"
#include <bitset>
#include "hidapi.h"
#include <chrono>
#include <thread>
#include <unordered_map>
#include <atomic>
#include "tools.cpp"
#include <cstring>
#ifdef __GNUC__
#define _wcsdup wcsdup
#endif
enum ControllerType { n_switch, s_ds4, s_ds };
// PS5 stuff
#define DS_VENDOR 0x054C
#define DS_USB 0x0CE6
#define DS_USB_V2 0x0DF2 // DualSense Edge
// PS4 stuff
// http://www.psdevwiki.com/ps4/DS4-USB
// http://www.psdevwiki.com/ps4/DS4-BT
// http://eleccelerator.com/wiki/index.php?title=DualShock_4
// and a little bit of https://github.com/chrippa/ds4drv
#define DS4_VENDOR 0x054C
#define DS4_USB 0x05C4
#define DS4_USB_V2 0x09CC
#define DS4_USB_DONGLE 0x0BA0
#define DS4_BT 0x081F
// DS4 compatible controllers
#define BROOK_DS4_VENDOR 0x0C12
#define BROOK_DS4_USB 0x0E20
// Joycon and Pro conroller stuff is mostly from
// https://github.com/mfosse/JoyCon-Driver
// https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering/
#define JOYCON_VENDOR 0x057e
#define JOYCON_L_BT 0x2006
#define JOYCON_R_BT 0x2007
#define PRO_CONTROLLER 0x2009
#define JOYCON_CHARGING_GRIP 0x200e
#define L_OR_R(lr) (lr == 1 ? 'L' : (lr == 2 ? 'R' : '?'))
class JoyShock {
public:
hid_device * handle;
int intHandle = 0;
std::string path;
wchar_t *serial;
std::string name;
int deviceNumber = 0;// left(0) or right(1) vjoy
int left_right = 0;// 1: left joycon, 2: right joycon, 3: pro controller
std::chrono::steady_clock::time_point last_polled;
float delta_time = 1.0;
JOY_SHOCK_STATE simple_state = {};
JOY_SHOCK_STATE last_simple_state = {};
IMU_STATE imu_state = {};
IMU_STATE last_imu_state = {};
TOUCH_STATE touch_state = {};
TOUCH_STATE last_touch_state = {};
GamepadMotion motion;
float cumulative_gyro_x = 0.f;
float cumulative_gyro_y = 0.f;
float cumulative_gyro_z = 0.f;
int num_cumulative_gyro_samples = 0;
int gyroSpace = 0;
std::mutex modifying_lock;
int8_t dstick;
uint8_t battery;
int global_count = 0;
// calibration data:
struct brcm_hdr {
uint8_t cmd;
uint8_t rumble[9];
};
struct brcm_cmd_01 {
uint8_t subcmd;
uint32_t offset;
uint8_t size;
};
int timing_byte = 0x0;
float acc_cal_coeff[3] = {0.0f, 0.0f, 0.0f};
float gyro_cal_coeff[3] = {0.0f, 0.0f, 0.0f};
float cal_x[1] = { 0.0f };
float cal_y[1] = { 0.0f };
bool initialised = false;
bool has_user_cal_stick_l = false;
bool has_user_cal_stick_r = false;
bool has_user_cal_sensor = false;
ControllerType controller_type = ControllerType::n_switch;
bool is_usb = false;
unsigned char small_rumble = 0;
unsigned char big_rumble = 0;
unsigned char led_r = 0;
unsigned char led_g = 0;
unsigned char led_b = 0;
unsigned int body_colour = 0xFFFFFF;
unsigned int button_colour = 0xFFFFFF;
unsigned int left_grip_colour = 0xFFFFFF;
unsigned int right_grip_colour = 0xFFFFFF;
int player_number = 0;
int reuse_counter = 0;
bool cancel_thread = false;
bool delete_on_finish = false;
bool remove_on_finish = true;
std::thread* thread = nullptr;
// for calibration:
bool use_continuous_calibration = false;
bool cue_motion_reset = false;
unsigned char factory_stick_cal[0x12];
unsigned char device_colours[0xC];
unsigned char user_stick_cal[0x16];
unsigned char sensor_model[0x6];
unsigned char stick_model[0x24];
unsigned char factory_sensor_cal[0x18];
unsigned char user_sensor_cal[0x1A];
uint16_t factory_sensor_cal_calm[0xC];
uint16_t user_sensor_cal_calm[0xC];
int16_t sensor_cal[0x2][0x3];
uint16_t stick_cal_x_l[0x3];
uint16_t stick_cal_y_l[0x3];
uint16_t stick_cal_x_r[0x3];
uint16_t stick_cal_y_r[0x3];
uint32_t crc_table[256] = {
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA,
0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940,
0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116,
0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A,
0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818,
0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086,
0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4,
0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE,
0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252,
0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60,
0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04,
0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E,
0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0,
0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6,
0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
};
//// https://docs.microsoft.com/en-us/openspecs/office_protocols/ms-abs/06966aa2-70da-4bf9-8448-3355f277cd77
uint32_t crc_32(unsigned char* buf, int length) {
uint32_t result = 0xFFFFFFFF;
int index = 0;
while (index < length) {
result = crc_table[(result & 0xFF) ^ buf[index]] ^ (result >> 8);
index++;
}
return result ^ 0xFFFFFFFF;
}
void enable_gyro_ds4_bt(unsigned char *buf, int bufLength)
{
// gyro is enabled by getting feature report 0x05 on BT controllers.
// in addition, this request is also responsible for getting current calibration info.
buf[0] = 0x05; // controller calibration request for BT
hid_get_feature_report(handle, buf, 41);
//hid_write(handle, buf, 38);
//hid_read_timeout(handle, buf, bufLength, 100);
}
public:
void init(struct hid_device_info *dev, hid_device* inHandle, int uniqueHandle, const std::string &inPath) {
this->path = inPath;
if (dev->product_id == JOYCON_CHARGING_GRIP) {
if (dev->interface_number == 0 || dev->interface_number == -1) {
this->name = std::string("Joy-Con (R)");
this->left_right = 2;// right joycon
this->is_usb = true;
}
else if (dev->interface_number == 1) {
this->name = std::string("Joy-Con (L)");
this->left_right = 1;// left joycon
this->is_usb = true;
}
}
if (dev->product_id == JOYCON_L_BT) {
this->name = std::string("Joy-Con (L)");
this->left_right = 1;// left joycon
}
else if (dev->product_id == JOYCON_R_BT) {
this->name = std::string("Joy-Con (R)");
this->left_right = 2;// right joycon
}
else if (dev->product_id == PRO_CONTROLLER) {
this->name = std::string("Pro Controller");
this->left_right = 3;// left joycon
}
if (dev->product_id == DS4_BT ||
dev->product_id == DS4_USB ||
dev->product_id == DS4_USB_DONGLE ||
dev->product_id == DS4_USB_V2) {
this->name = std::string("DualShock 4");
this->left_right = 3; // left and right?
this->controller_type = ControllerType::s_ds4;
this->is_usb = (dev->product_id != DS4_BT);
}
if (dev->product_id == BROOK_DS4_USB) {
this->name = std::string("DualShock 4");
this->left_right = 3; // left and right?
this->controller_type = ControllerType::s_ds4;
this->is_usb = true; // this controller is wired
}
if (dev->product_id == DS_USB ||
dev->product_id == DS_USB_V2) {
this->name = std::string("DualSense");
this->left_right = 3; // left and right?
this->controller_type = ControllerType::s_ds;
this->is_usb = true; // for now, only usb
}
this->serial = _wcsdup(dev->serial_number);
this->intHandle = uniqueHandle;
//printf("Found device %c: %ls %s\n", L_OR_R(this->left_right), this->serial, dev->path);
this->handle = inHandle;
if (this->controller_type == ControllerType::s_ds4) {
unsigned char buf[64];
memset(buf, 0, 64);
enable_gyro_ds4_bt(buf, 64);
hid_read_timeout(handle, buf, 64, 100);
// choose between BT and USB
if (buf[0] == 0x11) {
this->is_usb = false;
}
}
else if (this->controller_type == ControllerType::s_ds) {
unsigned char buf[64];
memset(buf, 0, 64);
// We can reuse the same command on the DS5 to enable Full Mode.
enable_gyro_ds4_bt(buf, 64);
hid_read_timeout(handle, buf, 64, 100);
// The DS's protocol is literally so similar to the DS4 that we can reuse the same reports to get the same results.
// Meet the new boss - the same as the old boss.
if (buf[0] == 0x31) {
this->is_usb = false;
}
}
}
JoyShock(struct hid_device_info* dev, hid_device* inHandle, int uniqueHandle, const std::string& inPath) {
init(dev, inHandle, uniqueHandle, inPath);
// initialise continuous calibration windows
reset_continuous_calibration();
}
~JoyShock() {
if (handle != nullptr) {
hid_close(handle);
}
}
void push_cumulative_gyro(float gyroX, float gyroY, float gyroZ) {
modifying_lock.lock();
if (num_cumulative_gyro_samples == 0) {
cumulative_gyro_x = 0.f;
cumulative_gyro_y = 0.f;
cumulative_gyro_z = 0.f;
}
cumulative_gyro_x += gyroX;
cumulative_gyro_y += gyroY;
cumulative_gyro_z += gyroZ;
num_cumulative_gyro_samples++;
modifying_lock.unlock();
}
void get_and_flush_cumulative_gyro(float& gyroX, float& gyroY, float& gyroZ) {
modifying_lock.lock();
if (num_cumulative_gyro_samples == 0) {
gyroX = cumulative_gyro_x;
gyroX = cumulative_gyro_y;
gyroX = cumulative_gyro_z;
}
else {
gyroX = cumulative_gyro_x / num_cumulative_gyro_samples;
gyroY = cumulative_gyro_y / num_cumulative_gyro_samples;
gyroZ = cumulative_gyro_z / num_cumulative_gyro_samples;
num_cumulative_gyro_samples = 0;
// so that we don't return zeroes before we receive a new sample, store this for next time:
cumulative_gyro_x = gyroX;
cumulative_gyro_y = gyroY;
cumulative_gyro_z = gyroZ;
}
float gravX, gravY, gravZ;
motion.GetGravity(gravX, gravY, gravZ);
modifying_lock.unlock();
switch (gyroSpace)
{
default:
case 0:
break;
case 1:
GamepadMotion::CalculateWorldSpaceGyro(gyroX, gyroY, gyroX, gyroY, gyroZ, gravX, gravY, gravZ);
gyroZ = 0.f;
break;
case 2:
GamepadMotion::CalculatePlayerSpaceGyro(gyroX, gyroY, gyroX, gyroY, gyroZ, gravX, gravY, gravZ);
gyroZ = 0.f;
break;
}
}
void reset_continuous_calibration() {
modifying_lock.lock();
motion.ResetContinuousCalibration();
modifying_lock.unlock();
}
void push_sensor_samples(float gyroX, float gyroY, float gyroZ, float accelX, float accelY, float accelZ, float deltaTime) {
motion.ProcessMotion(gyroX, gyroY, gyroZ, accelX, accelY, accelZ, deltaTime);
}
void get_calibrated_gyro(float& gyroX, float& gyroY, float& gyroZ)
{
motion.GetCalibratedGyro(gyroX, gyroY, gyroZ);
}
MOTION_STATE get_motion_state()
{
MOTION_STATE motionState = MOTION_STATE();
modifying_lock.lock();
motion.GetProcessedAcceleration(motionState.accelX, motionState.accelY, motionState.accelZ);
motion.GetOrientation(motionState.quatW, motionState.quatX, motionState.quatY, motionState.quatZ);
motion.GetGravity(motionState.gravX, motionState.gravY, motionState.gravZ);
modifying_lock.unlock();
return motionState;
}
IMU_STATE get_transformed_imu_state(IMU_STATE& imu_state)
{
float gyroX, gyroY, gyroZ, gravX, gravY, gravZ;
modifying_lock.lock();
motion.GetGravity(gravX, gravY, gravZ);
gyroX = imu_state.gyroX;
gyroY = imu_state.gyroY;
gyroZ = imu_state.gyroZ;
modifying_lock.unlock();
switch (gyroSpace)
{
default:
case 0:
break;
case 1:
GamepadMotion::CalculateWorldSpaceGyro(gyroX, gyroY, gyroX, gyroY, gyroZ, gravX, gravY, gravZ);
gyroZ = 0.f;
break;
case 2:
GamepadMotion::CalculatePlayerSpaceGyro(gyroX, gyroY, gyroX, gyroY, gyroZ, gravX, gravY, gravZ);
gyroZ = 0.f;
break;
}
IMU_STATE transformedState = IMU_STATE();
transformedState.accelX = imu_state.accelX;
transformedState.accelY = imu_state.accelY;
transformedState.accelZ = imu_state.accelZ;
transformedState.gyroX = gyroX;
transformedState.gyroY = gyroY;
transformedState.gyroZ = gyroZ;
return transformedState;
}
bool hid_exchange(hid_device *handle, unsigned char *buf, int len) {
if (!handle) return false;
int res;
res = hid_write(handle, buf, len);
res = hid_read_timeout(handle, buf, 0x40, 1000);
if (res == 0)
{
return false;
}
return true;
}
bool send_command(int command, uint8_t *data, int len) {
unsigned char buf[0x40];
memset(buf, 0, 0x40);
if (is_usb) {
buf[0x00] = 0x80;
buf[0x01] = 0x92;
buf[0x03] = 0x31;
}
buf[is_usb ? 0x8 : 0x0] = command;
if (data != nullptr && len != 0) {
memcpy(buf + (is_usb ? 0x9 : 0x1), data, len);
}
if (!hid_exchange(this->handle, buf, len + (is_usb ? 0x9 : 0x1)))
{
return false;
}
if (data) {
memcpy(data, buf, 0x40);
}
return true;
}
bool send_subcommand(int command, int subcommand, uint8_t *data, int len) {
unsigned char buf[0x40];
memset(buf, 0, 0x40);
uint8_t rumble_base[9] = { std::uint8_t((++global_count) & 0xF), 0x00, 0x01, 0x40, 0x40, 0x00, 0x01, 0x40, 0x40 };
memcpy(buf, rumble_base, 9);
if (global_count > 0xF) {
global_count = 0x0;
}
// set neutral rumble base only if the command is vibrate (0x01)
// if set when other commands are set, might cause the command to be misread and not executed
//if (subcommand == 0x01) {
// uint8_t rumble_base[9] = { (++global_count) & 0xF, 0x00, 0x01, 0x40, 0x40, 0x00, 0x01, 0x40, 0x40 };
// memcpy(buf + 10, rumble_base, 9);
//}
buf[9] = subcommand;
if (data && len != 0) {
memcpy(buf + 10, data, len);
}
if (!send_command(command, buf, 10 + len))
{
return false;
}
if (data) {
memcpy(data, buf, 0x40); //TODO
}
return true;
}
void rumble(int frequency, int intensity) {
unsigned char buf[0x400];
memset(buf, 0, 0x40);
// intensity: (0, 8)
// frequency: (0, 255)
// X AA BB Y CC DD
//[0 1 x40 x40 0 1 x40 x40] is neutral.
//for (int j = 0; j <= 8; j++) {
// buf[1 + intensity] = 0x1;//(i + j) & 0xFF;
//}
buf[1 + 0 + intensity] = 0x1;
buf[1 + 4 + intensity] = 0x1;
// Set frequency to increase
if (this->left_right == 1) {
buf[1 + 0] = frequency;// (0, 255)
}
else {
buf[1 + 4] = frequency;// (0, 255)
}
// set non-blocking:
hid_set_nonblocking(this->handle, 1);
send_command(0x10, (uint8_t*)buf, 0x9);
}
bool get_switch_controller_info() {
bool result = false;
memset(factory_stick_cal, 0, 0x12);
memset(device_colours, 0, 0xC);
memset(user_stick_cal, 0, 0x16);
memset(sensor_model, 0, 0x6);
memset(stick_model, 0, 0x12);
memset(factory_sensor_cal, 0, 0x18);
memset(user_sensor_cal, 0, 0x1A);
memset(factory_sensor_cal_calm, 0, 0xC);
memset(user_sensor_cal_calm, 0, 0xC);
memset(sensor_cal, 0, sizeof(sensor_cal));
memset(stick_cal_x_l, 0, sizeof(stick_cal_x_l));
memset(stick_cal_y_l, 0, sizeof(stick_cal_y_l));
memset(stick_cal_x_r, 0, sizeof(stick_cal_x_r));
memset(stick_cal_y_r, 0, sizeof(stick_cal_y_r));
if (!get_spi_data(0x6020, 0x18, factory_sensor_cal)) { return false; }
if (!get_spi_data(0x603D, 0x12, factory_stick_cal)) { return false; }
if (!get_spi_data(0x6050, 0xC, device_colours)) { return false; }
if (!get_spi_data(0x6080, 0x6, sensor_model)) { return false; }
if (!get_spi_data(0x6086, 0x12, stick_model)) { return false; }
if (!get_spi_data(0x6098, 0x12, &stick_model[0x12])) { return false; }
if (!get_spi_data(0x8010, 0x16, user_stick_cal)) { return false; }
if (!get_spi_data(0x8026, 0x1A, user_sensor_cal)) { return false; }
// get stick calibration data:
// factory calibration:
if (this->left_right == 1 || this->left_right == 3) {
stick_cal_x_l[1] = (factory_stick_cal[4] << 8) & 0xF00 | factory_stick_cal[3];
stick_cal_y_l[1] = (factory_stick_cal[5] << 4) | (factory_stick_cal[4] >> 4);
stick_cal_x_l[0] = stick_cal_x_l[1] - ((factory_stick_cal[7] << 8) & 0xF00 | factory_stick_cal[6]);
stick_cal_y_l[0] = stick_cal_y_l[1] - ((factory_stick_cal[8] << 4) | (factory_stick_cal[7] >> 4));
stick_cal_x_l[2] = stick_cal_x_l[1] + ((factory_stick_cal[1] << 8) & 0xF00 | factory_stick_cal[0]);
stick_cal_y_l[2] = stick_cal_y_l[1] + ((factory_stick_cal[2] << 4) | (factory_stick_cal[2] >> 4));
}
if (this->left_right == 2 || this->left_right == 3) {
stick_cal_x_r[1] = (factory_stick_cal[10] << 8) & 0xF00 | factory_stick_cal[9];
stick_cal_y_r[1] = (factory_stick_cal[11] << 4) | (factory_stick_cal[10] >> 4);
stick_cal_x_r[0] = stick_cal_x_r[1] - ((factory_stick_cal[13] << 8) & 0xF00 | factory_stick_cal[12]);
stick_cal_y_r[0] = stick_cal_y_r[1] - ((factory_stick_cal[14] << 4) | (factory_stick_cal[13] >> 4));
stick_cal_x_r[2] = stick_cal_x_r[1] + ((factory_stick_cal[16] << 8) & 0xF00 | factory_stick_cal[15]);
stick_cal_y_r[2] = stick_cal_y_r[1] + ((factory_stick_cal[17] << 4) | (factory_stick_cal[16] >> 4));
}
// if there is user calibration data:
if ((user_stick_cal[0] | user_stick_cal[1] << 8) == 0xA1B2) {
stick_cal_x_l[1] = (user_stick_cal[6] << 8) & 0xF00 | user_stick_cal[5];
stick_cal_y_l[1] = (user_stick_cal[7] << 4) | (user_stick_cal[6] >> 4);
stick_cal_x_l[0] = stick_cal_x_l[1] - ((user_stick_cal[9] << 8) & 0xF00 | user_stick_cal[8]);
stick_cal_y_l[0] = stick_cal_y_l[1] - ((user_stick_cal[10] << 4) | (user_stick_cal[9] >> 4));
stick_cal_x_l[2] = stick_cal_x_l[1] + ((user_stick_cal[3] << 8) & 0xF00 | user_stick_cal[2]);
stick_cal_y_l[2] = stick_cal_y_l[1] + ((user_stick_cal[4] << 4) | (user_stick_cal[3] >> 4));
//FormJoy::myform1->textBox_lstick_ucal->Text = String::Format(L"L Stick User:\r\nCenter X,Y: ({0:X3}, {1:X3})\r\nX: [{2:X3} - {4:X3}] Y: [{3:X3} - {5:X3}]",
//stick_cal_x_l[1], stick_cal_y_l[1], stick_cal_x_l[0], stick_cal_y_l[0], stick_cal_x_l[2], stick_cal_y_l[2]);
}
else {
//FormJoy::myform1->textBox_lstick_ucal->Text = L"L Stick User:\r\nNo calibration";
//printf("no user Calibration data for left stick.\n");
}
if ((user_stick_cal[0xB] | user_stick_cal[0xC] << 8) == 0xA1B2) {
stick_cal_x_r[1] = (user_stick_cal[14] << 8) & 0xF00 | user_stick_cal[13];
stick_cal_y_r[1] = (user_stick_cal[15] << 4) | (user_stick_cal[14] >> 4);
stick_cal_x_r[0] = stick_cal_x_r[1] - ((user_stick_cal[17] << 8) & 0xF00 | user_stick_cal[16]);
stick_cal_y_r[0] = stick_cal_y_r[1] - ((user_stick_cal[18] << 4) | (user_stick_cal[17] >> 4));
stick_cal_x_r[2] = stick_cal_x_r[1] + ((user_stick_cal[20] << 8) & 0xF00 | user_stick_cal[19]);
stick_cal_y_r[2] = stick_cal_y_r[1] + ((user_stick_cal[21] << 4) | (user_stick_cal[20] >> 4));
//FormJoy::myform1->textBox_rstick_ucal->Text = String::Format(L"R Stick User:\r\nCenter X,Y: ({0:X3}, {1:X3})\r\nX: [{2:X3} - {4:X3}] Y: [{3:X3} - {5:X3}]",
//stick_cal_x_r[1], stick_cal_y_r[1], stick_cal_x_r[0], stick_cal_y_r[0], stick_cal_x_r[2], stick_cal_y_r[2]);
}
else {
//FormJoy::myform1->textBox_rstick_ucal->Text = L"R Stick User:\r\nNo calibration";
//printf("no user Calibration data for right stick.\n");
}
// get gyro / accelerometer calibration data:
// factory calibration:
// Acc cal origin position
sensor_cal[0][0] = uint16_to_int16(factory_sensor_cal[0] | factory_sensor_cal[1] << 8);
sensor_cal[0][1] = uint16_to_int16(factory_sensor_cal[2] | factory_sensor_cal[3] << 8);
sensor_cal[0][2] = uint16_to_int16(factory_sensor_cal[4] | factory_sensor_cal[5] << 8);
// Gyro cal origin position
sensor_cal[1][0] = uint16_to_int16(factory_sensor_cal[0xC] | factory_sensor_cal[0xD] << 8);
sensor_cal[1][1] = uint16_to_int16(factory_sensor_cal[0xE] | factory_sensor_cal[0xF] << 8);
sensor_cal[1][2] = uint16_to_int16(factory_sensor_cal[0x10] | factory_sensor_cal[0x11] << 8);
//hex_dump(user_sensor_cal, 0x14);
// user calibration:
if ((user_sensor_cal[0x0] | user_sensor_cal[0x1] << 8) == 0xA1B2) {
//printf("User calibration available\n");
//if (true) {
//FormJoy::myform1->textBox_6axis_ucal->Text = L"6-Axis User (XYZ):\r\nAcc: ";
//for (int i = 0; i < 0xC; i = i + 6) {
// FormJoy::myform1->textBox_6axis_ucal->Text += String::Format(L"{0:X4} {1:X4} {2:X4}\r\n ",
// user_sensor_cal[i + 2] | user_sensor_cal[i + 3] << 8,
// user_sensor_cal[i + 4] | user_sensor_cal[i + 5] << 8,
// user_sensor_cal[i + 6] | user_sensor_cal[i + 7] << 8);
//}
// Acc cal origin position
sensor_cal[0][0] = uint16_to_int16(user_sensor_cal[2] | user_sensor_cal[3] << 8);
sensor_cal[0][1] = uint16_to_int16(user_sensor_cal[4] | user_sensor_cal[5] << 8);
sensor_cal[0][2] = uint16_to_int16(user_sensor_cal[6] | user_sensor_cal[7] << 8);
//FormJoy::myform1->textBox_6axis_ucal->Text += L"\r\nGyro: ";
//for (int i = 0xC; i < 0x18; i = i + 6) {
// FormJoy::myform1->textBox_6axis_ucal->Text += String::Format(L"{0:X4} {1:X4} {2:X4}\r\n ",
// user_sensor_cal[i + 2] | user_sensor_cal[i + 3] << 8,
// user_sensor_cal[i + 4] | user_sensor_cal[i + 5] << 8,
// user_sensor_cal[i + 6] | user_sensor_cal[i + 7] << 8);
//}
// Gyro cal origin position
sensor_cal[1][0] = uint16_to_int16(user_sensor_cal[0xE] | user_sensor_cal[0xF] << 8);
sensor_cal[1][1] = uint16_to_int16(user_sensor_cal[0x10] | user_sensor_cal[0x11] << 8);
sensor_cal[1][2] = uint16_to_int16(user_sensor_cal[0x12] | user_sensor_cal[0x13] << 8);
}
else {
//FormJoy::myform1->textBox_6axis_ucal->Text = L"\r\n\r\nUser:\r\nNo calibration";
}
// Internal scaling and unit conversions as per https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering/blob/master/imu_sensor_notes.md
// Use SPI calibration and convert them to Gs
acc_cal_coeff[0] = (float)(1.0 / (float)(16384 - uint16_to_int16(sensor_cal[0][0]))) * 4.0f;
acc_cal_coeff[1] = (float)(1.0 / (float)(16384 - uint16_to_int16(sensor_cal[0][1]))) * 4.0f;
acc_cal_coeff[2] = (float)(1.0 / (float)(16384 - uint16_to_int16(sensor_cal[0][2]))) * 4.0f;
// Use SPI calibration and convert them to degrees per second
gyro_cal_coeff[0] = (float)(936.0 / (float)(13371 - uint16_to_int16(sensor_cal[1][0])));
gyro_cal_coeff[1] = (float)(936.0 / (float)(13371 - uint16_to_int16(sensor_cal[1][1])));
gyro_cal_coeff[2] = (float)(936.0 / (float)(13371 - uint16_to_int16(sensor_cal[1][2])));
// Device colours
body_colour =
(((int)device_colours[0]) << 16) +
(((int)device_colours[1]) << 8) +
(((int)device_colours[2]));
button_colour =
(((int)device_colours[3]) << 16) +
(((int)device_colours[4]) << 8) +
(((int)device_colours[5]));
left_grip_colour =
(((int)device_colours[6]) << 16) +
(((int)device_colours[7]) << 8) +
(((int)device_colours[8]));
right_grip_colour =
(((int)device_colours[9]) << 16) +
(((int)device_colours[10]) << 8) +
(((int)device_colours[11]));
printf("Body: %#08x; Buttons: %#08x; Left Grip: %#08x; Right Grip: %#08x;\n",
body_colour,
button_colour,
left_grip_colour,
right_grip_colour);
//hex_dump(reinterpret_cast<unsigned char*>(sensor_cal[0]), 6);
//hex_dump(reinterpret_cast<unsigned char*>(sensor_cal[1]), 6);
return true;
}
void enable_IMU(unsigned char *buf, int bufLength) {
memset(buf, 0, bufLength);
// Enable IMU data
printf("Enabling IMU data...\n");
if (controller_type == ControllerType::s_ds4)
{
if (is_usb)
{
init_ds4_bt();
enable_gyro_ds4_bt(buf, bufLength);
}
else
{
init_ds4_usb();
}
}
else
{
buf[0] = 0x01; // Enabled
send_subcommand(0x1, 0x40, buf, 1);
}
}
bool init_usb() {
unsigned char buf[0x400];
memset(buf, 0, 0x400);
// set blocking:
// this insures we get the MAC Address
hid_set_nonblocking(this->handle, 0);
//Get MAC Left
printf("Getting MAC...\n");
memset(buf, 0x00, 0x40);
buf[0] = 0x80;
buf[1] = 0x01;
hid_exchange(this->handle, buf, 0x2);
//if (buf[2] == 0x3) {
// printf("%s disconnected!\n", this->name.c_str());
//}
//else {
// printf("Found %s, MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", this->name.c_str(), buf[9], buf[8], buf[7], buf[6], buf[5], buf[4]);
//}
// set non-blocking:
//hid_set_nonblocking(jc->handle, 1);
// Do handshaking
printf("Doing handshake...\n");
memset(buf, 0x00, 0x40);
buf[0] = 0x80;
buf[1] = 0x02;
hid_exchange(this->handle, buf, 0x2);
// Switch baudrate to 3Mbit
printf("Switching baudrate...\n");
memset(buf, 0x00, 0x40);
buf[0] = 0x80;
buf[1] = 0x03;
hid_exchange(this->handle, buf, 0x2);
//Do handshaking again at new baudrate so the firmware pulls pin 3 low?
printf("Doing handshake...\n");
memset(buf, 0x00, 0x40);
buf[0] = 0x80;
buf[1] = 0x02;
hid_exchange(this->handle, buf, 0x2);
//Only talk HID from now on
printf("Only talk HID...\n");
memset(buf, 0x00, 0x40);
buf[0] = 0x80;
buf[1] = 0x04;
hid_exchange(this->handle, buf, 0x2);
// Enable vibration
printf("Enabling vibration...\n");
memset(buf, 0x00, 0x400);
buf[0] = 0x01; // Enabled
send_subcommand(0x1, 0x48, buf, 1);
enable_IMU(buf, 0x400);
printf("Getting calibration data...\n");
bool result = get_switch_controller_info();
if (result)
{
printf("Successfully initialized %s!\n", this->name.c_str());
}
else
{
printf("Could not initialise %s! Will try again later.\n", this->name.c_str());
}
return result;
}
bool init_bt() {
bool result = true;
unsigned char buf[0x40];
memset(buf, 0, 0x40);
printf("Initialising Bluetooth connection...\n");
// set blocking to ensure command is recieved:
hid_set_nonblocking(this->handle, 0);
// first, check if this is a USB connection
buf[0] = 0x80;
buf[1] = 0x01;
hid_write(this->handle, buf, 2);
// wait for up to 5 messages for a USB acknowledgement
for (int idx = 0; idx < 5; idx++)
{
if (hid_read_timeout(this->handle, buf, 0x40, 200) && buf[0] == 0x81)
{
//printf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
// buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10]);
printf("Attempting USB connection\n");
// it's usb!
is_usb = true;
init_usb();
return 1;
break;
}
//printf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
// buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10]);
printf("Not a USB response...\n");
}
memset(buf, 0, 0x40);
//if (hid_exchange(this->handle, buf, 2))
//{
// printf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
// buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10]);
// printf("Attempting USB connection\n");
// // it's usb!
// is_usb = true;
//
// init_usb();
// return 1;
//}
buf[1] = 0x00;
// Enable vibration
printf("Enabling vibration...\n");
buf[0] = 0x01; // Enabled
send_subcommand(0x1, 0x48, buf, 1);
//printf("Set vibration\n");
// Enable IMU data
enable_IMU(buf, 0x40);
// Set input report mode (to push at 60hz)
// x00 Active polling mode for IR camera data. Answers with more than 300 bytes ID 31 packet
// x01 Active polling mode
// x02 Active polling mode for IR camera data.Special IR mode or before configuring it ?
// x21 Unknown.An input report with this ID has pairing or mcu data or serial flash data or device info
// x23 MCU update input report ?
// 30 NPad standard mode. Pushes current state @60Hz. Default in SDK if arg is not in the list
// 31 NFC mode. Pushes large packets @60Hz
printf("Set input report mode to 0x30...\n");
buf[0] = 0x30;
send_subcommand(0x01, 0x03, buf, 1);
// @CTCaer
// get calibration data:
printf("Getting calibration data...\n");
result = get_switch_controller_info();
return result;
}
void init_ds4_bt() {
printf("initialise, set colour\n");
unsigned char buf[78];
memset(buf, 0, 78);
//buf[0] = 0x11;
//buf[1] = 0x80;
//buf[3] = 0xff;
// https://github.com/Ryochan7/DS4Windows/blob/jay/DS4Windows/DS4Library/DS4Device.cs
buf[0] = 0x15;
buf[1] = 0xC0 | 1;
buf[2] = 0xA0;
buf[3] = 0xf7;
buf[4] = 0x04;
//// https://github.com/chrippa/ds4drv/blob/master/ds4drv/device.py
//buf[0] = 0xa2; // 0x80;
////buf[1] = 0xff;
//// trying to do colour stuff
//// http://eleccelerator.com/wiki/index.php?title=DualShock_4
//// this is only for bt
//buf[1] = 0x11;
//buf[2] = 0xc0;
//buf[3] = 0x20;
//buf[4] = 0xf3;
//buf[5] = 0x04;
//// rumble
//buf[7] = 0xFF;
//buf[8] = 0x00;
//// colour
//buf[9] = 0x00;
//buf[10] = 0x00;
//buf[11] = 0x00;
//// flash time
//buf[12] = 0xff;
//buf[13] = 0x00;
//// now we need a CRC-32 of previous bytes
//uint32_t crc = crc_32(buf, 75);
//buf[75] = (crc >> 24) & 0xFF;
//buf[76] = (crc >> 16) & 0xFF;
//buf[77] = (crc >> 8) & 0xFF;
//buf[78] = crc & 0xFF;
//// https://github.com/chrippa/ds4drv/blob/master/ds4drv/device.py
//buf[0] = 0x80;
//buf[1] = 0xff;
//// trying to do colour stuff
//// http://eleccelerator.com/wiki/index.php?title=DualShock_4
//// this is only for bt
//buf[2] = 0x11;
//// rumble
//buf[6] = 0xFF;
//buf[7] = 0xFF;
//// colour
//buf[8] = 0xFF; // 0x00;
//buf[9] = 0x80; // 0x00;
//buf[10] = 0x00;
//// flash time
//buf[11] = 0xff;
//buf[12] = 0x00;
//// now we need a CRC-32 of previous bytes
//uint32_t crc = crc_32(buf, 75);
//buf[75] = (crc >> 24) & 0xFF;
//buf[76] = (crc >> 16) & 0xFF;
//buf[77] = (crc >> 8) & 0xFF;
//buf[78] = crc & 0xFF;
// set blocking:
// this insures we get the MAC Address
hid_set_nonblocking(this->handle, 0);
hid_write(handle, buf, 78);
// initialise stuff
memset(factory_stick_cal, 0, 0x12);
memset(device_colours, 0, 0xC);
memset(user_stick_cal, 0, 0x16);
memset(sensor_model, 0, 0x6);
memset(stick_model, 0, 0x12);
memset(factory_sensor_cal, 0, 0x18);
memset(user_sensor_cal, 0, 0x1A);
memset(factory_sensor_cal_calm, 0, 0xC);
memset(user_sensor_cal_calm, 0, 0xC);
memset(sensor_cal, 0, sizeof(sensor_cal));
memset(stick_cal_x_l, 0, sizeof(stick_cal_x_l));
memset(stick_cal_y_l, 0, sizeof(stick_cal_y_l));
memset(stick_cal_x_r, 0, sizeof(stick_cal_x_r));
memset(stick_cal_y_r, 0, sizeof(stick_cal_y_r));
stick_cal_x_l[0] =
stick_cal_y_l[0] =
stick_cal_x_r[0] =
stick_cal_y_r[0] = 0;
stick_cal_x_l[1] =
stick_cal_y_l[1] =
stick_cal_x_r[1] =
stick_cal_y_r[1] = 127;
stick_cal_x_l[2] =
stick_cal_y_l[2] =
stick_cal_x_r[2] =
stick_cal_y_r[2] = 255;
//// Acc cal origin position
//sensor_cal[0][0] = 0;
//sensor_cal[0][1] = 0;
//sensor_cal[0][2] = 0;
//
//// Gyro cal origin position
//sensor_cal[1][0] = 0;
//sensor_cal[1][1] = 0;
//sensor_cal[1][2] = 0;
enable_gyro_ds4_bt(buf, 78);
initialised = true;
}
// placeholder to get things working quickly. overdue for a refactor
void init_ds_usb() {
// initialise stuff
memset(factory_stick_cal, 0, 0x12);
memset(device_colours, 0, 0xC);
memset(user_stick_cal, 0, 0x16);
memset(sensor_model, 0, 0x6);
memset(stick_model, 0, 0x12);
memset(factory_sensor_cal, 0, 0x18);
memset(user_sensor_cal, 0, 0x1A);
memset(factory_sensor_cal_calm, 0, 0xC);
memset(user_sensor_cal_calm, 0, 0xC);
memset(sensor_cal, 0, sizeof(sensor_cal));
memset(stick_cal_x_l, 0, sizeof(stick_cal_x_l));
memset(stick_cal_y_l, 0, sizeof(stick_cal_y_l));
memset(stick_cal_x_r, 0, sizeof(stick_cal_x_r));
memset(stick_cal_y_r, 0, sizeof(stick_cal_y_r));
stick_cal_x_l[0] =
stick_cal_y_l[0] =
stick_cal_x_r[0] =
stick_cal_y_r[0] = 0;
stick_cal_x_l[1] =
stick_cal_y_l[1] =
stick_cal_x_r[1] =
stick_cal_y_r[1] = 127;
stick_cal_x_l[2] =
stick_cal_y_l[2] =
stick_cal_x_r[2] =
stick_cal_y_r[2] = 255;
initialised = true;
}
// this is mostly copied from init_usb() below, but modified to speak DS4
void init_ds4_usb() {
unsigned char buf[31];
memset(buf, 0, 31);
// report id?
buf[0] = 0x05;
// I dunno what this is
buf[1] = 0xf7;
buf[2] = 0x04;
//// http://eleccelerator.com/wiki/index.php?title=DualShock_4
//// https://github.com/chrippa/ds4drv/blob/master/ds4drv/device.py
//// rumble
//buf[4] = 0x00;
//buf[5] = 0x00;
//// colour
//buf[6] = 0x00;
////buf[7] = 0xff;
//buf[7] = 0x00;
//buf[8] = 0x00;
//// flash time
//buf[9] = 0xff;
//buf[10] = 0x00;
// now we need a CRC-32 of previous bytes
//uint32_t = crc_32(buf, 75);
//buf[75] =
// set blocking:
// this insures we get the MAC Address
hid_set_nonblocking(this->handle, 0);
hid_write(handle, buf, 31);
// initialise stuff
memset(factory_stick_cal, 0, 0x12);
memset(device_colours, 0, 0xC);
memset(user_stick_cal, 0, 0x16);
memset(sensor_model, 0, 0x6);
memset(stick_model, 0, 0x12);
memset(factory_sensor_cal, 0, 0x18);
memset(user_sensor_cal, 0, 0x1A);
memset(factory_sensor_cal_calm, 0, 0xC);
memset(user_sensor_cal_calm, 0, 0xC);
memset(sensor_cal, 0, sizeof(sensor_cal));
memset(stick_cal_x_l, 0, sizeof(stick_cal_x_l));
memset(stick_cal_y_l, 0, sizeof(stick_cal_y_l));
memset(stick_cal_x_r, 0, sizeof(stick_cal_x_r));
memset(stick_cal_y_r, 0, sizeof(stick_cal_y_r));
stick_cal_x_l[0] =
stick_cal_y_l[0] =
stick_cal_x_r[0] =
stick_cal_y_r[0] = 0;
stick_cal_x_l[1] =
stick_cal_y_l[1] =
stick_cal_x_r[1] =
stick_cal_y_r[1] = 127;
stick_cal_x_l[2] =
stick_cal_y_l[2] =
stick_cal_x_r[2] =
stick_cal_y_r[2] = 255;
//// Acc cal origin position
//sensor_cal[0][0] = 0;
//sensor_cal[0][1] = 0;
//sensor_cal[0][2] = 0;
//
//// Gyro cal origin position
//sensor_cal[1][0] = 0;
//sensor_cal[1][1] = 0;
//sensor_cal[1][2] = 0;
initialised = true;
}
void deinit_ds4_bt() {
// TODO. For now, init, which stops rumbling and disables light
init_ds4_bt();
initialised = false;
}
// TODO: implement this
void deinit_ds4_usb() {
unsigned char buf[40];
memset(buf, 0, 40);
// report id?
buf[0] = 0x05;
// don't know what this is
buf[1] = 0xff;
// rumble
buf[4] = 0x00;
buf[5] = 0x00;
// colour
buf[6] = 0x00;
buf[7] = 0x00;
buf[8] = 0x00;
// flash time
buf[9] = 0x00;
buf[10] = 0x00;
// now we need a CRC-32 of previous bytes
//uint32_t = crc_32(buf, 75);
//buf[75] =
// set non-blocking
hid_set_nonblocking(this->handle, 1);
hid_write(handle, buf, 31);
initialised = false;
}
void deinit_usb() {
unsigned char buf[0x40];
memset(buf, 0x00, 0x40);
//Let the Joy-Con talk BT again
buf[0] = 0x80;
buf[1] = 0x05;
hid_set_nonblocking(this->handle, 1);
hid_write(handle, buf, 0x2);
initialised = false;
}
void set_ds5_rumble_light(unsigned char smallRumble, unsigned char bigRumble,
unsigned char colourR,
unsigned char colourG,
unsigned char colourB,
unsigned char playerlights) {
if(!is_usb) {
set_ds5_rumble_light_bt(smallRumble, bigRumble, colourR, colourG, colourB, playerlights);
}
else {
set_ds5_rumble_light_usb(smallRumble, bigRumble, colourR, colourG, colourB, playerlights);
}
}
void set_ds4_rumble_light(unsigned char smallRumble, unsigned char bigRumble,
unsigned char colourR,
unsigned char colourG,
unsigned char colourB) {
if (!is_usb) {
set_ds4_rumble_light_bt(smallRumble, bigRumble, colourR, colourG, colourB);
}
else {
set_ds4_rumble_light_usb(smallRumble, bigRumble, colourR, colourG, colourB);
}
}
void set_ds4_rumble_light_usb(unsigned char smallRumble, unsigned char bigRumble,
unsigned char colourR,
unsigned char colourG,
unsigned char colourB) {
// todo: based on bluetoothness, switch report id to 0x11, offset everything by 2 -- basically use init stuff as basis
unsigned char buf[40];
memset(buf, 0, 40);
// report id?
buf[0] = 0x05;
// don't know what this is
buf[1] = 0xff;
// rumble
buf[4] = smallRumble;
buf[5] = bigRumble;
// colour
buf[6] = colourR;
buf[7] = colourG;
buf[8] = colourB;
// flash time
buf[9] = 0xff;
buf[10] = 0x00;
// now we need a CRC-32 of previous bytes
//uint32_t = crc_32(buf, 75);
//buf[75] =
hid_write(handle, buf, 31);
}
void set_ds4_rumble_light_bt(unsigned char smallRumble, unsigned char bigRumble,
unsigned char colourR,
unsigned char colourG,
unsigned char colourB) {
unsigned char buf[79];
memset(buf, 0, 79);
// https://github.com/chrippa/ds4drv/blob/master/ds4drv/device.py
//buf[0] = 0xa2; // 0x80;
//buf[1] = 0xff;
// trying to do colour stuff
// http://eleccelerator.com/wiki/index.php?title=DualShock_4
// this is only for bt
buf[0] = 0xa2; // Output report header, needs to be included in crc32
buf[1] = 0x11; // Output report 0x11
buf[2] = 0xc0; // HID + CRC according to hid-sony
buf[3] = 0x20; // ????
buf[4] = 0x07; // Set blink + leds + motor
buf[5] = 0x00;
buf[6] = 0x00;
// rumble
buf[7] = smallRumble;
buf[8] = bigRumble;
// colour
buf[9] = colourR;
buf[10] = colourG;
buf[11] = colourB;
// flash time
buf[12] = 0xff;
buf[13] = 0x00;
// now we need a CRC-32 of previous bytes
/*
// test
buf[0] = 0xa2; // Output report header, needs to be included in crc32
buf[1] = 0x11; // Output report 0x11
buf[2] = 0xc0; // HID + CRC according to hid-sony
buf[3] = 0x00; // ????
buf[4] = 0x07; // Set blink + leds + motor
buf[5] = 0x00;
buf[6] = 0x00;
buf[7] = 0xff;
buf[8] = 0xff;
buf[9] = 0xff;
buf[10] = 0xff;
buf[11] = 0xff;
buf[12] = 0xff;
buf[22] = 0x43;
buf[23] = 0x43;
buf[25] = 0x4d;
buf[26] = 0x85;
*/
uint32_t crc = crc_32(buf, 75);
memcpy(&buf[75], &crc, 4);
//buf[75] = (crc >> 24) & 0xFF;
//buf[76] = (crc >> 16) & 0xFF;
//buf[77] = (crc >> 8) & 0xFF;
//buf[78] = crc & 0xFF;
hid_write(handle, &buf[1], 78);
}
void set_ds5_rumble_light_usb(unsigned char smallRumble, unsigned char bigRumble,
unsigned char colourR,
unsigned char colourG,
unsigned char colourB,
unsigned char playerlights) { // DS5 actually has player lights.
unsigned char buf[79];
memset(buf, 0, 79);
// https://github.com/Ryochan7/DS4Windows/blob/jay/DS4Windows/DS4Library/InputDevices/DualSenseDevice.cs
// DS4Windows to the rescue.
// Also thanks to Neilk1 for sharing his doc on the DS5 protocol.
// Header & Report Information
buf[0] = 0xa2; // Output report header, needs to be included in crc32
buf[1] = 0x02; // DualSense output report is 0x02 for USB
//buf[1] = 0x02; // DATA (0x02)
buf[2] = 0x03;
buf[3] = 0x54; // Toggle LED Strips, player lights, motor effect. Ignore Mic LED
// Rumble emulation bytes.
buf[4] = smallRumble;
buf[5] = bigRumble;
// 7-10 are mostly just audio settings.
// Mute Button state. 0x00 = off, 0x01 = solid, 0x02 = pulsating.
buf[10] = 0x00;
// Skip to about 41, since we are ignoring trigger effect data.
// Enable LED brightness
buf[40] = 0x02; // ???
buf[41] = 0x02;
buf[44] = 0x02;
// Controls the player lights, which the DS5 has.
// Last two bits are unused - unset them to avoid issues.
buf[45] = playerlights;
buf[45] &= ~(1 << 7);
buf[45] &= ~(1 << 8);
// colour
buf[46] = colourR;
buf[47] = colourG;
buf[48] = colourB;
// USB does not send CRC32
//uint32_t crc = crc_32(buf, 74);
//memcpy(&buf[74], &crc, 4);
//buf[75] = (crc >> 24) & 0xFF;
//buf[76] = (crc >> 16) & 0xFF;
//buf[77] = (crc >> 8) & 0xFF;
//buf[78] = crc & 0xFF;
hid_write(handle, &buf[1], 74);
}
// Calling the Dualsense anything but the DS5 is confusing, since DS also = DualShock, and the DualSense is the PS5 Controller anyway
void set_ds5_rumble_light_bt(unsigned char smallRumble, unsigned char bigRumble,
unsigned char colourR,
unsigned char colourG,
unsigned char colourB,
unsigned char playerlights) { // DS5 actually has player lights.
unsigned char buf[79];
memset(buf, 0, 79);
// https://github.com/Ryochan7/DS4Windows/blob/jay/DS4Windows/DS4Library/InputDevices/DualSenseDevice.cs
// DS4Windows to the rescue.
// Also thanks to Neilk1 for sharing his doc on the DS5 protocol.
// Header & Report Information
buf[0] = 0xa2; // Output report header, needs to be included in crc32
buf[1] = 0x31; // DualSense output report is 0x31
buf[2] = 0x02; // DATA (0x02)
// Comment stolen from DS4Windows:
// 0x01 Set the main motors (also requires flag 0x02)
// 0x02 Set the main motors (also requires flag 0x01)
// 0x04 Set the right trigger motor
// 0x08 Set the left trigger motor
// 0x10 Enable modification of audio volume
// 0x20 Enable internal speaker (even while headset is connected)
// 0x40 Enable modification of microphone volume
// 0x80 Enable internal mic (even while headset is connected)
buf[3] = 0x03;
// Comment stolen from DS4Windows:
// 0x01 Toggling microphone LED, 0x02 Toggling Audio/Mic Mute
// 0x04 Toggling LED strips on the sides of the Touchpad, 0x08 Turn off all LED lights
// 0x10 Toggle player LED lights below Touchpad, 0x20 ???
// 0x40 Adjust overall motor/effect power, 0x80 ???
buf[4] = 0x54; // Toggle LED Strips, player lights, motor effect. Ignore Mic LED
// Rumble emulation bytes.
buf[5] = smallRumble;
buf[6] = bigRumble;
// 7-10 are mostly just audio settings.
// Mute Button state. 0x00 = off, 0x01 = solid, 0x02 = pulsating.
buf[11] = 0x00;
// Skip to about 41, since we are ignoring trigger effect data.
// Enable LED brightness
buf[41] = 0x02; // ???
buf[44] = 0x02;
buf[45] = 0x02;
// Last two bits are unused - unset them to avoid issues.
buf[46] = playerlights;
buf[46] &= ~(1 << 7);
buf[46] &= ~(1 << 8);
// colour
buf[47] = colourR;
buf[48] = colourG;
buf[49] = colourB;
uint32_t crc = crc_32(buf, 75);
memcpy(&buf[75], &crc, 4);
//buf[75] = (crc >> 24) & 0xFF;
//buf[76] = (crc >> 16) & 0xFF;
//buf[77] = (crc >> 8) & 0xFF;
//buf[78] = crc & 0xFF;
hid_write(handle, &buf[1], 78);
}
//// mfosse credits Hypersect (Ryan Juckett), but I've removed deadzones so the consuming application can deal with them
//// http://blog.hypersect.com/interpreting-analog-sticks/
void CalcAnalogStick2
(
float &pOutX, // out: resulting stick X value
float &pOutY, // out: resulting stick Y value
uint16_t x, // in: initial stick X value
uint16_t y, // in: initial stick Y value
uint16_t x_calc[3], // calc -X, CenterX, +X
uint16_t y_calc[3] // calc -Y, CenterY, +Y
)
{
float x_f, y_f;
// convert to float based on calibration and valid ranges per +/-axis
x = clamp(x, x_calc[0], x_calc[2]);
y = clamp(y, y_calc[0], y_calc[2]);
if (x >= x_calc[1]) {
x_f = (float)(x - x_calc[1]) / (float)(x_calc[2] - x_calc[1]);
}
else {
x_f = -((float)(x - x_calc[1]) / (float)(x_calc[0] - x_calc[1]));
}
if (y >= y_calc[1]) {
y_f = (float)(y - y_calc[1]) / (float)(y_calc[2] - y_calc[1]);
}
else {
y_f = -((float)(y - y_calc[1]) / (float)(y_calc[0] - y_calc[1]));
}
pOutX = x_f;
pOutY = y_f;
}
// SPI (@CTCaer):
bool get_spi_data(uint32_t offset, const uint8_t read_len, uint8_t *test_buf) {
int res;
uint8_t buf[0x100];
while (1) {
memset(buf, 0, sizeof(buf));
auto hdr = (brcm_hdr *)buf;
auto pkt = (brcm_cmd_01 *)(hdr + 1);
hdr->cmd = 1;
hdr->rumble[0] = timing_byte;
buf[1] = timing_byte;
timing_byte++;
if (timing_byte > 0xF) {
timing_byte = 0x0;
}
pkt->subcmd = 0x10;
pkt->offset = offset;
pkt->size = read_len;
for (int i = 11; i < 22; ++i) {
buf[i] = buf[i + 3];
}
res = hid_write(handle, buf, sizeof(*hdr) + sizeof(*pkt));
res = hid_read_timeout(handle, buf, sizeof(buf), 1000);
if (res == 0)
{
return false;
}
if ((*(uint16_t*)&buf[0xD] == 0x1090) && (*(uint32_t*)&buf[0xF] == offset)) {
break;
}
}
if (res >= 0x14 + read_len) {
for (int i = 0; i < read_len; i++) {
test_buf[i] = buf[0x14 + i];
}
}
return true;
}
int write_spi_data(uint32_t offset, const uint8_t write_len, uint8_t* test_buf) {
int res;
uint8_t buf[0x100];
int error_writing = 0;
while (1) {
memset(buf, 0, sizeof(buf));
auto hdr = (brcm_hdr *)buf;
auto pkt = (brcm_cmd_01 *)(hdr + 1);
hdr->cmd = 1;
hdr->rumble[0] = timing_byte;
timing_byte++;
if (timing_byte > 0xF) {
timing_byte = 0x0;
}
pkt->subcmd = 0x11;
pkt->offset = offset;
pkt->size = write_len;
for (int i = 0; i < write_len; i++) {
buf[0x10 + i] = test_buf[i];
}
res = hid_write(handle, buf, sizeof(*hdr) + sizeof(*pkt) + write_len);
res = hid_read(handle, buf, sizeof(buf));
if (*(uint16_t*)&buf[0xD] == 0x1180)
break;
error_writing++;
if (error_writing == 125) {
return 1;
}
}
return 0;
}
};