Day 6 Bonus: Dualsense Edge support!

I had to temporarily make my own binaries for the JoyShockLibrary but it works!
This commit is contained in:
Edward R. Gonzalez 2023-09-09 20:14:40 -04:00
parent eb1c2b2e57
commit d7399149bc
17 changed files with 4128 additions and 12 deletions

2
.gitignore vendored
View File

@ -19,3 +19,5 @@ bld/
vc140.pdb
build
**/*.dll

View File

@ -0,0 +1,548 @@
#include "JoyShockLibrary.h"
#include "JoyShock.cpp"
#include <cmath>
bool handle_input(JoyShock *jc, uint8_t *packet, int len, bool &hasIMU) {
hasIMU = true;
if (packet[0] == 0) return false; // ignore non-responses
// remember last input
//printf("%d: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
// jc->left_right,
// packet[0], packet[1], packet[2], packet[3], packet[4], packet[5], packet[6], packet[7], packet[8], packet[9],
// packet[10], packet[11], packet[12], packet[13], packet[14], packet[15], packet[16], packet[17], packet[18], packet[19], packet[20]);
jc->last_simple_state = jc->simple_state;
jc->simple_state.buttons = 0;
jc->last_imu_state = jc->imu_state;
IMU_STATE imu_state;
// delta time
auto time_now = std::chrono::steady_clock::now();
jc->delta_time = (float)(std::chrono::duration_cast<std::chrono::microseconds>(time_now - jc->last_polled).count() / 1000000.0);
jc->last_polled = time_now;
if (jc->cue_motion_reset)
{
//printf("RESET motion\n");
jc->cue_motion_reset = false;
jc->motion.Reset();
}
if (jc->motion.GetCalibrationMode() == GamepadMotionHelpers::CalibrationMode::Manual)
{
if (jc->use_continuous_calibration)
{
jc->motion.StartContinuousCalibration();
}
else
{
jc->motion.PauseContinuousCalibration();
}
}
// ds4
if (jc->controller_type == ControllerType::s_ds4) {
int indexOffset = 0;
bool isValid = true;
if (!jc->is_usb) {
isValid = packet[0] == 0x11;
indexOffset = 2;
}
else {
isValid = packet[0] == 0x01;
if (isValid && (packet[31] & 0x04) == 0x04)
return false; // ignore packets from Dongle with no connected controller
}
if (isValid) {
// Gyroscope:
// Gyroscope data is relative (degrees/s)
int16_t gyroSampleX = uint16_to_int16(packet[indexOffset+13] | (packet[indexOffset+14] << 8) & 0xFF00);
int16_t gyroSampleY = uint16_to_int16(packet[indexOffset+15] | (packet[indexOffset+16] << 8) & 0xFF00);
int16_t gyroSampleZ = uint16_to_int16(packet[indexOffset+17] | (packet[indexOffset+18] << 8) & 0xFF00);
int16_t accelSampleX = uint16_to_int16(packet[indexOffset+19] | (packet[indexOffset+20] << 8) & 0xFF00);
int16_t accelSampleY = uint16_to_int16(packet[indexOffset+21] | (packet[indexOffset+22] << 8) & 0xFF00);
int16_t accelSampleZ = uint16_to_int16(packet[indexOffset+23] | (packet[indexOffset+24] << 8) & 0xFF00);
if ((gyroSampleX | gyroSampleY | gyroSampleZ | accelSampleX | accelSampleY | accelSampleZ) == 0)
{
// all zero?
hasIMU = false;
}
// convert to real units
imu_state.gyroX = (float)(gyroSampleX) * (2000.0f / 32767.0f);
imu_state.gyroY = (float)(gyroSampleY) * (2000.0f / 32767.0f);
imu_state.gyroZ = (float)(gyroSampleZ) * (2000.0f / 32767.0f);
imu_state.accelX = (float)(accelSampleX) / 8192.0f;
imu_state.accelY = (float)(accelSampleY) / 8192.0f;
imu_state.accelZ = (float)(accelSampleZ) / 8192.0f;
//printf("DS4 accel: %.4f, %.4f, %.4f\n", imu_state.accelX, imu_state.accelY, imu_state.accelZ);
//printf("%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%d\n",
// jc->gyro.yaw, jc->gyro.pitch, jc->gyro.roll, jc->accel.x, jc->accel.y, jc->accel.z, universal_counter++);
// Touchpad:
jc->last_touch_state = jc->touch_state;
jc->touch_state.t0Id = (int)(packet[indexOffset+35] & 0x7F);
jc->touch_state.t1Id = (int)(packet[indexOffset+39] & 0x7F);
jc->touch_state.t0Down = (packet[indexOffset+35] & 0x80) == 0;
jc->touch_state.t1Down = (packet[indexOffset+39] & 0x80) == 0;
jc->touch_state.t0X = (packet[indexOffset+36] | (packet[indexOffset+37] & 0x0F) << 8) / 1920.0f;
jc->touch_state.t0Y = ((packet[indexOffset+37] & 0xF0) >> 4 | packet[indexOffset+38] << 4) / 943.0f;
jc->touch_state.t1X = (packet[indexOffset+40] | (packet[indexOffset+41] & 0x0F) << 8) / 1920.0f;
jc->touch_state.t1Y = ((packet[indexOffset+41] & 0xF0) >> 4 | packet[indexOffset+42] << 4) / 943.0f;
//printf("DS4 touch: %d, %d, %d, %d, %.4f, %.4f, %.4f, %.4f\n",
// jc->touch_state.t0Id, jc->touch_state.t1Id, jc->touch_state.t0Down, jc->touch_state.t1Down,
// jc->touch_state.t0X, jc->touch_state.t0Y, jc->touch_state.t1X, jc->touch_state.t1Y);
// DS4 dpad is a hat... 0x08 is released, 0=N, 1=NE, 2=E, 3=SE, 4=S, 5=SW, 6=W, 7=NW
// http://eleccelerator.com/wiki/index.php?title=DualShock_4
uint8_t hat = packet[indexOffset+5] & 0x0f;
if ((hat > 2) & (hat < 6)) jc->simple_state.buttons |= JSMASK_DOWN; // down = SE | S | SW
if ((hat == 7) | (hat < 2)) jc->simple_state.buttons |= JSMASK_UP; // up = N | NE | NW
if ((hat > 0) & (hat < 4)) jc->simple_state.buttons |= JSMASK_RIGHT; // right = NE | E | SE
if ((hat > 4) & (hat < 8)) jc->simple_state.buttons |= JSMASK_LEFT; // left = SW | W | NW
jc->simple_state.buttons |= ((int)(packet[indexOffset+5] >> 4) << JSOFFSET_W) & JSMASK_W;
jc->simple_state.buttons |= ((int)(packet[indexOffset+5] >> 7) << JSOFFSET_N) & JSMASK_N;
jc->simple_state.buttons |= ((int)(packet[indexOffset+5] >> 5) << JSOFFSET_S) & JSMASK_S;
jc->simple_state.buttons |= ((int)(packet[indexOffset+5] >> 6) << JSOFFSET_E) & JSMASK_E;
jc->simple_state.buttons |= ((int)(packet[indexOffset+6] >> 6) << JSOFFSET_LCLICK) & JSMASK_LCLICK;
jc->simple_state.buttons |= ((int)(packet[indexOffset+6] >> 7) << JSOFFSET_RCLICK) & JSMASK_RCLICK;
jc->simple_state.buttons |= ((int)(packet[indexOffset+6] >> 5) << JSOFFSET_OPTIONS) & JSMASK_OPTIONS;
jc->simple_state.buttons |= ((int)(packet[indexOffset+6] >> 4) << JSOFFSET_SHARE) & JSMASK_SHARE;
jc->simple_state.buttons |= ((int)(packet[indexOffset+6] >> 1) << JSOFFSET_R) & JSMASK_R;
jc->simple_state.buttons |= ((int)(packet[indexOffset+6]) << JSOFFSET_L) & JSMASK_L;
jc->simple_state.buttons |= ((int)(packet[indexOffset+7]) << JSOFFSET_PS) & JSMASK_PS;
jc->simple_state.buttons |= ((int)(packet[indexOffset+7] >> 1) << JSOFFSET_TOUCHPAD_CLICK) & JSMASK_TOUCHPAD_CLICK;
//jc->btns.zr = (packet[indexOffset+6] >> 3) & 1;
//jc->btns.zl = (packet[indexOffset+6] >> 2) & 1;
jc->simple_state.rTrigger = packet[indexOffset+9] / 255.0f;
jc->simple_state.lTrigger = packet[indexOffset+8] / 255.0f;
if (jc->simple_state.rTrigger > 0.0) jc->simple_state.buttons |= JSMASK_ZR;
if (jc->simple_state.lTrigger > 0.0) jc->simple_state.buttons |= JSMASK_ZL;
uint16_t stick_x = packet[indexOffset+1];
uint16_t stick_y = packet[indexOffset+2];
stick_y = 255 - stick_y;
uint16_t stick2_x = packet[indexOffset+3];
uint16_t stick2_y = packet[indexOffset+4];
stick2_y = 255 - stick2_y;
jc->simple_state.stickLX = (std::fmin)(1.0f, (stick_x - 127.0f) / 127.0f);
jc->simple_state.stickLY = (std::fmin)(1.0f, (stick_y - 127.0f) / 127.0f);
jc->simple_state.stickRX = (std::fmin)(1.0f, (stick2_x - 127.0f) / 127.0f);
jc->simple_state.stickRY = (std::fmin)(1.0f, (stick2_y - 127.0f) / 127.0f);
jc->modifying_lock.lock();
jc->push_sensor_samples(imu_state.gyroX, imu_state.gyroY, imu_state.gyroZ,
imu_state.accelX, imu_state.accelY, imu_state.accelZ, jc->delta_time);
jc->get_calibrated_gyro(imu_state.gyroX, imu_state.gyroY, imu_state.gyroZ);
jc->modifying_lock.unlock();
jc->imu_state = imu_state;
}
//printf("Buttons: %d LX: %.5f LY: %.5f RX: %.5f RY: %.5f GX: %.4f GY: %.4f GZ: %.4f\n", \
// jc->simple_state.buttons, (jc->simple_state.stickLX + 1), (jc->simple_state.stickLY + 1), (jc->simple_state.stickRX + 1), (jc->simple_state.stickRY + 1), jc->imu_state.gyroX, jc->imu_state.gyroY, jc->imu_state.gyroZ);
return true;
}
if (jc->controller_type == ControllerType::s_ds) {
//printf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
// packet[0], packet[1], packet[2], packet[3], packet[4], packet[5], packet[6], packet[7], packet[8], packet[9],
// packet[10], packet[11], packet[12], packet[13], packet[14], packet[15], packet[16], packet[17], packet[18], packet[19], packet[20],
// packet[21], packet[22], packet[23], packet[24], packet[25], packet[26], packet[27], packet[28], packet[29], packet[30],
// packet[31], packet[32], packet[33], packet[34], packet[35], packet[36], packet[37], packet[38], packet[39], packet[40],
// packet[41], packet[42], packet[43], packet[44], packet[45], packet[46], packet[47], packet[48], packet[49], packet[50]);
int indexOffset = 1;
if(!jc->is_usb) {
indexOffset = 2;
}
// Gyroscope:
// Gyroscope data is relative (degrees/s)
int16_t gyroSampleX = uint16_to_int16(packet[indexOffset + 15] | (packet[indexOffset + 16] << 8) & 0xFF00);
int16_t gyroSampleY = uint16_to_int16(packet[indexOffset + 17] | (packet[indexOffset + 18] << 8) & 0xFF00);
int16_t gyroSampleZ = uint16_to_int16(packet[indexOffset + 19] | (packet[indexOffset + 20] << 8) & 0xFF00);
int16_t accelSampleX = uint16_to_int16(packet[indexOffset + 21] | (packet[indexOffset + 22] << 8) & 0xFF00);
int16_t accelSampleY = uint16_to_int16(packet[indexOffset + 23] | (packet[indexOffset + 24] << 8) & 0xFF00);
int16_t accelSampleZ = uint16_to_int16(packet[indexOffset + 25] | (packet[indexOffset + 26] << 8) & 0xFF00);
if ((gyroSampleX | gyroSampleY | gyroSampleZ | accelSampleX | accelSampleY | accelSampleZ) == 0) {
// all zero?
hasIMU = false;
}
// convert to real units
imu_state.gyroX = (float) (gyroSampleX) * (2000.0f / 32767.0f);
imu_state.gyroY = (float) (gyroSampleY) * (2000.0f / 32767.0f);
imu_state.gyroZ = (float) (gyroSampleZ) * (2000.0f / 32767.0f);
imu_state.accelX = (float) (accelSampleX) / 8192.0f;
imu_state.accelY = (float) (accelSampleY) / 8192.0f;
imu_state.accelZ = (float) (accelSampleZ) / 8192.0f;
//printf("DS accel: %.4f, %.4f, %.4f\n", imu_state.accelX, imu_state.accelY, imu_state.accelZ);
//printf("%.4f,%.4f,%.4f,%.4f,%.4f,%.4f,%d\n",
// jc->gyro.yaw, jc->gyro.pitch, jc->gyro.roll, jc->accel.x, jc->accel.y, jc->accel.z, universal_counter++);
// Touchpad:
jc->last_touch_state = jc->touch_state;
jc->touch_state.t0Id = (int) (packet[indexOffset + 32] & 0x7F);
jc->touch_state.t1Id = (int) (packet[indexOffset + 36] & 0x7F);
jc->touch_state.t0Down = (packet[indexOffset + 32] & 0x80) == 0;
jc->touch_state.t1Down = (packet[indexOffset + 36] & 0x80) == 0;
jc->touch_state.t0X = (packet[indexOffset + 33] | (packet[indexOffset + 34] & 0x0F) << 8) / 1920.0f;
jc->touch_state.t0Y = ((packet[indexOffset + 34] & 0xF0) >> 4 | packet[indexOffset + 35] << 4) / 943.0f;
jc->touch_state.t1X = (packet[indexOffset + 37] | (packet[indexOffset + 38] & 0x0F) << 8) / 1920.0f;
jc->touch_state.t1Y = ((packet[indexOffset + 38] & 0xF0) >> 4 | packet[indexOffset + 39] << 4) / 943.0f;
//printf("DS touch: %d, %d, %d, %d, %.4f, %.4f, %.4f, %.4f\n",
// jc->touch_state.t0Id, jc->touch_state.t1Id, jc->touch_state.t0Down, jc->touch_state.t1Down,
// jc->touch_state.t0X, jc->touch_state.t0Y, jc->touch_state.t1X, jc->touch_state.t1Y);
// DS dpad is a hat... 0x08 is released, 0=N, 1=NE, 2=E, 3=SE, 4=S, 5=SW, 6=W, 7=NW
// http://eleccelerator.com/wiki/index.php?title=DualShock_4
uint8_t hat = packet[indexOffset + 7] & 0x0f;
if ((hat > 2) & (hat < 6)) jc->simple_state.buttons |= JSMASK_DOWN; // down = SE | S | SW
if ((hat == 7) | (hat < 2)) jc->simple_state.buttons |= JSMASK_UP; // up = N | NE | NW
if ((hat > 0) & (hat < 4)) jc->simple_state.buttons |= JSMASK_RIGHT; // right = NE | E | SE
if ((hat > 4) & (hat < 8)) jc->simple_state.buttons |= JSMASK_LEFT; // left = SW | W | NW
jc->simple_state.buttons |= ((int) (packet[indexOffset + 7] >> 4) << JSOFFSET_W) & JSMASK_W;
jc->simple_state.buttons |= ((int) (packet[indexOffset + 7] >> 7) << JSOFFSET_N) & JSMASK_N;
jc->simple_state.buttons |= ((int) (packet[indexOffset + 7] >> 5) << JSOFFSET_S) & JSMASK_S;
jc->simple_state.buttons |= ((int) (packet[indexOffset + 7] >> 6) << JSOFFSET_E) & JSMASK_E;
jc->simple_state.buttons |= ((int) (packet[indexOffset + 8] >> 6) << JSOFFSET_LCLICK) & JSMASK_LCLICK;
jc->simple_state.buttons |= ((int) (packet[indexOffset + 8] >> 7) << JSOFFSET_RCLICK) & JSMASK_RCLICK;
jc->simple_state.buttons |= ((int) (packet[indexOffset + 8] >> 5) << JSOFFSET_OPTIONS) & JSMASK_OPTIONS;
jc->simple_state.buttons |= ((int) (packet[indexOffset + 8] >> 4) << JSOFFSET_SHARE) & JSMASK_SHARE;
jc->simple_state.buttons |= ((int) (packet[indexOffset + 8] >> 1) << JSOFFSET_R) & JSMASK_R;
jc->simple_state.buttons |= ((int) (packet[indexOffset + 8]) << JSOFFSET_L) & JSMASK_L;
jc->simple_state.buttons |= ((int) (packet[indexOffset + 9]) << JSOFFSET_PS) & JSMASK_PS;
// The DS5 has a mute button that is normally ignored on PC. We can use this.
jc->simple_state.buttons |= ((int) (packet[indexOffset + 9] >> 2) << JSOFFSET_MIC) & JSMASK_MIC;
jc->simple_state.buttons |=
((int) (packet[indexOffset + 9] >> 1) << JSOFFSET_TOUCHPAD_CLICK) & JSMASK_TOUCHPAD_CLICK;
//jc->btns.zr = (packet[indexOffset+6] >> 3) & 1;
//jc->btns.zl = (packet[indexOffset+6] >> 2) & 1;
jc->simple_state.rTrigger = packet[indexOffset + 5] / 255.0f;
jc->simple_state.lTrigger = packet[indexOffset + 4] / 255.0f;
if (jc->simple_state.rTrigger > 0.0) jc->simple_state.buttons |= JSMASK_ZR;
if (jc->simple_state.lTrigger > 0.0) jc->simple_state.buttons |= JSMASK_ZL;
uint16_t stick_x = packet[indexOffset + 0];
uint16_t stick_y = packet[indexOffset + 1];
stick_y = 255 - stick_y;
uint16_t stick2_x = packet[indexOffset + 2];
uint16_t stick2_y = packet[indexOffset + 3];
stick2_y = 255 - stick2_y;
jc->simple_state.stickLX = (std::fmin)(1.0f, (stick_x - 127.0f) / 127.0f);
jc->simple_state.stickLY = (std::fmin)(1.0f, (stick_y - 127.0f) / 127.0f);
jc->simple_state.stickRX = (std::fmin)(1.0f, (stick2_x - 127.0f) / 127.0f);
jc->simple_state.stickRY = (std::fmin)(1.0f, (stick2_y - 127.0f) / 127.0f);
jc->modifying_lock.lock();
jc->push_sensor_samples(imu_state.gyroX, imu_state.gyroY, imu_state.gyroZ,
imu_state.accelX, imu_state.accelY, imu_state.accelZ, jc->delta_time);
jc->get_calibrated_gyro(imu_state.gyroX, imu_state.gyroY, imu_state.gyroZ);
jc->modifying_lock.unlock();
jc->imu_state = imu_state;
return true;
}
// most of this JoyCon and Pro Controller stuff is adapted from MFosse's Joycon driver.
// bluetooth button pressed packet:
if (packet[0] == 0x3F) {
//uint16_t old_buttons = jc->buttons;
//int8_t old_dstick = jc->dstick;
jc->dstick = packet[3];
// todo: get button states here aswell:
}
int buttons_pressed = 0;
// input update packet:
// 0x21 is just buttons, 0x30 includes gyro, 0x31 includes NFC (large packet size)
if (packet[0] == 0x21 || packet[0] == 0x30 || packet[0] == 0x31) {
// offset for usb or bluetooth data:
/*int offset = settings.usingBluetooth ? 0 : 10;*/
int offset = 0;
//int offset = !jc->is_usb ? 0 : 10;
uint8_t *btn_data = packet + offset + 3;
// get button states:
{
uint16_t states = 0;
uint16_t states2 = 0;
// Left JoyCon:
if (jc->left_right == 1) {
states = (btn_data[1] << 8) | (btn_data[2] & 0xFF);
// Right JoyCon:
}
else if (jc->left_right == 2) {
states = (btn_data[1] << 8) | (btn_data[0] & 0xFF);
// Pro Controller:
}
else if (jc->left_right == 3) {
states = (btn_data[1] << 8) | (btn_data[2] & 0xFF);
states2 = (btn_data[1] << 8) | (btn_data[0] & 0xFF);
}
buttons_pressed = states;
// Pro Controller:
if (jc->left_right == 3) {
buttons_pressed |= states2 << 16;
// fix some non-sense the Pro Controller does
// clear nth bit
//num &= ~(1UL << n);
buttons_pressed &= ~(1L << 9);
buttons_pressed &= ~(1L << 12);
buttons_pressed &= ~(1L << 14);
buttons_pressed &= ~(1UL << (8 + 16));
buttons_pressed &= ~(1UL << (11 + 16));
buttons_pressed &= ~(1UL << (13 + 16));
}
else if (jc->left_right == 2) {
buttons_pressed = buttons_pressed << 16;
}
}
// get stick data:
uint8_t *stick_data = packet + offset;
if (jc->left_right == 1) {
stick_data += 6;
}
else if (jc->left_right == 2) {
stick_data += 9;
}
uint16_t stick_x = stick_data[0] | ((stick_data[1] & 0xF) << 8);
uint16_t stick_y = (stick_data[1] >> 4) | (stick_data[2] << 4);
// use calibration data:
if (jc->left_right == 1) {
jc->CalcAnalogStick2(jc->simple_state.stickLX, jc->simple_state.stickLY,
stick_x,
stick_y,
jc->stick_cal_x_l,
jc->stick_cal_y_l);
}
else if (jc->left_right == 2) {
jc->CalcAnalogStick2(jc->simple_state.stickRX, jc->simple_state.stickRY,
stick_x,
stick_y,
jc->stick_cal_x_r,
jc->stick_cal_y_r);
}
else if (jc->left_right == 3) {
// pro controller
stick_data += 6;
//printf("%d, %d\n",
// jc->stick_cal_x_l,
// jc->stick_cal_y_l);
uint16_t stick_x = stick_data[0] | ((stick_data[1] & 0xF) << 8);
uint16_t stick_y = (stick_data[1] >> 4) | (stick_data[2] << 4);
jc->CalcAnalogStick2(jc->simple_state.stickLX, jc->simple_state.stickLY,
stick_x,
stick_y,
jc->stick_cal_x_l,
jc->stick_cal_y_l);
stick_data += 3;
uint16_t stick_x2 = stick_data[0] | ((stick_data[1] & 0xF) << 8);
uint16_t stick_y2 = (stick_data[1] >> 4) | (stick_data[2] << 4);
jc->CalcAnalogStick2(jc->simple_state.stickRX, jc->simple_state.stickRY,
stick_x2,
stick_y2,
jc->stick_cal_x_r,
jc->stick_cal_y_r);
}
jc->battery = (stick_data[1] & 0xF0) >> 4;
//printf("JoyCon battery: %d\n", jc->battery);
// Accelerometer:
// Accelerometer data is absolute
{
// get accelerometer X:
float accelSampleZ = (float)uint16_to_int16(packet[13] | (packet[14] << 8) & 0xFF00) * jc->acc_cal_coeff[0];
float accelSampleX = (float)uint16_to_int16(packet[15] | (packet[16] << 8) & 0xFF00) * jc->acc_cal_coeff[1];
float accelSampleY = (float)uint16_to_int16(packet[17] | (packet[18] << 8) & 0xFF00) * jc->acc_cal_coeff[2];
float gyroSampleX = (float)uint16_to_int16(packet[19] | (packet[20] << 8) & 0xFF00) * jc->gyro_cal_coeff[0];
float gyroSampleY = (float)uint16_to_int16(packet[21] | (packet[22] << 8) & 0xFF00) * jc->gyro_cal_coeff[1];
float gyroSampleZ = (float)uint16_to_int16(packet[23] | (packet[24] << 8) & 0xFF00) * jc->gyro_cal_coeff[2];
if (gyroSampleX == 0.f && gyroSampleY == 0.f && gyroSampleZ == 0.f && accelSampleX == 0.f && accelSampleY == 0.f && accelSampleZ == 0.f)
{
// all zero?
hasIMU = false;
}
//jc->push_sensor_samples(accelSampleX, accelSampleY, accelSampleZ, gyroSampleX, gyroSampleY, gyroSampleZ);
float accelX = accelSampleX;
float accelY = accelSampleY;
float accelZ = accelSampleZ;
float totalGyroX = gyroSampleX - jc->sensor_cal[1][0];
float totalGyroY = gyroSampleY - jc->sensor_cal[1][1];
float totalGyroZ = gyroSampleZ - jc->sensor_cal[1][2];
// each packet actually has 3 samples worth of data, so collect sample 2
accelSampleZ = (float)uint16_to_int16(packet[25] | (packet[26] << 8) & 0xFF00) * jc->acc_cal_coeff[0];
accelSampleX = (float)uint16_to_int16(packet[27] | (packet[28] << 8) & 0xFF00) * jc->acc_cal_coeff[1];
accelSampleY = (float)uint16_to_int16(packet[29] | (packet[30] << 8) & 0xFF00) * jc->acc_cal_coeff[2];
gyroSampleX = (float)uint16_to_int16(packet[31] | (packet[32] << 8) & 0xFF00) * jc->gyro_cal_coeff[0];
gyroSampleY = (float)uint16_to_int16(packet[33] | (packet[34] << 8) & 0xFF00) * jc->gyro_cal_coeff[1];
gyroSampleZ = (float)uint16_to_int16(packet[35] | (packet[36] << 8) & 0xFF00) * jc->gyro_cal_coeff[2];
//jc->push_sensor_samples(accelSampleX, accelSampleY, accelSampleZ, gyroSampleX, gyroSampleY, gyroSampleZ);
accelX += accelSampleX;
accelY += accelSampleY;
accelZ += accelSampleZ;
totalGyroX += gyroSampleX - jc->sensor_cal[1][0];
totalGyroY += gyroSampleY - jc->sensor_cal[1][1];
totalGyroZ += gyroSampleZ - jc->sensor_cal[1][2];
// ... and sample 3
accelSampleZ = (float)uint16_to_int16(packet[37] | (packet[38] << 8) & 0xFF00) * jc->acc_cal_coeff[0];
accelSampleX = (float)uint16_to_int16(packet[39] | (packet[40] << 8) & 0xFF00) * jc->acc_cal_coeff[1];
accelSampleY = (float)uint16_to_int16(packet[41] | (packet[42] << 8) & 0xFF00) * jc->acc_cal_coeff[2];
gyroSampleX = (float)uint16_to_int16(packet[43] | (packet[44] << 8) & 0xFF00) * jc->gyro_cal_coeff[0];
gyroSampleY = (float)uint16_to_int16(packet[45] | (packet[46] << 8) & 0xFF00) * jc->gyro_cal_coeff[1];
gyroSampleZ = (float)uint16_to_int16(packet[47] | (packet[48] << 8) & 0xFF00) * jc->gyro_cal_coeff[2];
//jc->push_sensor_samples(accelSampleX, accelSampleY, accelSampleZ, gyroSampleX, gyroSampleY, gyroSampleZ);
accelX += accelSampleX;
accelY += accelSampleY;
accelZ += accelSampleZ;
totalGyroX += gyroSampleX - jc->sensor_cal[1][0];
totalGyroY += gyroSampleY - jc->sensor_cal[1][1];
totalGyroZ += gyroSampleZ - jc->sensor_cal[1][2];
// average the 3 samples
accelX /= 3;
accelY /= 3;
accelZ /= 3;
totalGyroX /= 3;
totalGyroY /= 3;
totalGyroZ /= 3;
imu_state.accelX = -accelX;
imu_state.accelY = accelY;
imu_state.accelZ = -accelZ;
imu_state.gyroX = -totalGyroY;
imu_state.gyroY = totalGyroZ;
imu_state.gyroZ = totalGyroX;
//printf("Switch accel: %.4f, %.4f, %.4f\n", imu_state.accelX, imu_state.accelY, imu_state.accelZ);
}
}
// handle buttons
{
// left:
if (jc->left_right == 1) {
jc->simple_state.buttons |= ((buttons_pressed >> 1) << JSOFFSET_UP) & JSMASK_UP;
jc->simple_state.buttons |= ((buttons_pressed) << JSOFFSET_DOWN) & JSMASK_DOWN;
jc->simple_state.buttons |= ((buttons_pressed >> 3) << JSOFFSET_LEFT) & JSMASK_LEFT;
jc->simple_state.buttons |= ((buttons_pressed >> 2) << JSOFFSET_RIGHT) & JSMASK_RIGHT;
jc->simple_state.buttons |= ((buttons_pressed >> 11) << JSOFFSET_LCLICK) & JSMASK_LCLICK;
jc->simple_state.buttons |= ((buttons_pressed >> 8) << JSOFFSET_MINUS) & JSMASK_MINUS;
jc->simple_state.buttons |= ((buttons_pressed >> 6) << JSOFFSET_L) & JSMASK_L;
jc->simple_state.buttons |= ((buttons_pressed >> 13) << JSOFFSET_CAPTURE) & JSMASK_CAPTURE;
jc->simple_state.lTrigger = (float)((buttons_pressed >> 7) & 1);
jc->simple_state.buttons |= ((int)(jc->simple_state.lTrigger) << JSOFFSET_ZL) & JSMASK_ZL;
jc->simple_state.buttons |= ((buttons_pressed >> 5) << JSOFFSET_SL) & JSMASK_SL;
jc->simple_state.buttons |= ((buttons_pressed >> 4) << JSOFFSET_SR) & JSMASK_SR;
// just need to negate gyroZ
imu_state.gyroZ = -imu_state.gyroZ;
}
// right:
if (jc->left_right == 2) {
jc->simple_state.buttons |= ((buttons_pressed >> 16) << JSOFFSET_W) & JSMASK_W;
jc->simple_state.buttons |= ((buttons_pressed >> 17) << JSOFFSET_N) & JSMASK_N;
jc->simple_state.buttons |= ((buttons_pressed >> 18) << JSOFFSET_S) & JSMASK_S;
jc->simple_state.buttons |= ((buttons_pressed >> 19) << JSOFFSET_E) & JSMASK_E;
jc->simple_state.buttons |= ((buttons_pressed >> 26) << JSOFFSET_RCLICK) & JSMASK_RCLICK;
jc->simple_state.buttons |= ((buttons_pressed >> 25) << JSOFFSET_PLUS) & JSMASK_PLUS;
jc->simple_state.buttons |= ((buttons_pressed >> 22) << JSOFFSET_R) & JSMASK_R;
jc->simple_state.buttons |= ((buttons_pressed >> 28) << JSOFFSET_HOME) & JSMASK_HOME;
jc->simple_state.rTrigger = (float)((buttons_pressed >> 23) & 1);
jc->simple_state.buttons |= ((int)(jc->simple_state.rTrigger) << JSOFFSET_ZR) & JSMASK_ZR;
jc->simple_state.buttons |= ((buttons_pressed >> 21) << JSOFFSET_SL) & JSMASK_SL;
jc->simple_state.buttons |= ((buttons_pressed >> 20) << JSOFFSET_SR) & JSMASK_SR;
// for some reason we need to negate x and y, and z on the right joycon
imu_state.gyroX = -imu_state.gyroX;
imu_state.gyroY = -imu_state.gyroY;
imu_state.gyroZ = -imu_state.gyroZ;
imu_state.accelX = -imu_state.accelX;
imu_state.accelY = -imu_state.accelY;
}
// pro controller:
if (jc->left_right == 3) {
jc->simple_state.buttons |= ((buttons_pressed >> 1) << JSOFFSET_UP) & JSMASK_UP;
jc->simple_state.buttons |= ((buttons_pressed) << JSOFFSET_DOWN) & JSMASK_DOWN;
jc->simple_state.buttons |= ((buttons_pressed >> 3) << JSOFFSET_LEFT) & JSMASK_LEFT;
jc->simple_state.buttons |= ((buttons_pressed >> 2) << JSOFFSET_RIGHT) & JSMASK_RIGHT;
jc->simple_state.buttons |= ((buttons_pressed >> 16) << JSOFFSET_W) & JSMASK_W;
jc->simple_state.buttons |= ((buttons_pressed >> 17) << JSOFFSET_N) & JSMASK_N;
jc->simple_state.buttons |= ((buttons_pressed >> 18) << JSOFFSET_S) & JSMASK_S;
jc->simple_state.buttons |= ((buttons_pressed >> 19) << JSOFFSET_E) & JSMASK_E;
jc->simple_state.buttons |= ((buttons_pressed >> 11) << JSOFFSET_LCLICK) & JSMASK_LCLICK;
jc->simple_state.buttons |= ((buttons_pressed >> 26) << JSOFFSET_RCLICK) & JSMASK_RCLICK;
jc->simple_state.buttons |= ((buttons_pressed >> 25) << JSOFFSET_PLUS) & JSMASK_PLUS;
jc->simple_state.buttons |= ((buttons_pressed >> 8) << JSOFFSET_MINUS) & JSMASK_MINUS;
jc->simple_state.buttons |= ((buttons_pressed >> 22) << JSOFFSET_R) & JSMASK_R;
jc->simple_state.buttons |= ((buttons_pressed >> 6) << JSOFFSET_L) & JSMASK_L;
jc->simple_state.buttons |= ((buttons_pressed >> 28) << JSOFFSET_HOME) & JSMASK_HOME;
jc->simple_state.buttons |= ((buttons_pressed >> 13) << JSOFFSET_CAPTURE) & JSMASK_CAPTURE;
jc->simple_state.rTrigger = (float)((buttons_pressed >> 23) & 1);
jc->simple_state.lTrigger = (float)((buttons_pressed >> 7) & 1);
jc->simple_state.buttons |= ((int)(jc->simple_state.lTrigger) << JSOFFSET_ZL) & JSMASK_ZL;
jc->simple_state.buttons |= ((int)(jc->simple_state.rTrigger) << JSOFFSET_ZR) & JSMASK_ZR;
// just need to negate gyroZ
imu_state.gyroZ = -imu_state.gyroZ;
}
}
jc->modifying_lock.lock();
jc->push_sensor_samples(imu_state.gyroX, imu_state.gyroY, imu_state.gyroZ,
imu_state.accelX, imu_state.accelY, imu_state.accelZ, jc->delta_time);
jc->get_calibrated_gyro(imu_state.gyroX, imu_state.gyroY, imu_state.gyroZ);
jc->modifying_lock.unlock();
jc->imu_state = imu_state;
return true;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,248 @@
// JoyShockLibrary.h - Contains declarations of functions
#pragma once
#if _MSC_VER // this is defined when compiling with Visual Studio
#define JOY_SHOCK_API __declspec(dllexport) // Visual Studio needs annotating exported functions with this
#else
#define JOY_SHOCK_API // XCode does not need annotating exported functions, so define is empty
#endif
#define JS_TYPE_JOYCON_LEFT 1
#define JS_TYPE_JOYCON_RIGHT 2
#define JS_TYPE_PRO_CONTROLLER 3
#define JS_TYPE_DS4 4
#define JS_TYPE_DS 5
#define JS_SPLIT_TYPE_LEFT 1
#define JS_SPLIT_TYPE_RIGHT 2
#define JS_SPLIT_TYPE_FULL 3
#define JSMASK_UP 0x00001
#define JSMASK_DOWN 0x00002
#define JSMASK_LEFT 0x00004
#define JSMASK_RIGHT 0x00008
#define JSMASK_PLUS 0x00010
#define JSMASK_OPTIONS 0x00010
#define JSMASK_MINUS 0x00020
#define JSMASK_SHARE 0x00020
#define JSMASK_LCLICK 0x00040
#define JSMASK_RCLICK 0x00080
#define JSMASK_L 0x00100
#define JSMASK_R 0x00200
#define JSMASK_ZL 0x00400
#define JSMASK_ZR 0x00800
#define JSMASK_S 0x01000
#define JSMASK_E 0x02000
#define JSMASK_W 0x04000
#define JSMASK_N 0x08000
#define JSMASK_HOME 0x10000
#define JSMASK_PS 0x10000
#define JSMASK_CAPTURE 0x20000
#define JSMASK_TOUCHPAD_CLICK 0x20000
#define JSMASK_MIC 0x40000
#define JSMASK_SL 0x40000
#define JSMASK_SR 0x80000
#define JSOFFSET_UP 0
#define JSOFFSET_DOWN 1
#define JSOFFSET_LEFT 2
#define JSOFFSET_RIGHT 3
#define JSOFFSET_PLUS 4
#define JSOFFSET_OPTIONS 4
#define JSOFFSET_MINUS 5
#define JSOFFSET_SHARE 5
#define JSOFFSET_LCLICK 6
#define JSOFFSET_RCLICK 7
#define JSOFFSET_L 8
#define JSOFFSET_R 9
#define JSOFFSET_ZL 10
#define JSOFFSET_ZR 11
#define JSOFFSET_S 12
#define JSOFFSET_E 13
#define JSOFFSET_W 14
#define JSOFFSET_N 15
#define JSOFFSET_HOME 16
#define JSOFFSET_PS 16
#define JSOFFSET_CAPTURE 17
#define JSOFFSET_TOUCHPAD_CLICK 17
#define JSOFFSET_MIC 18
#define JSOFFSET_SL 18
#define JSOFFSET_SR 19
// PS5 Player maps for the DS Player Lightbar
#define DS5_PLAYER_1 4
#define DS5_PLAYER_2 10
#define DS5_PLAYER_3 21
#define DS5_PLAYER_4 27
#define DS5_PLAYER_5 31
typedef struct JOY_SHOCK_STATE {
int buttons = 0;
float lTrigger = 0.f;
float rTrigger = 0.f;
float stickLX = 0.f;
float stickLY = 0.f;
float stickRX = 0.f;
float stickRY = 0.f;
} JOY_SHOCK_STATE;
typedef struct IMU_STATE {
float accelX = 0.f;
float accelY = 0.f;
float accelZ = 0.f;
float gyroX = 0.f;
float gyroY = 0.f;
float gyroZ = 0.f;
} IMU_STATE;
typedef struct MOTION_STATE {
float quatW = 0.f;
float quatX = 0.f;
float quatY = 0.f;
float quatZ = 0.f;
float accelX = 0.f;
float accelY = 0.f;
float accelZ = 0.f;
float gravX = 0.f;
float gravY = 0.f;
float gravZ = 0.f;
} MOTION_STATE;
typedef struct TOUCH_STATE {
int t0Id = 0;
int t1Id = 0;
bool t0Down = false;
bool t1Down = false;
float t0X = 0.f;
float t0Y = 0.f;
float t1X = 0.f;
float t1Y = 0.f;
} TOUCH_STATE;
typedef struct JSL_AUTO_CALIBRATION {
float confidence = 0.f;
bool autoCalibrationEnabled = false;
bool isSteady = false;
} JSL_AUTO_CALIBRATION;
typedef struct JSL_SETTINGS {
int gyroSpace = 0;
int colour = 0;
int playerNumber = 0;
int controllerType = 0;
int splitType = 0;
bool isCalibrating = false;
bool autoCalibrationEnabled = false;
bool isConnected = false;
} JSL_SETTINGS;
extern "C" JOY_SHOCK_API int JslConnectDevices();
extern "C" JOY_SHOCK_API int JslGetConnectedDeviceHandles(int* deviceHandleArray, int size);
extern "C" JOY_SHOCK_API void JslDisconnectAndDisposeAll();
extern "C" JOY_SHOCK_API bool JslStillConnected(int deviceId);
// get buttons as bits in the following order, using North South East West to name face buttons to avoid ambiguity between Xbox and Nintendo layouts:
// 0x00001: up
// 0x00002: down
// 0x00004: left
// 0x00008: right
// 0x00010: plus
// 0x00020: minus
// 0x00040: left stick click
// 0x00080: right stick click
// 0x00100: L
// 0x00200: R
// ZL and ZR are reported as analogue inputs (GetLeftTrigger, GetRightTrigger), because DS4 and XBox controllers use analogue triggers, but we also have them as raw buttons
// 0x00400: ZL
// 0x00800: ZR
// 0x01000: S
// 0x02000: E
// 0x04000: W
// 0x08000: N
// 0x10000: home / PS
// 0x20000: capture / touchpad-click
// 0x40000: SL
// 0x80000: SR
// These are the best way to get all the buttons/triggers/sticks, gyro/accelerometer (IMU), orientation/acceleration/gravity (Motion), or touchpad
extern "C" JOY_SHOCK_API JOY_SHOCK_STATE JslGetSimpleState(int deviceId);
extern "C" JOY_SHOCK_API IMU_STATE JslGetIMUState(int deviceId);
extern "C" JOY_SHOCK_API MOTION_STATE JslGetMotionState(int deviceId);
extern "C" JOY_SHOCK_API TOUCH_STATE JslGetTouchState(int deviceId, bool previous = false);
extern "C" JOY_SHOCK_API bool JslGetTouchpadDimension(int deviceId, int &sizeX, int &sizeY);
extern "C" JOY_SHOCK_API int JslGetButtons(int deviceId);
// get thumbsticks
extern "C" JOY_SHOCK_API float JslGetLeftX(int deviceId);
extern "C" JOY_SHOCK_API float JslGetLeftY(int deviceId);
extern "C" JOY_SHOCK_API float JslGetRightX(int deviceId);
extern "C" JOY_SHOCK_API float JslGetRightY(int deviceId);
// get triggers. Switch controllers don't have analogue triggers, but will report 0.0 or 1.0 so they can be used in the same way as others
extern "C" JOY_SHOCK_API float JslGetLeftTrigger(int deviceId);
extern "C" JOY_SHOCK_API float JslGetRightTrigger(int deviceId);
// get gyro
extern "C" JOY_SHOCK_API float JslGetGyroX(int deviceId);
extern "C" JOY_SHOCK_API float JslGetGyroY(int deviceId);
extern "C" JOY_SHOCK_API float JslGetGyroZ(int deviceId);
// get accumulated average gyro since this function was last called or last flushed values
extern "C" JOY_SHOCK_API void JslGetAndFlushAccumulatedGyro(int deviceId, float& gyroX, float& gyroY, float& gyroZ);
// set gyro space. JslGetGyro*, JslGetAndFlushAccumulatedGyro, JslGetIMUState, and the IMU_STATEs reported in the callback functions will use one of 3 transformations:
// 0 = local space -> no transformation is done on gyro input
// 1 = world space -> gyro input is transformed based on the calculated gravity direction to account for the player's preferred controller orientation
// 2 = player space -> a simple combination of local and world space that is as adaptive as world space but is as robust as local space
extern "C" JOY_SHOCK_API void JslSetGyroSpace(int deviceId, int gyroSpace);
// get accelerometor
extern "C" JOY_SHOCK_API float JslGetAccelX(int deviceId);
extern "C" JOY_SHOCK_API float JslGetAccelY(int deviceId);
extern "C" JOY_SHOCK_API float JslGetAccelZ(int deviceId);
// get touchpad
extern "C" JOY_SHOCK_API int JslGetTouchId(int deviceId, bool secondTouch = false);
extern "C" JOY_SHOCK_API bool JslGetTouchDown(int deviceId, bool secondTouch = false);
extern "C" JOY_SHOCK_API float JslGetTouchX(int deviceId, bool secondTouch = false);
extern "C" JOY_SHOCK_API float JslGetTouchY(int deviceId, bool secondTouch = false);
// analog parameters have different resolutions depending on device
extern "C" JOY_SHOCK_API float JslGetStickStep(int deviceId);
extern "C" JOY_SHOCK_API float JslGetTriggerStep(int deviceId);
extern "C" JOY_SHOCK_API float JslGetPollRate(int deviceId);
extern "C" JOY_SHOCK_API float JslGetTimeSinceLastUpdate(int deviceId);
// calibration
extern "C" JOY_SHOCK_API void JslResetContinuousCalibration(int deviceId);
extern "C" JOY_SHOCK_API void JslStartContinuousCalibration(int deviceId);
extern "C" JOY_SHOCK_API void JslPauseContinuousCalibration(int deviceId);
extern "C" JOY_SHOCK_API void JslSetAutomaticCalibration(int deviceId, bool enabled);
extern "C" JOY_SHOCK_API void JslGetCalibrationOffset(int deviceId, float& xOffset, float& yOffset, float& zOffset);
extern "C" JOY_SHOCK_API void JslSetCalibrationOffset(int deviceId, float xOffset, float yOffset, float zOffset);
extern "C" JOY_SHOCK_API JSL_AUTO_CALIBRATION JslGetAutoCalibrationStatus(int deviceId);
// this function will get called for each input event from each controller
extern "C" JOY_SHOCK_API void JslSetCallback(void(*callback)(int, JOY_SHOCK_STATE, JOY_SHOCK_STATE, IMU_STATE, IMU_STATE, float));
// this function will get called for each input event, even if touch data didn't update
extern "C" JOY_SHOCK_API void JslSetTouchCallback(void(*callback)(int, TOUCH_STATE, TOUCH_STATE, float));
// this function will get called for each device when it is newly connected
extern "C" JOY_SHOCK_API void JslSetConnectCallback(void(*callback)(int));
// this function will get called for each device when it is disconnected
extern "C" JOY_SHOCK_API void JslSetDisconnectCallback(void(*callback)(int, bool));
// super-getter for reading a whole lot of state at once
extern "C" JOY_SHOCK_API JSL_SETTINGS JslGetControllerInfoAndSettings(int deviceId);
// what kind of controller is this?
extern "C" JOY_SHOCK_API int JslGetControllerType(int deviceId);
// is this a left, right, or full controller?
extern "C" JOY_SHOCK_API int JslGetControllerSplitType(int deviceId);
// what colour is the controller (not all controllers support this; those that don't will report white)
extern "C" JOY_SHOCK_API int JslGetControllerColour(int deviceId);
// set controller light colour (not all controllers have a light whose colour can be set, but that just means nothing will be done when this is called -- no harm)
extern "C" JOY_SHOCK_API void JslSetLightColour(int deviceId, int colour);
// set controller rumble
extern "C" JOY_SHOCK_API void JslSetRumble(int deviceId, int smallRumble, int bigRumble);
// set controller player number indicator (not all controllers have a number indicator which can be set, but that just means nothing will be done when this is called -- no harm)
extern "C" JOY_SHOCK_API void JslSetPlayerNumber(int deviceId, int number);

View File

@ -0,0 +1,391 @@
/*******************************************************
HIDAPI - Multi-Platform library for
communication with HID devices.
Alan Ott
Signal 11 Software
8/22/2009
Copyright 2009, All Rights Reserved.
At the discretion of the user of this library,
this software may be licensed under the terms of the
GNU General Public License v3, a BSD-Style license, or the
original HIDAPI license as outlined in the LICENSE.txt,
LICENSE-gpl3.txt, LICENSE-bsd.txt, and LICENSE-orig.txt
files located at the root of the source distribution.
These files may also be found in the public source
code repository located at:
http://github.com/signal11/hidapi .
********************************************************/
/** @file
* @defgroup API hidapi API
*/
#ifndef HIDAPI_H__
#define HIDAPI_H__
#include <wchar.h>
#ifdef _WIN32
#define HID_API_EXPORT __declspec(dllexport)
#define HID_API_CALL
#else
#define HID_API_EXPORT /**< API export macro */
#define HID_API_CALL /**< API call macro */
#endif
#define HID_API_EXPORT_CALL HID_API_EXPORT HID_API_CALL /**< API export and call macro*/
#ifdef __cplusplus
extern "C" {
#endif
struct hid_device_;
typedef struct hid_device_ hid_device; /**< opaque hidapi structure */
/** hidapi info structure */
struct hid_device_info {
/** Platform-specific device path */
char *path;
/** Device Vendor ID */
unsigned short vendor_id;
/** Device Product ID */
unsigned short product_id;
/** Serial Number */
wchar_t *serial_number;
/** Device Release Number in binary-coded decimal,
also known as Device Version Number */
unsigned short release_number;
/** Manufacturer String */
wchar_t *manufacturer_string;
/** Product string */
wchar_t *product_string;
/** Usage Page for this Device/Interface
(Windows/Mac only). */
unsigned short usage_page;
/** Usage for this Device/Interface
(Windows/Mac only).*/
unsigned short usage;
/** The USB interface which this logical device
represents. Valid on both Linux implementations
in all cases, and valid on the Windows implementation
only if the device contains more than one interface. */
int interface_number;
/** Pointer to the next device */
struct hid_device_info *next;
};
/** @brief Initialize the HIDAPI library.
This function initializes the HIDAPI library. Calling it is not
strictly necessary, as it will be called automatically by
hid_enumerate() and any of the hid_open_*() functions if it is
needed. This function should be called at the beginning of
execution however, if there is a chance of HIDAPI handles
being opened by different threads simultaneously.
@ingroup API
@returns
This function returns 0 on success and -1 on error.
*/
int HID_API_EXPORT HID_API_CALL hid_init(void);
/** @brief Finalize the HIDAPI library.
This function frees all of the static data associated with
HIDAPI. It should be called at the end of execution to avoid
memory leaks.
@ingroup API
@returns
This function returns 0 on success and -1 on error.
*/
int HID_API_EXPORT HID_API_CALL hid_exit(void);
/** @brief Enumerate the HID Devices.
This function returns a linked list of all the HID devices
attached to the system which match vendor_id and product_id.
If @p vendor_id is set to 0 then any vendor matches.
If @p product_id is set to 0 then any product matches.
If @p vendor_id and @p product_id are both set to 0, then
all HID devices will be returned.
@ingroup API
@param vendor_id The Vendor ID (VID) of the types of device
to open.
@param product_id The Product ID (PID) of the types of
device to open.
@returns
This function returns a pointer to a linked list of type
struct #hid_device, containing information about the HID devices
attached to the system, or NULL in the case of failure. Free
this linked list by calling hid_free_enumeration().
*/
struct hid_device_info HID_API_EXPORT * HID_API_CALL hid_enumerate(unsigned short vendor_id, unsigned short product_id);
/** @brief Free an enumeration Linked List
This function frees a linked list created by hid_enumerate().
@ingroup API
@param devs Pointer to a list of struct_device returned from
hid_enumerate().
*/
void HID_API_EXPORT HID_API_CALL hid_free_enumeration(struct hid_device_info *devs);
/** @brief Open a HID device using a Vendor ID (VID), Product ID
(PID) and optionally a serial number.
If @p serial_number is NULL, the first device with the
specified VID and PID is opened.
@ingroup API
@param vendor_id The Vendor ID (VID) of the device to open.
@param product_id The Product ID (PID) of the device to open.
@param serial_number The Serial Number of the device to open
(Optionally NULL).
@returns
This function returns a pointer to a #hid_device object on
success or NULL on failure.
*/
HID_API_EXPORT hid_device * HID_API_CALL hid_open(unsigned short vendor_id, unsigned short product_id, const wchar_t *serial_number);
/** @brief Open a HID device by its path name.
The path name be determined by calling hid_enumerate(), or a
platform-specific path name can be used (eg: /dev/hidraw0 on
Linux).
@ingroup API
@param path The path name of the device to open
@returns
This function returns a pointer to a #hid_device object on
success or NULL on failure.
*/
HID_API_EXPORT hid_device * HID_API_CALL hid_open_path(const char *path);
/** @brief Write an Output report to a HID device.
The first byte of @p data[] must contain the Report ID. For
devices which only support a single report, this must be set
to 0x0. The remaining bytes contain the report data. Since
the Report ID is mandatory, calls to hid_write() will always
contain one more byte than the report contains. For example,
if a hid report is 16 bytes long, 17 bytes must be passed to
hid_write(), the Report ID (or 0x0, for devices with a
single report), followed by the report data (16 bytes). In
this example, the length passed in would be 17.
hid_write() will send the data on the first OUT endpoint, if
one exists. If it does not, it will send the data through
the Control Endpoint (Endpoint 0).
@ingroup API
@param device A device handle returned from hid_open().
@param data The data to send, including the report number as
the first byte.
@param length The length in bytes of the data to send.
@returns
This function returns the actual number of bytes written and
-1 on error.
*/
int HID_API_EXPORT HID_API_CALL hid_write(hid_device *device, const unsigned char *data, size_t length);
/** @brief Read an Input report from a HID device with timeout.
Input reports are returned
to the host through the INTERRUPT IN endpoint. The first byte will
contain the Report number if the device uses numbered reports.
@ingroup API
@param device A device handle returned from hid_open().
@param data A buffer to put the read data into.
@param length The number of bytes to read. For devices with
multiple reports, make sure to read an extra byte for
the report number.
@param milliseconds timeout in milliseconds or -1 for blocking wait.
@returns
This function returns the actual number of bytes read and
-1 on error. If no packet was available to be read within
the timeout period, this function returns 0.
*/
int HID_API_EXPORT HID_API_CALL hid_read_timeout(hid_device *dev, unsigned char *data, size_t length, int milliseconds);
/** @brief Read an Input report from a HID device.
Input reports are returned
to the host through the INTERRUPT IN endpoint. The first byte will
contain the Report number if the device uses numbered reports.
@ingroup API
@param device A device handle returned from hid_open().
@param data A buffer to put the read data into.
@param length The number of bytes to read. For devices with
multiple reports, make sure to read an extra byte for
the report number.
@returns
This function returns the actual number of bytes read and
-1 on error. If no packet was available to be read and
the handle is in non-blocking mode, this function returns 0.
*/
int HID_API_EXPORT HID_API_CALL hid_read(hid_device *device, unsigned char *data, size_t length);
/** @brief Set the device handle to be non-blocking.
In non-blocking mode calls to hid_read() will return
immediately with a value of 0 if there is no data to be
read. In blocking mode, hid_read() will wait (block) until
there is data to read before returning.
Nonblocking can be turned on and off at any time.
@ingroup API
@param device A device handle returned from hid_open().
@param nonblock enable or not the nonblocking reads
- 1 to enable nonblocking
- 0 to disable nonblocking.
@returns
This function returns 0 on success and -1 on error.
*/
int HID_API_EXPORT HID_API_CALL hid_set_nonblocking(hid_device *device, int nonblock);
/** @brief Send a Feature report to the device.
Feature reports are sent over the Control endpoint as a
Set_Report transfer. The first byte of @p data[] must
contain the Report ID. For devices which only support a
single report, this must be set to 0x0. The remaining bytes
contain the report data. Since the Report ID is mandatory,
calls to hid_send_feature_report() will always contain one
more byte than the report contains. For example, if a hid
report is 16 bytes long, 17 bytes must be passed to
hid_send_feature_report(): the Report ID (or 0x0, for
devices which do not use numbered reports), followed by the
report data (16 bytes). In this example, the length passed
in would be 17.
@ingroup API
@param device A device handle returned from hid_open().
@param data The data to send, including the report number as
the first byte.
@param length The length in bytes of the data to send, including
the report number.
@returns
This function returns the actual number of bytes written and
-1 on error.
*/
int HID_API_EXPORT HID_API_CALL hid_send_feature_report(hid_device *device, const unsigned char *data, size_t length);
/** @brief Get a feature report from a HID device.
Set the first byte of @p data[] to the Report ID of the
report to be read. Make sure to allow space for this
extra byte in @p data[]. Upon return, the first byte will
still contain the Report ID, and the report data will
start in data[1].
@ingroup API
@param device A device handle returned from hid_open().
@param data A buffer to put the read data into, including
the Report ID. Set the first byte of @p data[] to the
Report ID of the report to be read, or set it to zero
if your device does not use numbered reports.
@param length The number of bytes to read, including an
extra byte for the report ID. The buffer can be longer
than the actual report.
@returns
This function returns the number of bytes read plus
one for the report ID (which is still in the first
byte), or -1 on error.
*/
int HID_API_EXPORT HID_API_CALL hid_get_feature_report(hid_device *device, unsigned char *data, size_t length);
/** @brief Close a HID device.
@ingroup API
@param device A device handle returned from hid_open().
*/
void HID_API_EXPORT HID_API_CALL hid_close(hid_device *device);
/** @brief Get The Manufacturer String from a HID device.
@ingroup API
@param device A device handle returned from hid_open().
@param string A wide string buffer to put the data into.
@param maxlen The length of the buffer in multiples of wchar_t.
@returns
This function returns 0 on success and -1 on error.
*/
int HID_API_EXPORT_CALL hid_get_manufacturer_string(hid_device *device, wchar_t *string, size_t maxlen);
/** @brief Get The Product String from a HID device.
@ingroup API
@param device A device handle returned from hid_open().
@param string A wide string buffer to put the data into.
@param maxlen The length of the buffer in multiples of wchar_t.
@returns
This function returns 0 on success and -1 on error.
*/
int HID_API_EXPORT_CALL hid_get_product_string(hid_device *device, wchar_t *string, size_t maxlen);
/** @brief Get The Serial Number String from a HID device.
@ingroup API
@param device A device handle returned from hid_open().
@param string A wide string buffer to put the data into.
@param maxlen The length of the buffer in multiples of wchar_t.
@returns
This function returns 0 on success and -1 on error.
*/
int HID_API_EXPORT_CALL hid_get_serial_number_string(hid_device *device, wchar_t *string, size_t maxlen);
/** @brief Get a string from a HID device, based on its string index.
@ingroup API
@param device A device handle returned from hid_open().
@param string_index The index of the string to get.
@param string A wide string buffer to put the data into.
@param maxlen The length of the buffer in multiples of wchar_t.
@returns
This function returns 0 on success and -1 on error.
*/
int HID_API_EXPORT_CALL hid_get_indexed_string(hid_device *device, int string_index, wchar_t *string, size_t maxlen);
/** @brief Get a string describing the last error which occurred.
@ingroup API
@param device A device handle returned from hid_open().
@returns
This function returns a string containing the last error
which occurred or NULL if none has occurred.
*/
HID_API_EXPORT const wchar_t* HID_API_CALL hid_error(hid_device *device);
#ifdef __cplusplus
}
#endif
#endif

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,109 @@
#pragma once
#include <chrono>
#include <thread>
#include <map>
#include <string>
#include <iostream>
#include <fstream>
#include <sstream>
#include <cstring>
//#include <curl/curl.h>
#pragma warning(disable: 4996)
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef int8_t s8;
typedef int16_t s16;
typedef int32_t s32;
typedef int64_t s64;
int16_t unsignedToSigned16(uint16_t n) {
uint16_t A = n;
uint16_t B = 0xFFFF - A;
if (A < B) {
return (int16_t)A;
} else {
return (int16_t)(-1 * B);
}
}
int16_t uint16_to_int16(uint16_t a) {
int16_t b;
char* aPointer = (char*)&a, *bPointer = (char*)&b;
memcpy(bPointer, aPointer, sizeof(a));
return b;
}
uint16_t combine_uint8_t(uint8_t a, uint8_t b) {
uint16_t c = ((uint16_t)a << 8) | b;
return c;
}
int16_t combine_gyro_data(uint8_t a, uint8_t b) {
uint16_t c = combine_uint8_t(a, b);
int16_t d = uint16_to_int16(c);
return d;
}
float clamp(float a, float min, float max) {
if (a < min) {
return min;
} else if (a > max) {
return max;
} else {
return a;
}
}
uint16_t clamp(uint16_t a, uint16_t min, uint16_t max) {
if (a < min) {
return min;
}
else if (a > max) {
return max;
}
else {
return a;
}
}
unsigned createMask(unsigned a, unsigned b) {
unsigned r = 0;
for (unsigned i = a; i <= b; i++)
r |= 1 << i;
return r;
}
void hex_dump(unsigned char *buf, int len) {
for (int i = 0; i < len; i++) {
printf("%02x ", buf[i]);
}
printf("\n");
}
void hex_dump2(unsigned char *buf, int len) {
for (int i = 0; i < len; i++) {
printf("%02x ", buf[i]);
}
}
void hex_dump_0(unsigned char *buf, int len) {
for (int i = 0; i < len; i++) {
if (buf[i] != 0) {
printf("%02x ", buf[i]);
}
}
}
void int_dump(unsigned char *buf, int len) {
for (int i = 0; i < len; i++) {
printf("%i ", buf[i]);
}
printf("\n");
}

View File

@ -16,6 +16,10 @@
#include "win32.h"
// Using this to get dualsense controllers
#include "JoyShockLibrary/JoyShockLibrary.h"
NS_WIN32_BEGIN
// TODO(Ed) : This is a global for now.
@ -301,7 +305,17 @@ WinMain(
)
{
using namespace win32;
xinput_load_library_bindings();
// xinput_load_library_bindings();
using JSL_DeviceHandle = int;
u32 jsl_num_devices = JslConnectDevices();
JSL_DeviceHandle device_handles[4] {};
u32 jsl_getconnected_found = JslGetConnectedDeviceHandles( device_handles, jsl_num_devices );
if ( jsl_getconnected_found != jsl_num_devices )
{
OutputDebugStringA( "Error: JSLGetConnectedDeviceHandles didn't find as many as were stated with JslConnectDevices\n");
}
// MessageBox( 0, L"First message!", L"Handmade Hero", MB_Ok_Btn | MB_Icon_Information );
@ -374,6 +388,7 @@ WinMain(
DispatchMessage( & msg_info );
}
// XInput Polling
// TODO(Ed) : Should we poll this more frequently?
for ( DWORD controller_index = 0; controller_index < XUSER_MAX_COUNT; ++ controller_index )
{
@ -406,6 +421,30 @@ WinMain(
}
}
// JSL Input Polling
for ( u32 jsl_device_index = 0; jsl_device_index < jsl_num_devices; ++ jsl_device_index )
{
if ( ! JslStillConnected( device_handles[ jsl_device_index ] ) )
{
OutputDebugStringA( "Error: JSLStillConnected returned false\n" );
continue;
}
JOY_SHOCK_STATE state = JslGetSimpleState( device_handles[ jsl_device_index ] );
dpad_up = state.buttons & JSMASK_UP;
dpad_down = state.buttons & JSMASK_DOWN;
dpad_left = state.buttons & JSMASK_LEFT;
dpad_right = state.buttons & JSMASK_RIGHT;
start = state.buttons & JSMASK_PLUS;
back = state.buttons & JSMASK_MINUS;
left_shoulder = state.buttons & JSMASK_L;
right_shoulder = state.buttons & JSMASK_R;
btn_a_button = state.buttons & JSMASK_S;
btn_b_button = state.buttons & JSMASK_E;
btn_x_button = state.buttons & JSMASK_W;
btn_y_button = state.buttons & JSMASK_N;
}
x_offset += dpad_right;
x_offset -= dpad_left;
y_offset += dpad_up;

View File

@ -1,3 +1,5 @@
#pragma once
#pragma region Platform Detection
/* Platform architecture */

View File

@ -1,3 +1,5 @@
#pragma once
// Keywords
#define global static // Global variables

View File

@ -1,3 +1,5 @@
#pragma once
#pragma region Basic Types
#define U8_MIN 0u

View File

@ -338,10 +338,15 @@ $includes = @(
$path_deps,
$path_platform
)
# Microsoft
$lib_gdi32 = 'Gdi32.lib'
$lib_xinput = 'Xinput.lib'
$lib_user32 = 'User32.lib'
# Github
$lib_jsl = Join-Path $path_deps 'JoyShockLibrary/x64/JoyShockLibrary.lib'
$unit = Join-Path $path_project 'handmade_win32.cpp'
$executable = Join-Path $path_build 'handmade_win32.exe'
@ -351,6 +356,9 @@ $linker_args = @(
$lib_gdi32,
# $lib_xinput,
$lib_user32,
$lib_jsl,
$flag_link_win_subsystem_windows
)

Binary file not shown.

View File

@ -1,28 +1,65 @@
clear-host
$path_root = & git rev-parse --show-toplevel
$path_data = Join-Path $path_root "data"
$path_project = Join-Path $path_root "project"
$path_deps = Join-Path $path_project "dependencies"
$path_deps_windows = Join-Path $path_deps "windows"
$path_temp = Join-Path $path_deps "temp"
$path_platform = Join-Path $path_project "platform"
# Define the URL of the zip file and the destination directory
$url = "https://github.com/Ed94/gencpp/releases/download/latest/gencpp_singleheader.zip"
$destinationZip = Join-Path $path_temp "gencpp_singleheader.zip"
# Create directories if they don't exist
if (-not (Test-Path $path_deps)) {
# Clear out the current content first
if (Test-Path $path_deps) {
Remove-Item $path_deps -Recurse -Force
New-Item -ItemType Directory -Path $path_deps
}
if (-not (Test-Path $path_temp)) {
New-Item -ItemType Directory -Path $path_temp
}
New-Item -ItemType Directory -Path $path_temp
$url_gencpp = "https://github.com/Ed94/gencpp/releases/download/latest/gencpp_singleheader.zip"
$path_gencpp_zip = Join-Path $path_temp "gencpp_singleheader.zip"
#region gencpp
Invoke-WebRequest -Uri $url -OutFile $destinationZip
Expand-Archive -Path $destinationZip -DestinationPath $path_temp
Invoke-WebRequest -Uri $url_gencpp -OutFile $path_gencpp_zip
Expand-Archive -Path $path_gencpp_zip -DestinationPath $path_temp
Move-Item -Path (Join-Path $path_temp "gen.hpp") -Destination $path_deps -Force
#endregion gencpp
#region JoyShockLibrary
$url_jsl_repo = "https://github.com/JibbSmart/JoyShockLibrary.git"
# $url_jsl_zip = "https://github.com/JibbSmart/JoyShockLibrary/releases/download/v3.0/JSL_3_0.zip"
$url_jsl_zip = "https://github.com/Ed94/JoyShockLibrary/releases/download/not_for_public_use/JSL.zip"
$path_jsl_repo = Join-Path $path_temp "JoyShockLibraryRepo"
$path_jsl_repo_code = Join-Path $path_jsl_repo "JoyShockLibrary"
$path_jsl_lib_zip = Join-Path $path_temp "JSL_3_0.zip"
$path_jsl = Join-Path $path_deps "JoyShockLibrary"
$path_jsl_hidapi = Join-Path $path_jsl "hidapi"
$path_jsl_lib = Join-Path $path_jsl "x64"
# Grab code from repo
& git clone $url_jsl_repo $path_jsl_repo
Move-Item -Path $path_jsl_repo_code -Destination $path_deps -Force
# Clean up the junk
@( $path_jsl, $path_jsl_hidapi ) | ForEach-Object {
Get-ChildItem -Path $path_jsl -Recurse -File | Where-Object {
($_.Extension -ne ".h" -and $_.Extension -ne ".cpp")
} | Remove-Item -Force
}
Remove-Item (join-path $path_jsl_hidapi 'objs') -Recurse -Force
# Get precompiled binaries
Invoke-WebRequest -Uri $url_jsl_zip -OutFile $path_jsl_lib_zip
Expand-Archive -Path $path_jsl_lib_zip -DestinationPath $path_temp
if (-not (Test-Path $path_jsl_lib)) {
New-Item -ItemType Directory -Path $path_jsl_lib
}
$jsl_lib_files = (Get-ChildItem (Join-Path $path_temp "JSL\x64") -Recurse -Include *.dll, *.lib)
Move-Item $jsl_lib_files -Destination $path_jsl_lib -Force
$path_jsl_dll = Join-Path $path_jsl_lib "JoyShockLibrary.dll"
Move-Item $path_jsl_dll $path_data -Force
#endregion JoyShockLibrary
Remove-Item $path_temp -Recurse -Force