gencpp/project/dependencies/containers.hpp

696 lines
24 KiB
C++

#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "printing.hpp"
#endif
#pragma region Containers
template<class TType> struct RemoveConst { typedef TType Type; };
template<class TType> struct RemoveConst<const TType> { typedef TType Type; };
template<class TType> struct RemoveConst<const TType[]> { typedef TType Type[]; };
template<class TType, usize Size> struct RemoveConst<const TType[Size]> { typedef TType Type[Size]; };
template<class TType>
using TRemoveConst = typename RemoveConst<TType>::Type;
#pragma region Array
#define Array(Type) Array<Type>
// #define array_init(Type, ...) array_init <Type>(__VA_ARGS__)
// #define array_init_reserve(Type, ...) array_init_reserve<Type>(__VA_ARGS__)
struct ArrayHeader;
#if GEN_SUPPORT_CPP_MEMBER_FEATURES
template<class Type> struct Array;
#else
template<class Type> using Array = Type*;
#endif
usize array_grow_formula(ssize value);
template<class Type> Array(Type) array_init (AllocatorInfo allocator);
template<class Type> Array(Type) array_init_reserve(AllocatorInfo allocator, ssize capacity);
template<class Type> bool append (Array(Type)* array, Array(Type) other);
template<class Type> bool append (Array(Type)* array, Type value);
template<class Type> bool append (Array(Type)* array, Type* items, usize item_num);
template<class Type> bool append_at (Array(Type)* array, Type item, usize idx);
template<class Type> bool append_at (Array(Type)* array, Type* items, usize item_num, usize idx);
template<class Type> Type* back (Array(Type) array);
template<class Type> void clear (Array(Type) array);
template<class Type> bool fill (Array(Type) array, usize begin, usize end, Type value);
template<class Type> void free (Array(Type)* array);
template<class Type> bool grow (Array(Type)* array, usize min_capacity);
template<class Type> usize num (Array(Type) array);
template<class Type> void pop (Array(Type) array);
template<class Type> void remove_at (Array(Type) array, usize idx);
template<class Type> bool reserve (Array(Type)* array, usize new_capacity);
template<class Type> bool resize (Array(Type)* array, usize num);
template<class Type> bool set_capacity (Array(Type)* array, usize new_capacity);
template<class Type> ArrayHeader* get_header (Array(Type) array);
struct ArrayHeader {
AllocatorInfo Allocator;
usize Capacity;
usize Num;
};
#if GEN_SUPPORT_CPP_MEMBER_FEATURES
template<class Type>
struct Array
{
Type* Data;
#pragma region Member Mapping
forceinline static Array init(AllocatorInfo allocator) { return GEN_NS array_init<Type>(allocator); }
forceinline static Array init_reserve(AllocatorInfo allocator, ssize capacity) { return GEN_NS array_init_reserve<Type>(allocator, capacity); }
forceinline static usize grow_formula(ssize value) { return GEN_NS array_grow_formula<Type>(value); }
forceinline bool append(Array other) { return GEN_NS append<Type>(this, other); }
forceinline bool append(Type value) { return GEN_NS append<Type>(this, value); }
forceinline bool append(Type* items, usize item_num) { return GEN_NS append<Type>(this, items, item_num); }
forceinline bool append_at(Type item, usize idx) { return GEN_NS append_at<Type>(this, item, idx); }
forceinline bool append_at(Type* items, usize item_num, usize idx) { return GEN_NS append_at<Type>(this, items, item_num, idx); }
forceinline Type* back() { return GEN_NS back<Type>(* this); }
forceinline void clear() { GEN_NS clear<Type>(* this); }
forceinline bool fill(usize begin, usize end, Type value) { return GEN_NS fill<Type>(* this, begin, end, value); }
forceinline void free() { GEN_NS free<Type>(this); }
forceinline ArrayHeader* get_header() { return GEN_NS get_header<Type>(* this); }
forceinline bool grow(usize min_capacity) { return GEN_NS grow<Type>(this, min_capacity); }
forceinline usize num() { return GEN_NS num<Type>(*this); }
forceinline void pop() { GEN_NS pop<Type>(* this); }
forceinline void remove_at(usize idx) { GEN_NS remove_at<Type>(* this, idx); }
forceinline bool reserve(usize new_capacity) { return GEN_NS reserve<Type>(this, new_capacity); }
forceinline bool resize(usize num) { return GEN_NS resize<Type>(this, num); }
forceinline bool set_capacity(usize new_capacity) { return GEN_NS set_capacity<Type>(this, new_capacity); }
#pragma endregion Member Mapping
forceinline operator Type*() { return Data; }
forceinline operator Type const*() const { return Data; }
forceinline Type* begin() { return Data; }
forceinline Type* end() { return Data + get_header()->Num; }
forceinline Type& operator[](ssize index) { return Data[index]; }
forceinline Type const& operator[](ssize index) const { return Data[index]; }
};
#endif
#if GEN_SUPPORT_CPP_REFERENCES
template<class Type> bool append(Array<Type>& array, Array<Type> other) { return GEN_NS append( & array, other ); }
template<class Type> bool append(Array<Type>& array, Type value) { return GEN_NS append( & array, value ); }
template<class Type> bool append(Array<Type>& array, Type* items, usize item_num) { return GEN_NS append( & array, items, item_num ); }
template<class Type> bool append_at(Array<Type>& array, Type item, usize idx) { return GEN_NS append_at( & array, item, idx ); }
template<class Type> bool append_at(Array<Type>& array, Type* items, usize item_num, usize idx) { return GEN_NS append_at( & array, items, item_num, idx ); }
template<class Type> void free(Array<Type>& array) { return GEN_NS free( & array ); }
template<class Type> bool grow(Array<Type>& array, usize min_capacity) { return GEN_NS grow( & array, min_capacity); }
template<class Type> bool reserve(Array<Type>& array, usize new_capacity) { return GEN_NS reserve( & array, new_capacity); }
template<class Type> bool resize(Array<Type>& array, usize num) { return GEN_NS resize( & array, num); }
template<class Type> bool set_capacity(Array<Type>& array, usize new_capacity) { return GEN_NS set_capacity( & array, new_capacity); }
template<class Type> forceinline Type* begin(Array<Type>& array) { return array; }
template<class Type> forceinline Type* end(Array<Type>& array) { return array + get_header(array)->Num; }
template<class Type> forceinline Type* next(Array<Type>& array, Type* entry) { return entry + 1; }
#else
template<class Type> forceinline Type* begin(Array<Type> array) { return array; }
template<class Type> forceinline Type* end(Array<Type> array) { return array + get_header(array)->Num; }
template<class Type> forceinline Type* next(Array<Type> array, Type* entry) { return entry + 1; }
#endif
template<class Type> inline
Array<Type> array_init(AllocatorInfo allocator) {
return array_init_reserve<Type>(allocator, array_grow_formula(0));
}
template<class Type> inline
Array<Type> array_init_reserve(AllocatorInfo allocator, ssize capacity)
{
ArrayHeader* header = rcast(ArrayHeader*, alloc(allocator, sizeof(ArrayHeader) + sizeof(Type) * capacity));
if (header == nullptr)
return {nullptr};
header->Allocator = allocator;
header->Capacity = capacity;
header->Num = 0;
return {rcast(Type*, header + 1)};
}
usize array_grow_formula(ssize value) {
return 2 * value + 8;
}
template<class Type> inline
bool append(Array<Type>* array, Array<Type> other) {
return append(array, other, num(other));
}
template<class Type> inline
bool append(Array<Type>* array, Type value)
{
ArrayHeader* header = get_header(* array);
if (header->Num == header->Capacity)
{
if (!grow(array, header->Capacity))
return false;
header = get_header(* array);
}
(*array)[ header->Num] = value;
header->Num++;
return true;
}
template<class Type> inline
bool append(Array<Type>* array, Type* items, usize item_num)
{
ArrayHeader* header = get_header(array);
if (header->Num + item_num > header->Capacity)
{
if (!grow(array, header->Capacity + item_num))
return false;
header = get_header(array);
}
mem_copy(array.Data + header->Num, items, item_num * sizeof(Type));
header->Num += item_num;
return true;
}
template<class Type> inline
bool append_at(Array<Type>* array, Type item, usize idx)
{
ArrayHeader* header = get_header(* array);
ssize slot = idx;
if (slot >= header->Num)
slot = header->Num - 1;
if (slot < 0)
slot = 0;
if (header->Capacity < header->Num + 1)
{
if ( ! grow(array, header->Capacity + 1))
return false;
header = get_header(* array);
}
Type* target = &(*array)[slot];
mem_move(target + 1, target, (header->Num - slot) * sizeof(Type));
header->Num++;
header = get_header(* array);
return true;
}
template<class Type> inline
bool append_at(Array<Type>* array, Type* items, usize item_num, usize idx)
{
ArrayHeader* header = get_header(array);
if (idx >= header->Num)
{
return append(array, items, item_num);
}
if (item_num > header->Capacity)
{
if (! grow(array, header->Capacity + item_num))
return false;
header = get_header(array);
}
Type* target = array.Data + idx + item_num;
Type* src = array.Data + idx;
mem_move(target, src, (header->Num - idx) * sizeof(Type));
mem_copy(src, items, item_num * sizeof(Type));
header->Num += item_num;
return true;
}
template<class Type> inline
Type* back(Array<Type>* array)
{
GEN_ASSERT(array != nullptr);
ArrayHeader* header = get_header(* array);
if (header->Num <= 0)
return nullptr;
return & (*array)[header->Num - 1];
}
template<class Type> inline
void clear(Array<Type> array) {
ArrayHeader* header = get_header(array);
header->Num = 0;
}
template<class Type> inline
bool fill(Array<Type> array, usize begin, usize end, Type value)
{
ArrayHeader* header = get_header(array);
if (begin < 0 || end > header->Num)
return false;
for (ssize idx = ssize(begin); idx < ssize(end); idx++)
{
array[idx] = value;
}
return true;
}
template<class Type> inline
void free(Array<Type>* array) {
GEN_ASSERT(array != nullptr);
ArrayHeader* header = get_header(* array);
GEN_NS free(header->Allocator, header);
Type** Data = (Type**)array;
*Data = nullptr;
}
template<class Type> forceinline
ArrayHeader* get_header(Array<Type> array) {
Type* Data = array;
using NonConstType = TRemoveConst<Type>;
return rcast(ArrayHeader*, const_cast<NonConstType*>(Data)) - 1;
}
template<class Type> inline
bool grow(Array<Type>* array, usize min_capacity)
{
ArrayHeader* header = get_header(* array);
usize new_capacity = array_grow_formula(header->Capacity);
if (new_capacity < min_capacity)
new_capacity = min_capacity;
return set_capacity(array, new_capacity);
}
template<class Type> inline
usize num(Array<Type> array) {
return get_header(array)->Num;
}
template<class Type> inline
void pop(Array<Type> array) {
ArrayHeader* header = get_header(array);
GEN_ASSERT(header->Num > 0);
header->Num--;
}
template<class Type> inline
void remove_at(Array<Type> array, usize idx)
{
ArrayHeader* header = get_header(array);
GEN_ASSERT(idx < header->Num);
mem_move(array + idx, array + idx + 1, sizeof(Type) * (header->Num - idx - 1));
header->Num--;
}
template<class Type> inline
bool reserve(Array<Type>* array, usize new_capacity)
{
ArrayHeader* header = get_header(array);
if (header->Capacity < new_capacity)
return set_capacity(array, new_capacity);
return true;
}
template<class Type> inline
bool resize(Array<Type>* array, usize num)
{
ArrayHeader* header = get_header(* array);
if (header->Capacity < num) {
if (! grow( array, num))
return false;
header = get_header(* array);
}
header->Num = num;
return true;
}
template<class Type> inline
bool set_capacity(Array<Type>* array, usize new_capacity)
{
ArrayHeader* header = get_header(* array);
if (new_capacity == header->Capacity)
return true;
if (new_capacity < header->Num)
{
header->Num = new_capacity;
return true;
}
ssize size = sizeof(ArrayHeader) + sizeof(Type) * new_capacity;
ArrayHeader* new_header = rcast(ArrayHeader*, alloc(header->Allocator, size));
if (new_header == nullptr)
return false;
mem_move(new_header, header, sizeof(ArrayHeader) + sizeof(Type) * header->Num);
new_header->Capacity = new_capacity;
GEN_NS free(header->Allocator, header);
Type** Data = (Type**)array;
* Data = rcast(Type*, new_header + 1);
return true;
}
#pragma endregion Array
// TODO(Ed) : This thing needs ALOT of work.
#pragma region HashTable
template<class Type> struct HashTable;
struct HashTableFindResult {
ssize HashIndex;
ssize PrevIndex;
ssize EntryIndex;
};
template<class Type>
struct HashTableEntry {
u64 Key;
ssize Next;
Type Value;
};
#define HashTableEntry(Type) HashTableEntry<Type>
template<class Type> HashTable<Type> hashtable_init(AllocatorInfo allocator);
template<class Type> HashTable<Type> hashtable_init_reserve(AllocatorInfo allocator, usize num);
template<class Type> void clear (HashTable<Type> table);
template<class Type> void destroy (HashTable<Type>* table);
template<class Type> Type* get (HashTable<Type> table, u64 key);
template<class Type> void grow (HashTable<Type>* table);
template<class Type> void rehash (HashTable<Type>* table, ssize new_num);
template<class Type> void rehash_fast (HashTable<Type> table);
template<class Type> void remove (HashTable<Type> table, u64 key);
template<class Type> void remove_entry (HashTable<Type> table, ssize idx);
template<class Type> void set (HashTable<Type>* table, u64 key, Type value);
template<class Type> ssize slot (HashTable<Type> table, u64 key);
template<class Type> ssize add_entry (HashTable<Type>* table, u64 key);
template<class Type> HashTableFindResult find (HashTable<Type> table, u64 key);
template<class Type> bool full (HashTable<Type> table);
template<class Type> void map (HashTable<Type> table, void (*map_proc)(u64 key, Type value));
template<class Type> void map_mut (HashTable<Type> table, void (*map_proc)(u64 key, Type* value));
static constexpr f32 HashTable_CriticalLoadScale = 0.7f;
template<typename Type>
struct HashTable
{
Array<ssize> Hashes;
Array<HashTableEntry<Type>> Entries;
#if GEN_SUPPORT_CPP_MEMBER_FEATURES
#pragma region Member Mapping
forceinline static HashTable init(AllocatorInfo allocator) { return GEN_NS hashtable_init<Type>(allocator); }
forceinline static HashTable init_reserve(AllocatorInfo allocator, usize num) { return GEN_NS hashtable_init_reserve<Type>(allocator, num); }
forceinline void clear() { GEN_NS clear<Type>(*this); }
forceinline void destroy() { GEN_NS destroy<Type>(*this); }
forceinline Type* get(u64 key) { return GEN_NS get<Type>(*this, key); }
forceinline void grow() { GEN_NS grow<Type>(*this); }
forceinline void rehash(ssize new_num) { GEN_NS rehash<Type>(*this, new_num); }
forceinline void rehash_fast() { GEN_NS rehash_fast<Type>(*this); }
forceinline void remove(u64 key) { GEN_NS remove<Type>(*this, key); }
forceinline void remove_entry(ssize idx) { GEN_NS remove_entry<Type>(*this, idx); }
forceinline void set(u64 key, Type value) { GEN_NS set<Type>(*this, key, value); }
forceinline ssize slot(u64 key) { return GEN_NS slot<Type>(*this, key); }
forceinline void map(void (*proc)(u64, Type)) { GEN_NS map<Type>(*this, proc); }
forceinline void map_mut(void (*proc)(u64, Type*)) { GEN_NS map_mut<Type>(*this, proc); }
#pragma endregion Member Mapping
#endif
};
#if GEN_SUPPORT_CPP_REFERENCES
template<class Type> void destroy (HashTable<Type>& table) { destroy(& table); }
template<class Type> void grow (HashTable<Type>& table) { grow(& table); }
template<class Type> void rehash (HashTable<Type>& table, ssize new_num) { rehash(& table, new_num); }
template<class Type> void set (HashTable<Type>& table, u64 key, Type value) { set(& table, key, value); }
template<class Type> ssize add_entry(HashTable<Type>& table, u64 key) { add_entry(& table, key); }
#endif
template<typename Type> inline
HashTable<Type> hashtable_init(AllocatorInfo allocator) {
HashTable<Type> result = hashtable_init_reserve<Type>(allocator, 8);
return result;
}
template<typename Type> inline
HashTable<Type> hashtable_init_reserve(AllocatorInfo allocator, usize num)
{
HashTable<Type> result = { { nullptr }, { nullptr } };
result.Hashes = array_init_reserve<ssize>(allocator, num);
get_header(result.Hashes)->Num = num;
resize(& result.Hashes, num);
fill<ssize>(result.Hashes, 0, num, -1);
result.Entries = array_init_reserve<HashTableEntry<Type>>(allocator, num);
return result;
}
template<typename Type> inline
void clear(HashTable<Type> table) {
clear(table.Entries);
fill<ssize>(table.Hashes, 0, num(table.Hashes), -1);
}
template<typename Type> inline
void destroy(HashTable<Type>* table) {
if (table->Hashes && get_header(table->Hashes)->Capacity) {
free(& table->Hashes);
free(& table->Entries);
}
}
template<typename Type> inline
Type* get(HashTable<Type> table, u64 key) {
ssize idx = find(table, key).EntryIndex;
if (idx >= 0)
return & table.Entries[idx].Value;
return nullptr;
}
template<typename Type> inline
void map(HashTable<Type> table, void (*map_proc)(u64 key, Type value)) {
GEN_ASSERT_NOT_NULL(map_proc);
for (ssize idx = 0; idx < ssize(num(table.Entries)); ++idx) {
map_proc(table.Entries[idx].Key, table.Entries[idx].Value);
}
}
template<typename Type> inline
void map_mut(HashTable<Type> table, void (*map_proc)(u64 key, Type* value)) {
GEN_ASSERT_NOT_NULL(map_proc);
for (ssize idx = 0; idx < ssize(num(table.Entries)); ++idx) {
map_proc(table.Entries[idx].Key, & table.Entries[idx].Value);
}
}
template<typename Type> inline
void grow(HashTable<Type>* table) {
ssize new_num = array_grow_formula(num(table->Entries));
rehash(table, new_num);
}
template<typename Type> inline
void rehash(HashTable<Type>* table, ssize new_num)
{
ssize last_added_index;
HashTable<Type> new_ht = hashtable_init_reserve<Type>(get_header(table->Hashes)->Allocator, new_num);
for (ssize idx = 0; idx < ssize(num(table->Entries)); ++idx)
{
HashTableFindResult find_result;
HashTableEntry<Type>& entry = table->Entries[idx];
find_result = find(new_ht, entry.Key);
last_added_index = add_entry(& new_ht, entry.Key);
if (find_result.PrevIndex < 0)
new_ht.Hashes[find_result.HashIndex] = last_added_index;
else
new_ht.Entries[find_result.PrevIndex].Next = last_added_index;
new_ht.Entries[last_added_index].Next = find_result.EntryIndex;
new_ht.Entries[last_added_index].Value = entry.Value;
}
destroy(table);
* table = new_ht;
}
template<typename Type> inline
void rehash_fast(HashTable<Type> table)
{
ssize idx;
for (idx = 0; idx < ssize(num(table.Entries)); idx++)
table.Entries[idx].Next = -1;
for (idx = 0; idx < ssize(num(table.Hashes)); idx++)
table.Hashes[idx] = -1;
for (idx = 0; idx < ssize(num(table.Entries)); idx++)
{
HashTableEntry<Type>* entry;
HashTableFindResult find_result;
entry = &table.Entries[idx];
find_result = find(table, entry->Key);
if (find_result.PrevIndex < 0)
table.Hashes[find_result.HashIndex] = idx;
else
table.Entries[find_result.PrevIndex].Next = idx;
}
}
template<typename Type> inline
void remove(HashTable<Type> table, u64 key) {
HashTableFindResult find_result = find(table, key);
if (find_result.EntryIndex >= 0) {
remove_at(table.Entries, find_result.EntryIndex);
rehash_fast(table);
}
}
template<typename Type> inline
void remove_entry(HashTable<Type> table, ssize idx) {
remove_at(table.Entries, idx);
}
template<typename Type> inline
void set(HashTable<Type>* table, u64 key, Type value)
{
ssize idx;
HashTableFindResult find_result;
if (full(* table))
grow(table);
find_result = find(* table, key);
if (find_result.EntryIndex >= 0) {
idx = find_result.EntryIndex;
}
else
{
idx = add_entry(table, key);
if (find_result.PrevIndex >= 0) {
table->Entries[find_result.PrevIndex].Next = idx;
}
else {
table->Hashes[find_result.HashIndex] = idx;
}
}
table->Entries[idx].Value = value;
if (full(* table))
grow(table);
}
template<typename Type> inline
ssize slot(HashTable<Type> table, u64 key) {
for (ssize idx = 0; idx < ssize(num(table.Hashes)); ++idx)
if (table.Hashes[idx] == key)
return idx;
return -1;
}
template<typename Type> inline
ssize add_entry(HashTable<Type>* table, u64 key) {
ssize idx;
HashTableEntry<Type> entry = { key, -1 };
idx = num(table->Entries);
append( & table->Entries, entry);
return idx;
}
template<typename Type> inline
HashTableFindResult find(HashTable<Type> table, u64 key)
{
HashTableFindResult result = { -1, -1, -1 };
if (num(table.Hashes) > 0)
{
result.HashIndex = key % num(table.Hashes);
result.EntryIndex = table.Hashes[result.HashIndex];
while (result.EntryIndex >= 0)
{
if (table.Entries[result.EntryIndex].Key == key)
break;
result.PrevIndex = result.EntryIndex;
result.EntryIndex = table.Entries[result.EntryIndex].Next;
}
}
return result;
}
template<typename Type> inline
bool full(HashTable<Type> table) {
usize critical_load = usize(HashTable_CriticalLoadScale * f32(num(table.Hashes)));
b32 result = num(table.Entries) > critical_load;
return result;
}
#define hashtable_init(Type, allocator) hashtable_init<Type>(allocator)
#define hashtable_init_reserve(Type, allocator, num) hashtable_init_reserve<Type>(allocator, num)
#define hashtable_clear(Type, table) clear<Type>(table)
#define hashtable_destroy(Type, table) destroy<Type>(table)
#define hashtable_get(Type, table, key) get<Type>(table, key)
#define hashtable_grow(Type, table) grow<Type>(table)
#define hashtable_rehash(Type, table, new_num) rehash<Type>(table, new_num)
#define hashtable_rehash_fast(Type, table) rehash_fast<Type>(table)
#define hashtable_remove(Type, table, key) remove<Type>(table, key)
#define hashtable_remove_entry(Type, table, idx) remove_entry<Type>(table, idx)
#define hashtable_set(Type, table, key, value) set<Type>(table, key, value)
#define hashtable_slot(Type, table, key) slot<Type>(table, key)
#define hashtable_add_entry(Type, table, key) add_entry<Type>(table, key)
#define hashtable_find(Type, table, key) find<Type>(table, key)
#define hashtable_full(Type, table) full<Type>(table)
#define hashtable_map(Type, table, map_proc) map<Type>(table, map_proc)
#define hashtable_map_mut(Type, table, map_proc) map_mut<Type>(table, map_proc)
#pragma endregion HashTable
#pragma endregion Containers