1
0
mirror of https://github.com/Ed94/gencpp.git synced 2025-01-11 17:28:38 -08:00
gencpp/project/dependencies/containers.hpp
2024-11-30 14:13:30 -05:00

620 lines
19 KiB
C++

#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "printing.hpp"
#endif
#pragma region Containers
template<class TType> struct RemoveConst { typedef TType Type; };
template<class TType> struct RemoveConst<const TType> { typedef TType Type; };
template<class TType> struct RemoveConst<const TType[]> { typedef TType Type[]; };
template<class TType, usize Size> struct RemoveConst<const TType[Size]> { typedef TType Type[Size]; };
template<class TType>
using TRemoveConst = typename RemoveConst<TType>::Type;
#pragma region Array
struct ArrayHeader;
template<class Type> struct Array;
template<class Type> Array<Type> array_init(AllocatorInfo allocator);
template<class Type> Array<Type> array_init_reserve(AllocatorInfo allocator, ssize capacity);
template<class Type> usize array_grow_formula(ssize value);
template<class Type> bool append(Array<Type>& array, Array<Type> other);
template<class Type> bool append(Array<Type>& array, Type value);
template<class Type> bool append(Array<Type>& array, Type* items, usize item_num);
template<class Type> bool append_at(Array<Type>& array, Type item, usize idx);
template<class Type> bool append_at(Array<Type>& array, Type* items, usize item_num, usize idx);
template<class Type> Type& back(Array<Type>& array);
template<class Type> void clear(Array<Type>& array);
template<class Type> bool fill(Array<Type>& array, usize begin, usize end, Type value);
template<class Type> void free(Array<Type>& array);
template<class Type> bool grow(Array<Type>& array, usize min_capacity);
template<class Type> usize num(Array<Type>& array);
template<class Type> void pop(Array<Type>& array);
template<class Type> void remove_at(Array<Type>& array, usize idx);
template<class Type> bool reserve(Array<Type>& array, usize new_capacity);
template<class Type> bool resize(Array<Type>& array, usize num);
template<class Type> bool set_capacity(Array<Type>& array, usize new_capacity);
template<class Type> ArrayHeader* get_header(Array<Type>& array);
struct ArrayHeader {
AllocatorInfo Allocator;
usize Capacity;
usize Num;
};
template<class Type>
struct Array
{
Type* Data;
#if 1
#pragma region Member Mapping
forceinline static Array init(AllocatorInfo allocator) { return GEN_NS array_init<Type>(allocator); }
forceinline static Array init_reserve(AllocatorInfo allocator, ssize capacity) { return GEN_NS array_init_reserve<Type>(allocator, capacity); }
forceinline static usize grow_formula(ssize value) { return GEN_NS array_grow_formula<Type>(value); }
forceinline bool append(Array other) { return GEN_NS append<Type>(*this, other); }
forceinline bool append(Type value) { return GEN_NS append<Type>(*this, value); }
forceinline bool append(Type* items, usize item_num) { return GEN_NS append<Type>(*this, items, item_num); }
forceinline bool append_at(Type item, usize idx) { return GEN_NS append_at<Type>(*this, item, idx); }
forceinline bool append_at(Type* items, usize item_num, usize idx) { return GEN_NS append_at<Type>(*this, items, item_num, idx); }
forceinline Type& back() { return GEN_NS back<Type>(*this); }
forceinline void clear() { GEN_NS clear<Type>(*this); }
forceinline bool fill(usize begin, usize end, Type value) { return GEN_NS fill<Type>(*this, begin, end, value); }
forceinline void free() { GEN_NS free<Type>(*this); }
forceinline ArrayHeader* get_header() { return GEN_NS get_header<Type>(*this); }
forceinline bool grow(usize min_capacity) { return GEN_NS grow<Type>(*this, min_capacity); }
forceinline usize num() { return GEN_NS num<Type>(*this); }
forceinline void pop() { GEN_NS pop<Type>(*this); }
forceinline void remove_at(usize idx) { GEN_NS remove_at<Type>(*this, idx); }
forceinline bool reserve(usize new_capacity) { return GEN_NS reserve<Type>(*this, new_capacity); }
forceinline bool resize(usize num) { return GEN_NS resize<Type>(*this, num); }
forceinline bool set_capacity(usize new_capacity) { return GEN_NS set_capacity<Type>(*this, new_capacity); }
forceinline operator Type*() { return Data; }
forceinline operator Type const*() const { return Data; }
forceinline Type* begin() { return Data; }
forceinline Type* end() { return Data + get_header()->Num; }
#pragma endregion Member Mapping
#endif
};
template<class Type> inline
Array<Type> array_init(AllocatorInfo allocator) {
return array_init_reserve<Type>(allocator, array_grow_formula<Type>(0));
}
template<class Type> inline
Array<Type> array_init_reserve(AllocatorInfo allocator, ssize capacity)
{
ArrayHeader* header = rcast(ArrayHeader*, alloc(allocator, sizeof(ArrayHeader) + sizeof(Type) * capacity));
if (header == nullptr)
return {nullptr};
header->Allocator = allocator;
header->Capacity = capacity;
header->Num = 0;
return {rcast(Type*, header + 1)};
}
template<class Type> inline
usize array_grow_formula(ssize value) {
return 2 * value + 8;
}
template<class Type> inline
bool append(Array<Type>& array, Array<Type> other) {
return append(array, other, num(other));
}
template<class Type> inline
bool append(Array<Type>& array, Type value)
{
ArrayHeader* header = get_header(array);
if (header->Num == header->Capacity)
{
if (!grow(array, header->Capacity))
return false;
header = get_header(array);
}
array.Data[header->Num] = value;
header->Num++;
return true;
}
template<class Type> inline
bool append(Array<Type>& array, Type* items, usize item_num)
{
ArrayHeader* header = get_header(array);
if (header->Num + item_num > header->Capacity)
{
if (!grow(array, header->Capacity + item_num))
return false;
header = get_header(array);
}
mem_copy(array.Data + header->Num, items, item_num * sizeof(Type));
header->Num += item_num;
return true;
}
template<class Type> inline
bool append_at(Array<Type>& array, Type item, usize idx)
{
ArrayHeader* header = get_header(array);
if (idx >= header->Num)
idx = header->Num - 1;
if (idx < 0)
idx = 0;
if (header->Capacity < header->Num + 1)
{
if (!grow(array, header->Capacity + 1))
return false;
header = get_header(array);
}
Type* target = array.Data + idx;
mem_move(target + 1, target, (header->Num - idx) * sizeof(Type));
header->Num++;
return true;
}
template<class Type> inline
bool append_at(Array<Type>& array, Type* items, usize item_num, usize idx)
{
ArrayHeader* header = get_header(array);
if (idx >= header->Num)
{
return append(array, items, item_num);
}
if (item_num > header->Capacity)
{
if (!grow(array, header->Capacity + item_num))
return false;
header = get_header(array);
}
Type* target = array.Data + idx + item_num;
Type* src = array.Data + idx;
mem_move(target, src, (header->Num - idx) * sizeof(Type));
mem_copy(src, items, item_num * sizeof(Type));
header->Num += item_num;
return true;
}
template<class Type> inline
Type& back(Array<Type>& array) {
ArrayHeader* header = get_header(array);
return array.Data[header->Num - 1];
}
template<class Type> inline
void clear(Array<Type>& array) {
ArrayHeader* header = get_header(array);
header->Num = 0;
}
template<class Type> inline
bool fill(Array<Type>& array, usize begin, usize end, Type value)
{
ArrayHeader* header = get_header(array);
if (begin < 0 || end > header->Num)
return false;
for (ssize idx = ssize(begin); idx < ssize(end); idx++)
{
array.Data[idx] = value;
}
return true;
}
template<class Type> inline
void free(Array<Type>& array) {
ArrayHeader* header = get_header(array);
gen::free(header->Allocator, header);
array.Data = nullptr;
}
template<class Type> inline
ArrayHeader* get_header(Array<Type>& array) {
using NonConstType = TRemoveConst<Type>;
return rcast(ArrayHeader*, const_cast<NonConstType*>(array.Data)) - 1;
}
template<class Type> inline
bool grow(Array<Type>& array, usize min_capacity)
{
ArrayHeader* header = get_header(array);
usize new_capacity = array_grow_formula<Type>(header->Capacity);
if (new_capacity < min_capacity)
new_capacity = min_capacity;
return set_capacity(array, new_capacity);
}
template<class Type> inline
usize num(Array<Type>& array) {
return get_header(array)->Num;
}
template<class Type> inline
void pop(Array<Type>& array) {
ArrayHeader* header = get_header(array);
GEN_ASSERT(header->Num > 0);
header->Num--;
}
template<class Type> inline
void remove_at(Array<Type>& array, usize idx)
{
ArrayHeader* header = get_header(array);
GEN_ASSERT(idx < header->Num);
mem_move(array.Data + idx, array.Data + idx + 1, sizeof(Type) * (header->Num - idx - 1));
header->Num--;
}
template<class Type> inline
bool reserve(Array<Type>& array, usize new_capacity)
{
ArrayHeader* header = get_header(array);
if (header->Capacity < new_capacity)
return set_capacity(array, new_capacity);
return true;
}
template<class Type> inline
bool resize(Array<Type>& array, usize num)
{
ArrayHeader* header = get_header(array);
if (header->Capacity < num) {
if (!grow(array, num))
return false;
header = get_header(array);
}
header->Num = num;
return true;
}
template<class Type> inline
bool set_capacity(Array<Type>& array, usize new_capacity)
{
ArrayHeader* header = get_header(array);
if (new_capacity == header->Capacity)
return true;
if (new_capacity < header->Num)
{
header->Num = new_capacity;
return true;
}
ssize size = sizeof(ArrayHeader) + sizeof(Type) * new_capacity;
ArrayHeader* new_header = rcast(ArrayHeader*, alloc(header->Allocator, size));
if (new_header == nullptr)
return false;
mem_move(new_header, header, sizeof(ArrayHeader) + sizeof(Type) * header->Num);
new_header->Capacity = new_capacity;
GEN_NS free(header->Allocator, header);
array.Data = rcast(Type*, new_header + 1);
return true;
}
#pragma endregion Array
// TODO(Ed) : This thing needs ALOT of work.
#pragma region HashTable
template<class Type> struct HashTable;
struct HashTableFindResult {
ssize HashIndex;
ssize PrevIndex;
ssize EntryIndex;
};
template<class Type>
struct HashTableEntry {
u64 Key;
ssize Next;
Type Value;
};
// Forward declarations for all lifted functions
template<class Type> HashTable<Type> hashtable_init(AllocatorInfo allocator);
template<class Type> HashTable<Type> hashtable_init_reserve(AllocatorInfo allocator, usize num);
template<class Type> void clear(HashTable<Type>& table);
template<class Type> void destroy(HashTable<Type>& table);
template<class Type> Type* get(HashTable<Type>& table, u64 key);
template<class Type> void grow(HashTable<Type>& table);
template<class Type> void rehash(HashTable<Type>& table, ssize new_num);
template<class Type> void rehash_fast(HashTable<Type>& table);
template<class Type> void remove(HashTable<Type>& table, u64 key);
template<class Type> void remove_entry(HashTable<Type>& table, ssize idx);
template<class Type> void set(HashTable<Type>& table, u64 key, Type value);
template<class Type> ssize slot(HashTable<Type>& table, u64 key);
template<class Type> ssize add_entry(HashTable<Type>& table, u64 key);
template<class Type> HashTableFindResult find(HashTable<Type>& table, u64 key);
template<class Type> bool full(HashTable<Type>& table);
template<class Type> void map(HashTable<Type>& table, void (*map_proc)(u64 key, Type value));
template<class Type> void map_mut(HashTable<Type>& table, void (*map_proc)(u64 key, Type* value));
template<typename Type>
struct HashTable
{
static constexpr f32 CriticalLoadScale = 0.7f;
Array<ssize> Hashes;
Array<HashTableEntry<Type>> Entries;
#if 1
#pragma region Member Mapping
forceinline static HashTable init(AllocatorInfo allocator) { return GEN_NS hashtable_init<Type>(allocator); }
forceinline static HashTable init_reserve(AllocatorInfo allocator, usize num) { return GEN_NS hashtable_init_reserve<Type>(allocator, num); }
forceinline void clear() { GEN_NS clear<Type>(*this); }
forceinline void destroy() { GEN_NS destroy<Type>(*this); }
forceinline Type* get(u64 key) { return GEN_NS get<Type>(*this, key); }
forceinline void grow() { GEN_NS grow<Type>(*this); }
forceinline void rehash(ssize new_num) { GEN_NS rehash<Type>(*this, new_num); }
forceinline void rehash_fast() { GEN_NS rehash_fast<Type>(*this); }
forceinline void remove(u64 key) { GEN_NS remove<Type>(*this, key); }
forceinline void remove_entry(ssize idx) { GEN_NS remove_entry<Type>(*this, idx); }
forceinline void set(u64 key, Type value) { GEN_NS set<Type>(*this, key, value); }
forceinline ssize slot(u64 key) { return GEN_NS slot<Type>(*this, key); }
forceinline void map(void (*proc)(u64, Type)) { GEN_NS map<Type>(*this, proc); }
forceinline void map_mut(void (*proc)(u64, Type*)) { GEN_NS map_mut<Type>(*this, proc); }
#pragma endregion Member Mapping
#endif
};
template<typename Type> inline
HashTable<Type> hashtable_init(AllocatorInfo allocator) {
HashTable<Type> result = hashtable_init_reserve<Type>(allocator, 8);
return result;
}
template<typename Type> inline
HashTable<Type> hashtable_init_reserve(AllocatorInfo allocator, usize num)
{
HashTable<Type> result = { { nullptr }, { nullptr } };
result.Hashes = Array<ssize>::init_reserve(allocator, num);
result.Hashes.get_header()->Num = num;
result.Hashes.resize(num);
result.Hashes.fill(0, num, -1);
result.Entries = Array<HashTableEntry<Type>>::init_reserve(allocator, num);
return result;
}
template<typename Type> inline
void clear(HashTable<Type>& table) {
table.Entries.clear();
table.Hashes.fill(0, table.Hashes.num(), -1);
}
template<typename Type> inline
void destroy(HashTable<Type>& table) {
if (table.Hashes && table.Hashes.get_header()->Capacity) {
table.Hashes.free();
table.Entries.free();
}
}
template<typename Type> inline
Type* get(HashTable<Type>& table, u64 key) {
ssize idx = find(table, key).EntryIndex;
if (idx >= 0)
return &table.Entries[idx].Value;
return nullptr;
}
template<typename Type> inline
void map(HashTable<Type>& table, void (*map_proc)(u64 key, Type value)) {
GEN_ASSERT_NOT_NULL(map_proc);
for (ssize idx = 0; idx < ssize(table.Entries.num()); ++idx) {
map_proc(table.Entries[idx].Key, table.Entries[idx].Value);
}
}
template<typename Type> inline
void map_mut(HashTable<Type>& table, void (*map_proc)(u64 key, Type* value)) {
GEN_ASSERT_NOT_NULL(map_proc);
for (ssize idx = 0; idx < ssize(table.Entries.num()); ++idx) {
map_proc(table.Entries[idx].Key, &table.Entries[idx].Value);
}
}
template<typename Type> inline
void grow(HashTable<Type>& table) {
ssize new_num = Array<HashTableEntry<Type>>::grow_formula(table.Entries.num());
rehash(table, new_num);
}
template<typename Type> inline
void rehash(HashTable<Type>& table, ssize new_num)
{
ssize last_added_index;
HashTable<Type> new_ht = hashtable_init_reserve<Type>(table.Hashes.get_header()->Allocator, new_num);
for (ssize idx = 0; idx < ssize(table.Entries.num()); ++idx)
{
HashTableFindResult find_result;
HashTableEntry<Type>& entry = table.Entries[idx];
find_result = find(new_ht, entry.Key);
last_added_index = add_entry(new_ht, entry.Key);
if (find_result.PrevIndex < 0)
new_ht.Hashes[find_result.HashIndex] = last_added_index;
else
new_ht.Entries[find_result.PrevIndex].Next = last_added_index;
new_ht.Entries[last_added_index].Next = find_result.EntryIndex;
new_ht.Entries[last_added_index].Value = entry.Value;
}
destroy(table);
table = new_ht;
}
template<typename Type> inline
void rehash_fast(HashTable<Type>& table)
{
ssize idx;
for (idx = 0; idx < ssize(table.Entries.num()); idx++)
table.Entries[idx].Next = -1;
for (idx = 0; idx < ssize(table.Hashes.num()); idx++)
table.Hashes[idx] = -1;
for (idx = 0; idx < ssize(table.Entries.num()); idx++)
{
HashTableEntry<Type>* entry;
HashTableFindResult find_result;
entry = &table.Entries[idx];
find_result = find(table, entry->Key);
if (find_result.PrevIndex < 0)
table.Hashes[find_result.HashIndex] = idx;
else
table.Entries[find_result.PrevIndex].Next = idx;
}
}
template<typename Type> inline
void remove(HashTable<Type>& table, u64 key) {
HashTableFindResult find_result = find(table, key);
if (find_result.EntryIndex >= 0) {
table.Entries.remove_at(find_result.EntryIndex);
rehash_fast(table);
}
}
template<typename Type> inline
void remove_entry(HashTable<Type>& table, ssize idx) {
table.Entries.remove_at(idx);
}
template<typename Type> inline
void set(HashTable<Type>& table, u64 key, Type value)
{
ssize idx;
HashTableFindResult find_result;
if (full(table))
grow(table);
find_result = find(table, key);
if (find_result.EntryIndex >= 0) {
idx = find_result.EntryIndex;
}
else
{
idx = add_entry(table, key);
if (find_result.PrevIndex >= 0) {
table.Entries[find_result.PrevIndex].Next = idx;
}
else {
table.Hashes[find_result.HashIndex] = idx;
}
}
table.Entries[idx].Value = value;
if (full(table))
grow(table);
}
template<typename Type> inline
ssize slot(HashTable<Type>& table, u64 key) {
for (ssize idx = 0; idx < ssize(table.Hashes.num()); ++idx)
if (table.Hashes[idx] == key)
return idx;
return -1;
}
template<typename Type> inline
ssize add_entry(HashTable<Type>& table, u64 key) {
ssize idx;
HashTableEntry<Type> entry = { key, -1 };
idx = table.Entries.num();
table.Entries.append(entry);
return idx;
}
template<typename Type> inline
HashTableFindResult find(HashTable<Type>& table, u64 key)
{
HashTableFindResult result = { -1, -1, -1 };
if (table.Hashes.num() > 0)
{
result.HashIndex = key % table.Hashes.num();
result.EntryIndex = table.Hashes[result.HashIndex];
while (result.EntryIndex >= 0)
{
if (table.Entries[result.EntryIndex].Key == key)
break;
result.PrevIndex = result.EntryIndex;
result.EntryIndex = table.Entries[result.EntryIndex].Next;
}
}
return result;
}
template<typename Type> inline
bool full(HashTable<Type>& table) {
usize critical_load = usize(HashTable<Type>::CriticalLoadScale * f32(table.Hashes.num()));
b32 result = table.Entries.num() > critical_load;
return result;
}
#pragma endregion HashTable
#pragma endregion Containers