Ed_
4b48b96a79
Now its more contexually rich to the ast type, however I need to hookup tokens from parsing to the AST. There needs to be a way for the debug string to lookup the token and provide the contexual line. Can either pass it ( TokArray* toks ) from the parser on failure (or `CodeFile`).. Technically there is more than enough room for another Token* ptr. I could add another and specifiers would still have at minimum 14 slots before needing to extended to next specs. **************... yeah |
||
---|---|---|
.. | ||
ASTs.md | ||
Parser_Algo.md | ||
Parsing.md | ||
Readme.md |
Documentation
The project has no external dependencies beyond:
errno.h
stat.h
stdarg.h
stddef.h
stdio.h
copyfile.h
(Mac)types.h
(Linux)unistd.h
(Linux/Mac)intrin.h
(Windows)io.h
(Windows with gcc)windows.h
(Windows)
Dependencies for the project are wrapped within GENCPP_ROLL_OWN_DEPENDENCIES
(Defining it will disable them).
The majority of the dependency's implementation was derived from the c-zpl library.
This library was written in a subset of C++ where the following are not used at all:
- RAII (Constructors/Destructors), lifetimes are managed using named static or regular functions.
- Language provide dynamic dispatch, RTTI
- Object-Oriented Inheritance
- Exceptions
Polymorphic & Member-functions are used as an ergonomic choice, along with a conserative use of operator overloads.
There are only 4 template definitions in the entire library. (Array<Type>
, Hashtable<Type>
, swap<Type>
, and AST/Code::cast<Type>
)
Two generic templated containers are used throughout the library:
template< class Type> struct Array
template< class Type> struct HashTable
Both Code and AST definitions have a template< class Type> Code/AST :: cast()
. Its just an alternative way to explicitly cast to each other.
template< class Type> swap( Type& a, Type& b)
is used over a macro.
Otherwise the library is free of any templates.
WHAT IS NOT PROVIDED
There is no support for validating expressions.
Its difficult to parse without enough benefits (At the metaprogramming level).
Only trivial template support is provided.
The intention is for only simple, non-recursive substitution.
The parameters of the template are treated like regular parameter AST entries.
This means that the typename entry for the parameter AST would be either:
class
typename
- A fundamental type, function, or pointer type.
Anything beyond this usage is not supported by parse_template for arguments (at least not intentionally).
Use at your own mental peril.
Concepts and Constraints are not supported, its usage is non-trivial substitution.
The Data & Interface
As mentioned in root readme, the user is provided Code objects by calling the constructor's functions to generate them or find existing matches.
The AST is managed by the library and provided to the user via its interface.
However, the user may specifiy memory configuration.
Data layout of AST struct:
union {
struct
{
AST* InlineCmt; // Class, Constructor, Destructor, Enum, Friend, Functon, Operator, OpCast, Struct, Typedef, Using, Variable
AST* Attributes; // Class, Enum, Function, Struct, Typedef, Union, Using, Variable
AST* Specs; // Destructor, Function, Operator, Typename, Variable
union {
AST* InitializerList; // Constructor
AST* ParentType; // Class, Struct, ParentType->Next has a possible list of interfaces.
AST* ReturnType; // Function, Operator, Typename
AST* UnderlyingType; // Enum, Typedef
AST* ValueType; // Parameter, Variable
};
union {
AST* BitfieldSize; // Variable (Class/Struct Data Member)
AST* Params; // Constructor, Function, Operator, Template, Typename
};
union {
AST* ArrExpr; // Typename
AST* Body; // Class, Constructr, Destructor, Enum, Function, Namespace, Struct, Union
AST* Declaration; // Friend, Template
AST* Value; // Parameter, Variable
};
union {
AST* NextVar; // Variable; Possible way to handle comma separated variables declarations. ( , NextVar->Specs NextVar->Name NextVar->ArrExpr = NextVar->Value )
AST* SpecsFuncSuffix; // Only used with typenames, to store the function suffix if typename is function signature.
};
};
StringCached Content; // Attributes, Comment, Execution, Include
struct {
SpecifierT ArrSpecs[AST::ArrSpecs_Cap]; // Specifiers
AST* NextSpecs; // Specifiers
};
};
union {
AST* Prev;
AST* Front;
AST* Last;
};
union {
AST* Next;
AST* Back;
};
AST* Parent;
StringCached Name;
CodeT Type;
ModuleFlag ModuleFlags;
union {
b32 IsFunction; // Used by typedef to not serialize the name field.
b32 IsParamPack; // Used by typename to know if type should be considered a parameter pack.
OperatorT Op;
AccessSpec ParentAccess;
s32 NumEntries;
};
s32 Token; // Handle to the token, stored in the CodeFile (Otherwise unretrivable)
CodeT
is a typedef for ECode::Type
which has an underlying type of u32
OperatorT
is a typedef for EOperator::Type
which has an underlying type of u32
StringCahced
is a typedef for String const
, to denote it is an interned string
String
is the dynamically allocated string type for the library
AST widths are setup to be AST_POD_Size. The width dictates how much the static array can hold before it must give way to using an allocated array:
constexpr static
uw ArrSpecs_Cap =
(
AST_POD_Size
- sizeof(AST*) * 3
- sizeof(StringCached)
- sizeof(CodeT)
- sizeof(ModuleFlag)
- sizeof(u32)
)
/ sizeof(SpecifierT) -1; // -1 for 4 extra bytes (Odd num of AST*)
Ex: If the AST_POD_Size is 128 the capacity of the static array is 20.
Data Notes:
- The allocator definitions used are exposed to the user incase they want to dictate memory usage
- You'll find the memory handling in
init
,deinit
,reset
,gen_string_allocator
,get_cached_string
,make_code
. - Allocators are defined with the
AllocatorInfo
structure found independencies\memory.hpp
- Most of the work is just defining the allocation procedure:
- You'll find the memory handling in
void* ( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags );
- ASTs are wrapped for the user in a Code struct which is a wrapper for a AST* type.
- Both AST and Code have member symbols but their data layout is enforced to be POD types.
- This library treats memory failures as fatal.
- Cached Strings are stored in their own set of arenas. AST constructors use cached strings for names, and content.
StringArenas
,StringCache
,Allocator_StringArena
, andAllocator_StringTable
are the associated containers or allocators.
- Strings used for serialization and file buffers are not contained by those used for cached strings.
- They are currently using
GlobalAllocator
, which are tracked array of arenas that grows as needed (adds buckets when one runs out). - Memory within the buckets is not reused, so its inherently wasteful.
- I will be augmenting the single arena with a simple slag allocator.
- They are currently using
- Linked lists used children nodes on bodies, and parameters.
- Its intended to generate the AST in one go and serialize after. The constructors and serializer are designed to be a "one pass, front to back" setup.
- Allocations can be tuned by defining the folloiwng macros:
GEN_GLOBAL_BUCKET_SIZE
: Size of each bucket area for the global allocatorGEN_CODEPOOL_NUM_BLOCKS
: Number of blocks per code pool in the code allocatorGEN_SIZE_PER_STRING_ARENA
: Size per arena used with string caching.GEN_MAX_COMMENT_LINE_LENGTH
: Longest length a comment can have per line.GEN_MAX_NAME_LENGTH
: Max length of any identifier.GEN_MAX_UNTYPED_STR_LENGTH
: Max content length for any untyped code.GEN_TOKEN_FMT_TOKEN_MAP_MEM_SIZE
: token_fmt_va uses local_persit memory of this size for the hashtable.GEN_LEX_ALLOCATOR_SIZE
GEN_BUILDER_STR_BUFFER_RESERVE
The following CodeTypes are used which the user may optionally use strong typing with if they enable: GEN_ENFORCE_STRONG_CODE_TYPES
- CodeBody : Has support for
for-range
iterating across Code objects. - CodeAttributes
- CodeComment
- CodeClass
- CodeConstructor
- CodeDefine
- CodeDestructor
- CodeEnum
- CodeExec
- CodeExtern
- CodeInclude
- CodeFriend
- CodeFn
- CodeModule
- CodeNS
- CodeOperator
- CodeOpCast
- CodeParam : Has support for
for-range
iterating across parameters. - CodePreprocessCond
- CodePragma
- CodeSpecifiers : Has support for
for-range
iterating across specifiers. - CodeStruct
- CodeTemplate
- CodeType
- CodeTypedef
- CodeUnion
- CodeUsing
- CodeVar
Each Code boy has an associated "filtered AST" with the naming convention: AST_<CodeName>
Unrelated fields of the AST for that node type are omitted and only necessary padding members are defined otherwise.
Retrieving a raw version of the ast can be done using the raw()
function defined in each AST.
There are three sets of interfaces for Code AST generation the library provides
- Upfront
- Parsing
- Untyped
Upfront Construction
All component ASTs must be previously constructed, and provided on creation of the code AST. The construction will fail and return CodeInvalid otherwise.
Interface :``
- def_attributes
- This is pre-appended right before the function symbol, or placed after the class or struct keyword for any flavor of attributes used.
- Its up to the user to use the desired attribute formatting:
[[]]
(standard),__declspec
(Microsoft), or__attribute__
(GNU).
- def_comment
- def_class
- def_constructor
- def_define
- def_destructor
- def_enum
- def_execution
- This is equivalent to untyped_str, except that its intended for use only in execution scopes.
- def_extern_link
- def_friend
- def_function
- def_include
- def_module
- def_namespace
- def_operator
- def_operator_cast
- def_param
- def_params
- def_pragma
- def_preprocess_cond
- def_specifier
- def_specifiers
- def_struct
- def_template
- def_type
- def_typedef
- def_union
- def_using
- def_using_namespace
- def_variable
Bodies:
- def_body
- def_class_body
- def_enum_body
- def_export_body
- def_extern_link_body
- def_function_body
- Use this for operator bodies as well
- def_global_body
- def_namespace_body
- def_struct_body
- def_union_body
Usage:
<name> = def_<function type>( ... );
Code <name>
{
...
<name> = def_<function name>( ... );
}
When using the body functions, its recommended to use the args macro to auto determine the number of arguments for the varadic:
def_global_body( args( ht_entry, array_ht_entry, hashtable ));
// instead of:
def_global_body( 3, ht_entry, array_ht_entry, hashtable );
If a more incremental approach is desired for the body ASTs, Code def_body( CodeT type )
can be used to create an empty body.
When the members have been populated use: AST::validate_body
to verify that the members are valid entires for that type.
Parse construction
A string provided to the API is parsed for the intended language construct.
Interface :
- parse_class
- parse_constructor
- parse_destructor
- parse_enum
- parse_export_body
- parse_extern_link
- parse_friend
- Purposefully are only support forward declares with this constructor.
- parse_function
- parse_global_body
- parse_namespace
- parse_operator
- parse_operator_cast
- parse_struct
- parse_template
- parse_type
- parse_typedef
- parse_union
- parse_using
- parse_variable
Usage:
Code <name> = parse_<function name>( string with code );
Code <name> = def_<function name>( ..., parse_<function name>(
<string with code>
));
Untyped constructions
Code ASTs are constructed using unvalidated strings.
Interface :
- token_fmt_va
- token_fmt
- untyped_str
- untyped_fmt
- untyped_token_fmt
During serialization any untyped Code AST has its string value directly injected inline of whatever context the content existed as an entry within.
Even though these are not validated from somewhat correct c/c++ syntax or components, it doesn't mean that Untyped code can be added as any component of a Code AST:
- Untyped code cannot have children, thus there cannot be recursive injection this way.
- Untyped code can only be a child of a parent of body AST, or for values of an assignment (ex: variable assignment).
These restrictions help prevent abuse of untyped code to some extent.
Usage Conventions:
Code <name> = def_variable( <type>, <name>, untyped_<function name>(
<string with code>
));
Code <name> = untyped_str( code(
<some code without "" quotes>
));
Optionally, code_str
, and code_fmt
macros can be used so that the code macro doesn't have to be used:
Code <name> = code_str( <some code without "" quotes > )
Template metaprogramming in the traditional sense becomes possible with the use of token_fmt
and parse constructors:
StrC value = txt("Something");
char const* template_str = txt(
Code with <key> to replace with token_values
...
);
char const* gen_code_str = token_fmt( "key", value, template_str );
Code <name> = parse_<function name>( gen_code_str );
Predefined Codes
The following are provided predefined by the library as they are commonly used:
access_public
access_protected
access_private
attrib_api_export
attrib_api_import
module_global_fragment
module_private_fragment
fmt_newline
param_varaidc
(Used for varadic definitions)pragma_once
preprocess_else
preprocess_endif
spec_const
spec_consteval
spec_constexpr
spec_constinit
spec_extern_linkage
(extern)spec_final
spec_forceinline
spec_global
(global macro)spec_inline
spec_internal_linkage
(internal macro)spec_local_persist
(local_persist macro)spec_mutable
spec_neverinline
spec_override
spec_ptr
spec_pure
spec_ref
spec_register
spec_rvalue
spec_static_member
(static)spec_thread_local
spec_virtual
spec_volatile
t_empty
(Used for varaidc macros)t_auto
t_void
t_int
t_bool
t_char
t_wchar_t
t_class
t_typename
Optionally the following may be defined if GEN_DEFINE_LIBRARY_CODE_CONSTANTS
is defined
t_b32
t_s8
t_s16
t_s32
t_s64
t_u8
t_u16
t_u32
t_u64
t_sw
(ssize_t)t_uw
(size_t)t_f32
t_f64
Extent of operator overload validation
The AST and constructors will be able to validate that the arguments provided for the operator type match the expected form:
- If return type must match a parameter
- If number of parameters is correct
- If added as a member symbol to a class or struct, that operator matches the requirements for the class (types match up)
The user is responsible for making sure the code types provided are correct and have the desired specifiers assigned to them beforehand.
Code generation and modification
There are three provided auxillary interfaces:
- Builder
- Editor
- Scanner
Editor and Scanner are disabled by default, use GEN_FEATURE_EDITOR
and GEN_FEATURE_SCANNER
to enable them.
Builder is a similar object to the jai language's string_builder
- The purpose of it is to generate a file.
- A file is specified and opened for writing using the open( file_path) function.
- The code is provided via print( code ) function will be serialized to its buffer.
- When all serialization is finished, use the write() command to write the buffer to the file.
Scanner Auxillary Interface
Provides (eventually) scan_file
to automatically populate a CodeFile which contains a parsed AST (Code
) of the file, with any contextual failures that are reported from the parser.