gencpp/project/gen.hpp

1200 lines
35 KiB
C++
Raw Normal View History

/*
gencpp: An attempt at simple staged metaprogramming for c/c++.
See Readme.md for more information from the project repository.
Public Address:
https://github.com/Ed94/gencpp
*/
2023-04-01 19:21:46 -07:00
#pragma once
#include "Bloat.hpp"
// Temporarily here for debugging purposes.
#define GEN_DEFINE_DSL
#define GEN_DEFINE_LIBRARY_CODE_CONSTANTS
// #define GEN_DONT_USE_FATAL
#define GEN_ENFORCE_READONLY_AST
#define GEN_FEATURE_INCREMENTAL
#define GEN_FEATURE_PARSING
#define GEN_FEATURE_EDITOR
#define GEN_FEATURE_SCANNER
#ifdef gen_time
2023-04-01 19:21:46 -07:00
namespace gen
{
using LogFailType = sw(*)(char const*, ...);
2023-04-01 19:21:46 -07:00
// By default this library will either crash or exit if an error is detected while generating codes.
// Even if set to not use fatal, fatal will still be used for memory failures as the library is unusable when they occur.
# ifdef GEN_DONT_USE_FATAL
constexpr LogFailType log_failure = log_fmt;
# else
constexpr LogFailType log_failure = fatal;
# endif
2023-04-01 19:21:46 -07:00
namespace ECode
2023-04-01 19:21:46 -07:00
{
# define Define_Types \
Entry( Untyped ) \
Entry( Access_Public ) \
Entry( Access_Protected ) \
Entry( Access_Private ) \
Entry( Class ) \
Entry( Class_Fwd ) \
Entry( Class_Body ) \
Entry( Enum ) \
Entry( Enum_Fwd ) \
Entry( Enum_Body ) \
Entry( Enum_Class ) \
Entry( Enum_Class_Fwd ) \
Entry( Execution ) \
Entry( Friend ) \
Entry( Function ) \
Entry( Function_Fwd ) \
Entry( Function_Body ) \
Entry( Global_Body ) \
Entry( Namespace ) \
Entry( Namespace_Body ) \
Entry( Operator ) \
Entry( Operator_Fwd ) \
Entry( Operator_Member ) \
Entry( Operator_Member_Fwd ) \
Entry( Parameters ) \
Entry( Specifiers ) \
Entry( Struct ) \
Entry( Struct_Fwd ) \
Entry( Struct_Body ) \
Entry( Variable ) \
Entry( Typedef ) \
Entry( Typename ) \
Entry( Union ) \
Entry( Using ) \
Entry( Using_Namespace )
enum Type : u32
2023-04-01 19:21:46 -07:00
{
# define Entry( Type ) Type,
Define_Types
# undef Entry
Num_Types,
Invalid
2023-04-01 19:21:46 -07:00
};
inline
char const* to_str( Type type )
2023-04-01 19:21:46 -07:00
{
static
char const* lookup[Num_Types] = {
# define Entry( Type ) txt( Type ),
Define_Types
# undef Entry
};
2023-04-01 19:21:46 -07:00
return lookup[ type ];
2023-04-01 19:21:46 -07:00
}
#undef Define_Types
}
using CodeT = ECode::Type;
2023-04-01 19:21:46 -07:00
// Used to indicate if enum definitoin is an enum class or regular enum.
enum class EnumT : u8
{
Regular,
Class
};
constexpr EnumT EnumClass = EnumT::Class;
constexpr EnumT EnumRegular = EnumT::Regular;
enum class UsingT : u8
{
Regular,
Namespace
};
constexpr UsingT UsingRegular = UsingT::Regular;
constexpr UsingT UsingNamespace = UsingT::Namespace;
namespace EOperator
{
# define Define_Operators \
Entry( Assign, = ) \
Entry( Assign_Add, += ) \
Entry( Assign_Subtract, -= ) \
Entry( Assgin_Multiply, *= ) \
Entry( Assgin_Divide, /= ) \
Entry( Assgin_Modulo, %= ) \
Entry( Assgin_BAnd, &= ) \
Entry( Assgin_BOr, |= ) \
Entry( Assign_BXOr, ^= ) \
Entry( Assign_LShift, <<= ) \
Entry( Assign_RShift, >>= ) \
Entry( Increment, ++ ) \
Entry( Decrement, -- ) \
Entry( Unary_Plus, + ) \
Entry( Unary_Minus, - ) \
Entry( Add, + ) \
Entry( Subtract, - ) \
Entry( Multiply, * ) \
Entry( Divide, / ) \
Entry( Modulo, % ) \
Entry( BNot, ~ ) \
Entry( BAnd, & ) \
Entry( BOr, | ) \
Entry( BXOr, ^ ) \
Entry( LShift, << ) \
Entry( RShift, >> ) \
Entry( LNot, ! ) \
Entry( LAnd, && ) \
Entry( LOr, || ) \
Entry( Equals, == ) \
Entry( NotEquals, != ) \
Entry( Lesser, < ) \
Entry( Greater, > ) \
Entry( LesserEqual, <= ) \
Entry( GreaterEqual, >= ) \
Entry( Subscript, [] ) \
Entry( Indirection, * ) \
Entry( AddressOf, & ) \
Entry( MemberOfPointer, -> ) \
Entry( PtrToMemOfPtr, ->* ) \
Entry( FunctionCall, () )
enum Type : u32
{
# define Entry( Type_, Token_ ) Type_,
Define_Operators
# undef Entry
Comma,
Num_Ops,
Invalid
};
inline
char const* to_str( Type op )
{
using something = u8;
typedef u8 another;
local_persist
char const* lookup[ Num_Ops ] = {
# define Entry( Type_, Token_ ) txt(Token_),
Define_Operators
# undef Entry
","
};
return lookup[ op ];
}
#undef Define_Operators
}
using OperatorT = EOperator::Type;
namespace ESpecifier
{
#if defined(ZPL_SYSTEM_WINDOWS)
# define API_Export_Code __declspec(dllexport)
# define API_Import_Code __declspec(dllimport)
# define API_Keyword __declspec
#elif defined(ZPL_SYSTEM_MACOS)
# define API_Export_Code __attribute__ ((visibility ("default")))
# define API_Import_Code __attribute__ ((visibility ("default")))
# define API_Keyword __attribute__
#endif
#define Define_Specifiers \
Entry( API_Import, API_Export_Code ) \
Entry( API_Export, API_Import_Code ) \
Entry( Attribute, "You cannot stringize an attribute this way" ) \
Entry( Alignas, alignas ) \
Entry( Array_Decl, "You cannot stringize an array declare this way" ) \
Entry( C_Linkage, extern "C" ) \
Entry( Const, const ) \
Entry( Consteval, consteval ) \
Entry( Constexpr, constexpr ) \
Entry( Constinit, constinit ) \
Entry( Export, export ) \
Entry( External_Linkage, extern ) \
Entry( Import, import ) \
Entry( Inline, inline ) \
Entry( Internal_Linkage, static ) \
Entry( Local_Persist, static ) \
Entry( Module, module ) \
Entry( Mutable, mutable ) \
Entry( Ptr, * ) \
Entry( Ref, & ) \
Entry( Register, register ) \
Entry( RValue, && ) \
Entry( Static_Member, static ) \
Entry( Thread_Local, thread_local ) \
Entry( Volatile, volatile ) \
Entry( Type_Signed, signed ) \
Entry( Type_Unsigned, unsigned ) \
Entry( Type_Short, short ) \
Entry( Type_Long, long )
enum Type : u32
{
# define Entry( Specifier, Code ) Specifier,
Define_Specifiers
# undef Entry
Num_Specifiers,
Invalid,
};
// Specifier to string
inline
char const* to_str( Type specifier )
{
local_persist
char const* lookup[ Num_Specifiers ] = {
# define Entry( Spec_, Code_ ) txt(Code_),
Define_Specifiers
# undef Entry
};
return lookup[ specifier ];
}
inline
Type to_type( char const* str, s32 length )
{
local_persist
u32 keymap[ Num_Specifiers ];
do_once_start
for ( u32 index = 0; index < Num_Specifiers; index++ )
{
char const* enum_str = to_str( (Type)index );
keymap[index] = crc32( enum_str, str_len(enum_str, 42) );
}
do_once_end
u32 hash = crc32(str, length );
for ( u32 index = 0; index < Num_Specifiers; index++ )
{
if ( keymap[index] == hash )
return (Type)index;
}
return Invalid;
}
#undef Define_Specifiers
}
using SpecifierT = ESpecifier::Type;
#pragma region Data Structures
// Implements basic string interning. Data structure is based off the ZPL Hashtable.
ZPL_TABLE_DECLARE( ZPL_EXTERN, StringTable, str_tbl_, String );
// Represents strings cached with the string table.
// Should never be modified, if changed string is desired, cache_string( str ) another.
using StringCached = char const*;
// Desired width of the AST data structure.
constexpr u32 AST_POD_Size = 256;
// TODO: If perf needs it, convert layout an SOA format.
/*
Simple AST POD with functionality to seralize into C++ syntax.
2023-04-01 19:21:46 -07:00
ASTs are currently stored as an AOS. They are always reconstructed on demand.
Thus redundant AST can easily occur.
Not sure if its better to store them in a hashmap.
Any type specific functions assume the construction of the AST was done correctly.
*/
struct AST
{
#pragma region Member Functions
// Used with incremental constructors
// Adds and checks entries to see if they are valid additions the type of ast.
bool add( AST* other );
void add_entry( AST* other );
2023-04-01 19:21:46 -07:00
forceinline
AST* body()
2023-04-01 19:21:46 -07:00
{
return Entries[0];
}
bool check();
AST* duplicate();
2023-04-01 19:21:46 -07:00
forceinline
bool has_entries()
{
return Entries[0];
}
forceinline
bool is_invalid()
{
return Type != ECode::Invalid;
}
forceinline
s32 num_entries()
{
return DynamicEntries ? array_count(Entries) : StaticIndex;
}
// Parameter
bool add_param( AST* type, s32 length, char const* name );
2023-04-01 19:21:46 -07:00
forceinline
AST* get_param( s32 index )
2023-04-01 19:21:46 -07:00
{
if ( index <= 0 )
return this;
2023-04-01 19:21:46 -07:00
return Entries[ index + 1 ];
2023-04-01 19:21:46 -07:00
}
forceinline
s32 param_count()
{
// The first entry (which holds the type) represents the first parameter.
return num_entries();
}
forceinline
AST* param_type()
{
return Entries[0];
}
// Specifiers
inline
bool add_specifier( SpecifierT spec )
{
if ( StaticIndex == AST::ArrSpecs_Cap )
{
log_failure("AST::add_specifier: Attempted to add over %d specifiers to a specifiers AST!", AST::ArrSpecs_Cap );
return false;
}
ArrSpecs[ StaticIndex ] = spec;
StaticIndex++;
return true;
}
inline
bool has_specifier( SpecifierT spec )
{
for ( s32 Index = 0; Index < StaticIndex; Index++ )
{
if ( ArrSpecs[StaticIndex] == spec )
return true;
}
return false;
}
// Typename
forceinline
bool typename_is_ptr()
{
assert_crash("not implemented");
}
forceinline
bool typename_is_ref()
{
assert_crash("not implemented");
}
forceinline
AST* typename_specifiers()
{
return Entries[0];
}
// Serialization
forceinline
char const* debug_str()
{
char const* fmt = txt(
\nCode Debug:
\nType : %s
\nReadonly: %s
\nParent : %s
\nName : %s
\nComment : %s
);
// These should be used immediately in a log.
// Thus if its desired to keep the debug str
// for multiple calls to bprintf,
// allocate this to proper string.
return str_fmt_buf( fmt
, type_str()
, Readonly ? "true" : "false"
, Parent ? Parent->Name : ""
, Name ? Name : ""
, Comment ? Comment : ""
);
}
forceinline
char const* type_str()
{
return ECode::to_str( Type );
}
String to_string() const;
#pragma endregion Member Functions
constexpr static
uw ArrS_Cap =
( AST_POD_Size
- sizeof(AST*)
- sizeof(StringCached) * 2
- sizeof(CodeT)
- sizeof(OperatorT)
- sizeof(bool) * 2
- sizeof(u8) * 7 )
/ sizeof(AST*);
constexpr static
uw ArrSpecs_Cap = ArrS_Cap * (sizeof(AST*) / sizeof(SpecifierT));
# define Using_Code_POD \
union { \
AST* ArrStatic[AST::ArrS_Cap]; \
Array(AST*) Entries; \
StringCached Content; \
SpecifierT ArrSpecs[AST::ArrSpecs_Cap]; \
}; \
AST* Parent; \
StringCached Name; \
StringCached Comment; \
CodeT Type; \
OperatorT Op; \
bool Readonly; \
bool DynamicEntries; \
u8 StaticIndex; \
u8 _Align_Pad[6];
Using_Code_POD
};
struct CodePOD
{
Using_Code_POD
# undef Using_CodePOD;
};
constexpr sw size_AST = sizeof(AST);
constexpr sw size_POD = sizeof(CodePOD);
// Its intended for the AST to have equivalent size to its POD.
// All extra functionality within the AST namespace should just be syntatic sugar.
static_assert( sizeof(AST) == sizeof(CodePOD), "ERROR: AST IS NOT POD" );
static_assert( sizeof(CodePOD) == AST_POD_Size, "ERROR: AST POD is not size of AST_POD_Size" );
/*
AST* typedef as to not constantly have to add the '*' as this is written often..
If GEN_ENFORCE_READONLY_AST is defined, readonly assertions will be done on any member dreference,
and the 'gen API' related functions. will set their created ASTs to readonly before returning.
Casting to AST* will bypass.
*/
struct Code
{
#pragma region Statics
// Used internally for the most part to identify invaidly generated code.
static Code Invalid;
#pragma endregion Statics
#pragma region Member Functions
inline
Code body()
{
if ( ast == nullptr )
{
log_failure("Code::body: AST is null!");
return Invalid;
}
if ( ast->Type == ECode::Invalid )
{
log_failure("Code::body: Type is invalid, cannot get");
return Invalid;
}
if ( ast->Entries == nullptr || array_count(ast->Entries) == 0 )
{
log_failure("Code::body: Entries of ast not properly setup.");
return Invalid;
}
# ifdef GEN_ENFORCE_READONLY_AST
if ( ast->Readonly )
{
log_failure("Attempted to a body AST from a readonly AST!");
return Invalid;
}
# endif
return * (Code*)( ast->body() );
}
2023-04-01 19:21:46 -07:00
forceinline
void lock()
2023-04-01 19:21:46 -07:00
{
ast->Readonly = true;
2023-04-01 19:21:46 -07:00
}
forceinline
char const* to_string()
{
return ast->to_string();
}
forceinline
operator bool()
{
return ast;
}
forceinline
bool operator ==( Code other )
2023-04-01 19:21:46 -07:00
{
return ast == other.ast;
2023-04-01 19:21:46 -07:00
}
forceinline
bool operator !=( Code other )
{
return ast != other.ast;
}
forceinline
operator AST*()
{
return ast;
}
forceinline
Code& operator=( Code other )
2023-04-01 19:21:46 -07:00
{
if ( ast == nullptr )
{
log_failure("Attempt to set with a null AST!");
return *this;
}
#ifdef GEN_ENFORCE_READONLY_AST
if ( ast->Readonly )
{
log_failure("Attempted to set a readonly AST!");
return *this;
}
#endif
ast = other.ast;
return *this;
}
2023-04-01 19:21:46 -07:00
forceinline
AST* operator->()
{
if ( ast == nullptr )
{
log_failure("Attempt to dereference a nullptr!");
return nullptr;
}
2023-04-01 19:21:46 -07:00
# ifdef GEN_ENFORCE_READONLY_AST
if ( ast->Readonly )
{
log_failure("Attempted to access a member from a readonly AST!");
return nullptr;
}
# endif
2023-04-01 19:21:46 -07:00
return ast;
2023-04-01 19:21:46 -07:00
}
#pragma endregion Member Functions
AST* ast;
2023-04-01 19:21:46 -07:00
};
static_assert( sizeof(Code) == sizeof(AST*), "ERROR: Code is not POD" );
2023-04-01 19:21:46 -07:00
// Used when the its desired when omission is allowed in a definition.
constexpr Code NoCode = { nullptr };
// extern const Code InvalidCode;
/*
Type Table: Used to store Typename ASTs. Types are registered by their string literal value.
2023-04-01 19:21:46 -07:00
Provides interning specific to Typename ASTs.
Interning for other types should be possible (specifiers) with this, so long as they
don't have an set of child AST entries (Use the content field).
*/
ZPL_TABLE_DECLARE( ZPL_EXTERN, TypeTable, type_tbl_, Code );
#pragma endregion Data Structures
#pragma region Gen Interface
// Initialize the library.
// This currently just initializes the CodePool.
void init();
/*
Use this only if you know you generated the code you needed to a file.
And rather get rid of current code asts instead of growing the pool memory.
This generally can be done everytime a file is generated
TODO: In order for this to work, the type map needs its own arenas so do specifiers.
*/
void clear_code_memory();
2023-04-01 19:21:46 -07:00
// Used internally to retrive or make string allocations.
// Strings are stored in a series of string arenas of fixed size (SizePer_StringArena)
StringCached get_cached_string( char const* cstr, s32 length );
/*
This provides a fresh Code AST.
The gen interface use this as their method from getting a new AST object from the CodePool.
Use this if you want to make your own API for formatting the supported Code Types.
*/
Code make_code();
// This provides a fresh Code AST array for the entries field of the AST.
// This is done separately from the regular CodePool allocator.
Array(AST*) make_code_entries();
// Set these before calling gen's init() procedure.
// Data
void set_allocator_data_arrays ( AllocatorInfo data_array_allocator );
void set_allocator_code_pool ( AllocatorInfo pool_allocator );
void set_allocator_code_enries_arena( AllocatorInfo pool_allocator );
void set_allocator_string_arena ( AllocatorInfo string_allocator );
void set_allocator_string_table ( AllocatorInfo string_allocator );
void set_allocator_type_table ( AllocatorInfo type_reg_allocator );
# pragma region Upfront
Code def_class ( s32 length, char const* name, Code parent = NoCode, Code specifiers = NoCode, Code body = NoCode );
Code def_enum ( s32 length, char const* name, Code type = NoCode, EnumT specifier = EnumRegular, Code body = NoCode );
Code def_execution ( Code untyped_code );
Code def_friend ( Code symbol );
Code def_function ( s32 length, char const* name, Code params = NoCode, Code ret_type = NoCode, Code specifiers = NoCode, Code body = NoCode );
Code def_namespace ( s32 length, char const* name, Code body );
Code def_operator ( OperatorT op, Code params = NoCode, Code ret_type = NoCode, Code specifiers = NoCode, Code body = NoCode );
Code def_param ( Code type, s32 length, char const* name );
Code def_specifier ( SpecifierT specifier );
Code def_struct ( s32 length, char const* name, Code parent = NoCode, Code specifiers = NoCode, Code body = NoCode );
Code def_typedef ( s32 length, char const* name, Code type );
Code def_type ( s32 length, char const* name, Code specifiers = NoCode );
Code def_using ( s32 length, char const* name, Code type = NoCode, UsingT specifier = UsingRegular );
Code def_variable ( Code type, s32 length, char const* name, Code value = NoCode, Code specifiers = NoCode );
Code def_class_body ( s32 num, ... );
Code def_enum_body ( u32 num, ... );
Code def_enum_body ( u32 num, Code* codes );
Code def_global_body ( s32 num, ... );
Code def_global_body ( s32 num, Code* codes );
Code def_function_body ( s32 num, ... );
Code def_function_body ( s32 num, Code* codes );
Code def_namespace_body ( s32 num, ... );
Code def_namespace_body ( s32 num, Code* codes );
Code def_params ( s32 num, ... );
Code def_params ( s32 num, Code* params );
Code def_specifiers ( s32 num , ... );
Code def_specifiers ( s32 num, SpecifierT* specs );
Code def_struct_body ( s32 num, ... );
Code def_struct_body ( s32 num, Code* codes );
# pragma endregion Upfront
# pragma region Incremental
# ifdef GEN_FEATURE_INCREMENTAL
Code make_class ( s32 length, char const* name, Code parent = NoCode, Code specifiers = NoCode );
Code make_enum ( s32 length, char const* name, Code type = NoCode, EnumT specifier = EnumRegular );
Code make_function ( s32 length, char const* name, Code params = NoCode, Code ret_type = NoCode, Code specifiers = NoCode );
Code make_global_body ( s32 length = 1, char const* name = "", s32 num = 0, ... );
Code make_namespace ( s32 length, char const* name );
Code make_operator ( OperatorT op, Code params = NoCode, Code ret_type = NoCode, Code specifiers = NoCode );
Code make_params ();
Code make_specifiers ();
Code make_struct ( s32 length, char const* name, Code parent = NoCode, Code specifiers = NoCode );
# endif
# pragma endregion Incremental
#pragma region Parsing
#ifdef GEN_FEATURE_PARSING
Code parse_class ( s32 length, char const* class_def );
Code parse_enum ( s32 length, char const* enum_def );
Code parse_execution ( s32 length, char const* exec_def );
Code parse_friend ( s32 length, char const* friend_def );
Code parse_function ( s32 length, char const* fn_def );
Code parse_global_body( s32 length, char const* body_def );
Code parse_namespace ( s32 length, char const* namespace_def );
Code parse_operator ( s32 length, char const* operator_def );
Code parse_struct ( s32 length, char const* struct_def );
Code parse_variable ( s32 length, char const* var_def );
Code parse_type ( s32 length, char const* type_def );
Code parse_typedef ( s32 length, char const* typedef_def );
Code parse_using ( s32 length, char const* using_def );
s32 parse_classes ( s32 length, char const* class_defs, Code* out_class_codes );
s32 parse_enums ( s32 length, char const* enum_defs, Code* out_enum_codes );
s32 parse_friends ( s32 length, char const* friend_defs, Code* out_friend_codes );
s32 parse_functions ( s32 length, char const* fn_defs, Code* out_fn_codes );
s32 parse_namespaces( s32 length, char const* namespace_defs, Code* out_namespaces_codes );
s32 parse_operators ( s32 length, char const* operator_defs, Code* out_operator_codes );
s32 parse_structs ( s32 length, char const* struct_defs, Code* out_struct_codes );
s32 parse_variables ( s32 length, char const* vars_def, Code* out_var_codes );
s32 parse_typedefs ( s32 length, char const* typedef_def, Code* out_typedef_codes );
s32 parse_usings ( s32 length, char const* usings_def, Code* out_using_codes );
#endif
#pragma endregion Parsing
#pragma region Untyped text
sw token_fmt_va( char* buf, uw buf_size, char const* fmt, s32 num_tokens, va_list va );
inline
char const* token_fmt( char const* fmt, sw num_tokens, ... )
{
local_persist thread_local
char buf[ZPL_PRINTF_MAXLEN] = { 0 };
va_list va;
va_start(va, fmt);
token_fmt_va(buf, ZPL_PRINTF_MAXLEN, fmt, num_tokens, va);
va_end(va);
return buf;
}
Code untyped_str ( s32 length, char const* str);
Code untyped_fmt ( char const* fmt, ... );
Code untyped_token_fmt( char const* fmt, s32 num_tokens, ... );
#pragma endregion Untyped text
struct Builder
2023-04-01 19:21:46 -07:00
{
FileInfo File;
String Buffer;
2023-04-01 19:21:46 -07:00
void print( Code );
2023-04-01 19:21:46 -07:00
bool open( char const* path );
2023-04-01 19:21:46 -07:00
void write();
};
#ifdef GEN_FEATURE_EDITOR
struct Policy
{
// Nothing for now.
};
enum class SymbolType : u32
{
Code,
Line,
Marker
};
struct SymbolInfo
{
StringCached File;
char const* Marker;
Code Signature;
};
struct Editor
{
enum RequestType : u32
{
Add,
Replace,
Remove
};
struct SymbolData
{
Policy Policy;
SymbolInfo Info;
};
struct RequestEntry
{
union {
SymbolData Symbol;
String Specification;
};
RequestType Type;
};
struct Receipt
{
StringCached File;
Code Found;
Code Written;
bool Result;
};
static AllocatorInfo Allocator;
static void set_allocator( AllocatorInfo allocator );
Array(FileInfo) Files;
String Buffer;
Array(RequestEntry) Requests;
void add_files( s32 num, char const** files );
void add ( SymbolInfo definition, Policy policy, Code to_inject );
void remove ( SymbolInfo definition, Policy policy );
void replace( SymbolInfo definition, Policy policy, Code to_replace);
# ifdef GEN_FEATURE_EDITOR_REFACTOR
void refactor( char const* file_path, char const* specification_path );
# endif
bool process_requests( Array(Receipt) out_receipts );
};
#endif
# ifdef GEN_FEATURE_SCANNER
struct Scanner
{
struct RequestEntry
{
SymbolInfo Info;
};
struct Receipt
{
StringCached File;
Code Defintion;
bool Result;
};
AllocatorInfo MemAlloc;
static void set_allocator( AllocatorInfo allocator );
Array(FileInfo) Files;
String Buffer;
Array(RequestEntry) Requests;
void add_files( s32 num, char const** files );
void add( SymbolInfo signature, Policy policy );
bool process_requests( Array(Receipt) out_receipts );
};
# endif
#pragma endregion Gen Interface
2023-04-01 19:21:46 -07:00
}
#pragma region Macros
# define gen_main main
# define __ NoCode
# define spec_alignas( Value_ ) ESpecifier::Alignas, Value
// This represents the naming convention for all typename Codes generated.
// Used by the DSL but can also be used without it.
# define type_ns( Name_ ) t_##Name_
// Convienence for defining any name used with the gen interface.
// Lets you provide the length and string literal to the functions without the need for the DSL.
# define name( Id_ ) txt_n_len( Id_ )
// Same as name just used to indicate intention of literal for code instead of names.
# define code( Code_ ) txt_n_len( Code_ )
/*
gen's Domain Specific Langauge.
Completely optional, makes the code gen syntax less verbose and cumbersome...
Since its C macros ends up looking like a lisp dialect...
Longforms auto-define the variable.
Shorthands are just the function call.
Anything below the make() macro is intended to be syntactically used in the follwing format:
make( <type>, <name> )
{
...
}
Where ... are whatever is deemed necessary to produce the definition for the def( <name> ).
The code macros are used to embed c/c++ to insert into the desired lcoation.
*/
#ifdef GEN_DEFINE_DSL
// Boilerplate
/*
In order to provide some convient syntax sugar this polymoprhic macro boilerplate is needed for:
* function( ... )
* operator( ... )
* params( ... )
macrofn based off of: https://stackoverflow.com/questions/3046889/optional-parameters-with-c-macros
specifically: https://stackoverflow.com/a/56038661
*/
# define macrofn_chooser(_f0, _f1, _f2, _f3, _f4, _f5, _f6, _f7, _f8, _f9, _f10, _f11, _f12, _f13, _f14, _f15, _f16, ...) _f16
# define macrofn_recomposer(ArgsWithParentheses_) macrofn_chooser ArgsWithParentheses_
# define macrofn_chose_from_arg_num(F, ...) macrofn_recomposer((__VA_ARGS__, F##_16, F##_15, F##_14, F##_13, F##_12, F##_11, F##_10, F##_9, F##_8, F##_7, F##_6, F##_5, F##_4, F##_3, F##_2, F##_1, ))
# define marcofn_no_arg_expander(Func_) ,,,,,,,,,,,,,,,,Func_ ## _0
# define macrofn_finder(Func_, ...) macrofn_chose_from_arg_num(Func_, marcofn_no_arg_expander __VA_ARGS__ (Func_))
# define macrofn_polymorphic(Func_, ...) macrofn_finder(Func_, __VA_ARGS__)(__VA_ARGS__)
# define function_5( Name_, Params_, RetType_, Specifiers_, Body_ ) gen::def_function( txt_n_len( Name_ ), macro_expand( Params_ ), type_ns(RetType_), Specifiers_, Body_ )
# define function_4( Name_, Params_, RetType_, Specifiers_ ) gen::def_function( txt_n_len( Name_ ), macro_expand( Params_ ), type_ns(RetType_), Specifiers_ )
# define function_3( Name_, Params_, RetType_ ) gen::def_function( txt_n_len( Name_ ), macro_expand( Params_ ), type_ns(RetType_) )
# define function_2( Name_, Params_ ) gen::def_function( txt_n_len( Name_ ), macro_expand( Params_ ) )
# define function_1( Name_ ) gen::def_function( txt_n_len( Name_ ) )
# define params_12( T_1, V_1, T_2, V_2, T_3, V_3, T_4, V_4, T_5, V_5, T_6, V_6 ) gen::def_params( 6, type_ns(T_1), txt_n_len( V_1), type_ns(T_2), txt_n_len( V_2), type_ns(T_3), txt_n_len( V_3), type_ns(T_4), txt_n_len( V_4), type_ns(T_5), txt_n_len( V_5), type_ns(T_6), txt_n_len(V_6))
# define params_10( T_1, V_1, T_2, V_2, T_3, V_3, T_4, V_4, T_5, V_5 ) gen::def_params( 5, type_ns(T_1), txt_n_len( V_1), type_ns(T_2), txt_n_len( V_2), type_ns(T_3), txt_n_len( V_3), type_ns(T_4), txt_n_len( V_4), type_ns(T_5), txt_n_len( V_5))
# define params_8( T_1, V_1, T_2, V_2, T_3, V_3, T_4, V_4 ) gen::def_params( 4, type_ns(T_1), txt_n_len( V_1), type_ns(T_2), txt_n_len( V_2), type_ns(T_3), txt_n_len( V_3), type_ns(T_4), txt_n_len( V_4) )
# define params_6( T_1, V_1, T_2, V_2, T_3, V_3 ) gen::def_params( 3, type_ns(T_1), txt_n_len( V_1), type_ns(T_2), txt_n_len( V_2), type_ns(T_3), txt_n_len( V_3))
# define params_4( T_1, V_1, T_2, V_2 ) gen::def_params( 2, type_ns(T_1), txt_n_len( V_1), type_ns(T_2), txt_n_len( V_2))
# define params_2( T_1, V_1 ) gen::def_param ( type_ns(T_1), txt_n_len( V_1))
# define params_bad static_assert("params(...): Invalid number of parameters provided.")
# define params_11 params_bad
# define params_9 params_bad
# define params_7 params_bad
# define params_5 params_bad
# define params_3 params_bad
# define params_1 params_bad
// Upfront
# define class( Name_, ... ) gen::def_class( txt_n_len(Name_), __VA_ARGS__ )
# define enum( Name_, Type_, Body_ ) gen::def_enum ( txt_n_len(Name_), type_ns(Type_), Body_ )
# define function( ... ) macrofn_polymorphic( function, __VA_ARGS__ )
# define namespace( Name_, Body_ ) gen::def_namespace ( txt_n_len(Name_), Body_ )
# define operator( Op_, ... ) macrofn_polymorphic( operator, __VA_ARGS__ )
# define params( ... ) macrofn_polymorphic( params, __VA_ARGS__ )
# define specifiers( ... ) gen::def_specifiers ( macro_num_args( __VA_ARGS__ ), __VA_ARGS__ )
# define struct( Name_, ... ) gen::def_struct ( txt_n_len(Name_), __VA_ARGS__ )
# define variable( Type_, Name_, ... ) gen::def_variable ( type_ns(Type_), txt_n_len(Name_), __VA_ARGS__ )
# define type( Value_, ... ) gen::def_type ( txt_n_len(Value_), __VA_ARGS__ )
# define type_fmt( Fmt_, ... ) gen::def_type ( bprintf( Fmt_, __VA_ARGS__ ) )
# define using( Name_, Type_ ) gen::def_using ( txt_n_len(Name_), type_ns(Type_) )
# define using_namespace( Name_ ) gen::def_using_namespace( txt_n_len(Name_) )
# define class_body( ... ) gen::def_class_body ( macro_num_args( __VA_ARGS__ ), __VA_ARGS__ )
# define enum_body( ... ) gen::def_enum_body ( macro_num_args( __VA_ARGS__ ), __VA_ARGS__ )
# define global_body( ... ) gen::def_global_body ( macro_num_args( __VA_ARGS__ ), __VA_ARGS__ )
# define function_body( ... ) gen::def_function_body ( macro_num_args( __VA_ARGS__ ), __VA_ARGS__ )
# define namespace_body( ... ) gen::def_namespace_body( macro_num_args( __VA_ARGS__ ), __VA_ARGS__ )
# define operator_body( ... ) gen::def_operator_body ( macro_num_args( __VA_ARGS__ ), __VA_ARGS__ )
# define struct_body( ... ) gen::def_struct_body ( macro_num_args( __VA_ARGS__ ), __VA_ARGS__ )
# ifdef GEN_FEATURE_INCREMENTAL
// Incremental
# define make( ConstructType_, Name_, ... ) Code Name_ = make_##ConstructType_( txt_n_len(Name_), __VA_ARGS__ );
# endif
# ifdef GEN_FEATURE_PARSING
// Parsing
# define class_code( ... ) gen::parse_class ( txt_n_len( __VA_ARGS__ ))
# define enum_code( ... ) gen::parse_enum ( txt_n_len( __VA_ARGS__ ))
# define function_code( ... ) gen::parse_function ( txt_n_len( __VA_ARGS__ ))
# define global_body_code( ... ) gen::parse_global_body( txt_n_len( __VA_ARGS__ ))
# define operator_code( ... ) gen::parse_operator ( txt_n_len( __VA_ARGS__ ))
# define namespace_code( ... ) gen::parse_namespace ( txt_n_len( __VA_ARGS__ ))
# define struct_code( ... ) gen::parse_struct ( txt_n_len( __VA_ARGS__ ))
# define variable_code( ... ) gen::parse_variable ( txt_n_len( __VA_ARGS__ ))
# define type_code( ... ) gen::parse_type ( txt_n_len( __VA_ARGS__ ))
# define typedef_code( ... ) gen::parse_typedef ( txt_n_len( __VA_ARGS__ ))
# define using_code( ... ) gen::parse_code ( txt_n_len( __VA_ARGS__ ))
# endif
// Untyped
# define code_str( ... ) gen::untyped_str ( txt_n_len(__VA_ARGS__) )
# define code_fmt( Fmt_, ... ) gen::untyped_fmt ( Fmt_, __VA_ARGS__ )
# define code_token( Fmt_, ... ) gen::untyped_token_fmt( Fmt_, macro_num_args( __VA_ARGS__) / 2, __VA_ARGS__ )
#endif
#pragma endregion Macros
#pragma region Constants
#ifdef GEN_DEFINE_LIBRARY_CODE_CONSTANTS
namespace gen
{
// Predefined typename codes. Are set to readonly and are setup during gen::init()
extern Code type_ns( s8 );
extern Code type_ns( s16 );
extern Code type_ns( s32 );
extern Code type_ns( s64 );
extern Code type_ns( u8 );
extern Code type_ns( u16 );
extern Code type_ns( u32 );
extern Code type_ns( u64 );
extern Code type_ns( sw );
extern Code type_ns( uw );
extern Code type_ns( f32 );
extern Code type_ns( f64 );
}
#endif
namespace gen
{
// These constexprs are used for allocation heavior of data structurs
// or string handling while constructing or serializing.
// Change them to suit your needs.
constexpr s32 InitSize_DataArrays = 16;
constexpr s32 InitSize_StringTable = megabytes(4);
constexpr s32 InitSize_TypeTable = megabytes(4);
constexpr s32 CodePool_NumBlocks = 4096;
constexpr s32 InitSize_CodeEntiresArray = 512;
constexpr s32 SizePer_CodeEntriresArena = megabytes(16);
constexpr s32 SizePer_StringArena = megabytes(32);
constexpr s32 MaxNameLength = 128;
constexpr s32 MaxUntypedStrLength = kilobytes(640);
constexpr s32 StringTable_MaxHashLength = kilobytes(1);
// Predefined Codes. Are set to readonly and are setup during gen::init()
extern Code type_ns( void );
extern Code type_ns( int );
extern Code type_ns( bool );
extern Code type_ns( char );
extern Code type_ns( wchar_t );
extern Code access_public;
extern Code access_protected;
extern Code access_private;
extern Code spec_constexpr;
extern Code spec_const;
extern Code spec_inline;
extern Code spec_ptr;
extern Code spec_ref;
}
#pragma endregion Constants
#pragma region Inlines
namespace gen
{
inline
void AST::add_entry( AST* other )
{
AST* to_add = other->Parent ?
other->duplicate() : other;
if (DynamicEntries)
array_append( Entries, to_add );
else
{
if ( StaticIndex < ArrS_Cap )
{
ArrStatic[StaticIndex] = to_add;
StaticIndex++;
}
else
{
Entries = make_code_entries();
s32 index = 0;
do
{
array_append( Entries, ArrStatic[index] );
}
while ( StaticIndex--, StaticIndex );
array_append( Entries, to_add );
}
}
to_add->Parent = this;
}
inline
bool AST::add_param( AST* type, s32 length, char const* name )
{
if ( Type != ECode::Function )
{
log_failure( "gen::AST::add_param: this AST is not a function - %s", debug_str() );
return Code::Invalid;
}
if ( length <= 0 )
{
log_failure( "gen::AST::add_param: Invalid name length provided - %d", length );
return Code::Invalid;
}
if ( name == nullptr )
{
log_failure( "gen::AST::add_param: name is null");
return Code::Invalid;
}
s32
score = 0;
score += Name == nullptr;
score += Entries[0] == nullptr;
if ( score == 1 )
{
log_failure("gen::AST::add_param: this AST has bad data - %s", debug_str() );
return false;
}
else if ( score == 2)
{
Name = name;
Entries[0] = type;
return true;
}
Code
result = make_code();
result->Type = ECode::Parameters;
result->add_entry( result );
return true;
}
}
#pragma endregion Inlines
// end: gen_time
#endif