gencpp/project/gen_dep.hpp

2331 lines
53 KiB
C++
Raw Normal View History

#pragma once
#if gen_time
#define GEN_BENCHMARK
#if __clang__
# pragma clang diagnostic ignored "-Wunused-const-variable"
# pragma clang diagnostic ignored "-Wswitch"
# pragma clang diagnostic ignored "-Wunused-variable"
# pragma clang diagnostic ignored "-Wunknown-pragmas"
# pragma clang diagnostic ignored "-Wvarargs"
# pragma clang diagnostic ignored "-Wunused-function"
#endif
#pragma region Platform Detection
/* Platform architecture */
#if defined( _WIN64 ) || defined( __x86_64__ ) || defined( _M_X64 ) || defined( __64BIT__ ) || defined( __powerpc64__ ) || defined( __ppc64__ ) || defined( __aarch64__ )
# ifndef GEN_ARCH_64_BIT
# define GEN_ARCH_64_BIT 1
# endif
#else
# ifndef GEN_ARCH_32_BIT
# define GEN_ARCH_32_BIT 1
# endif
#endif
/* Platform OS */
#if defined( _WIN32 ) || defined( _WIN64 )
# ifndef GEN_SYSTEM_WINDOWS
# define GEN_SYSTEM_WINDOWS 1
# endif
#elif defined( __APPLE__ ) && defined( __MACH__ )
# ifndef GEN_SYSTEM_OSX
# define GEN_SYSTEM_OSX 1
# endif
# ifndef GEN_SYSTEM_MACOS
# define GEN_SYSTEM_MACOS 1
# endif
# include <TargetConditionals.h>
# if TARGET_IPHONE_SIMULATOR == 1 || TARGET_OS_IPHONE == 1
# ifndef GEN_SYSTEM_IOS
# define GEN_SYSTEM_IOS 1
# endif
# endif
#elif defined( __unix__ )
# ifndef GEN_SYSTEM_UNIX
# define GEN_SYSTEM_UNIX 1
# endif
# if defined( ANDROID ) || defined( __ANDROID__ )
# ifndef GEN_SYSTEM_ANDROID
# define GEN_SYSTEM_ANDROID 1
# endif
# ifndef GEN_SYSTEM_LINUX
# define GEN_SYSTEM_LINUX 1
# endif
# elif defined( __linux__ )
# ifndef GEN_SYSTEM_LINUX
# define GEN_SYSTEM_LINUX 1
# endif
# elif defined( __FreeBSD__ ) || defined( __FreeBSD_kernel__ )
# ifndef GEN_SYSTEM_FREEBSD
# define GEN_SYSTEM_FREEBSD 1
# endif
# elif defined( __OpenBSD__ )
# ifndef GEN_SYSTEM_OPENBSD
# define GEN_SYSTEM_OPENBSD 1
# endif
# elif defined( __EMSCRIPTEN__ )
# ifndef GEN_SYSTEM_EMSCRIPTEN
# define GEN_SYSTEM_EMSCRIPTEN 1
# endif
# elif defined( __CYGWIN__ )
# ifndef GEN_SYSTEM_CYGWIN
# define GEN_SYSTEM_CYGWIN 1
# endif
# else
# error This UNIX operating system is not supported
# endif
#else
# error This operating system is not supported
#endif
/* Platform compiler */
#if defined( _MSC_VER )
# define GEN_COMPILER_MSVC 1
#elif defined( __GNUC__ )
# define GEN_COMPILER_GCC 1
#elif defined( __clang__ )
# define GEN_COMPILER_CLANG 1
#elif defined( __MINGW32__ )
# define GEN_COMPILER_MINGW 1
# error Unknown compiler
#endif
#if defined( __has_attribute )
# define GEN_HAS_ATTRIBUTE( attribute ) __has_attribute( attribute )
#else
# define GEN_HAS_ATTRIBUTE( attribute ) ( 0 )
#endif
#define GEN_DEF_INLINE static
#define GEN_IMPL_INLINE static inline
#ifdef GEN_COMPILER_MSVC
# define forceinline __forceinline
# define neverinline __declspec( noinline )
#elif defined(GEN_COMPILER_GCC)
# define forceinline inline __attribute__((__always_inline__))
# define neverinline __attribute__( ( __noinline__ ) )
#elif defined(GEN_COMPILER_CLANG)
#if __has_attribute(__always_inline__)
# define forceinline inline __attribute__((__always_inline__))
# define neverinline __attribute__( ( __noinline__ ) )
#else
# define forceinline
# define neverinline
#endif
#else
# define forceinline
# define neverinline
#endif
#pragma endregion Platform Detection
#pragma region Mandatory Includes
# include <stdarg.h>
# include <stddef.h>
# if defined( GEN_SYSTEM_WINDOWS )
# include <intrin.h>
# endif
#pragma endregion Mandatory Includes
namespace gen
{
#pragma region Macros
#define zpl_cast( Type ) ( Type )
// Keywords
#define global static // Global variables
#define internal static // Internal linkage
#define local_persist static // Local Persisting variables
// Bits
#define bit( Value_ ) ( 1 << Value_ )
#define bitfield_is_equal( Type_, Field_, Mask_ ) ( (Type_(Mask_) & Type_(Field_)) == Type_(Mask_) )
// Casting
#define ccast( Type_, Value_ ) * const_cast< Type_* >( & (Value_) )
#define pcast( Type_, Value_ ) ( * (Type_*)( & (Value_) ) )
#define rcast( Type_, Value_ ) reinterpret_cast< Type_ >( Value_ )
#define scast( Type_, Value_ ) static_cast< Type_ >( Value_ )
// Num Arguments (Varadics)
#if defined(__GNUC__) || defined(__clang__)
// Supports 0-10 arguments
#define num_args_impl( _0, \
_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \
_11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \
N, ... \
) N
// _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, \
// _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, \
// _41, _42, _43, _44, _45, _46, _47, _48, _49, _50,
// ## deletes preceding comma if _VA_ARGS__ is empty (GCC, Clang)
#define num_args(...) \
num_args_impl(_, ## __VA_ARGS__, \
20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \
10, 9, 8, 7, 6, 5, 4, 3, 2, 1, \
0 \
)
// 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \
// 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \
// 30, 29, 28, 27, 26, 25, 24, 23, 22, 21,
#else
// Supports 1-10 arguments
#define num_args_impl( \
_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \
_11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \
N, ... \
) N
#define num_args(...) \
num_args_impl( __VA_ARGS__, \
20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \
10, 9, 8, 7, 6, 5, 4, 3, 2, 1 \
)
#endif
// Stringizing
#define stringize_va( ... ) #__VA_ARGS__
#define stringize( ... ) stringize_va( __VA_ARGS__ )
// Function do once
#define do_once() \
do \
{ \
static \
bool Done = false; \
if ( Done ) \
return; \
Done = true; \
} \
while(0)
#define do_once_start \
do \
{ \
static \
bool Done = false; \
if ( Done ) \
break; \
Done = true;
#define do_once_end \
} \
while(0);
#define count_of( x ) ( ( size_of( x ) / size_of( 0 [ x ] ) ) / ( ( sw )( ! ( size_of( x ) % size_of( 0 [ x ] ) ) ) ) )
#define is_between( x, lower, upper ) ( ( ( lower ) <= ( x ) ) && ( ( x ) <= ( upper ) ) )
#define min( a, b ) ( ( a ) < ( b ) ? ( a ) : ( b ) )
#define size_of( x ) ( sw )( sizeof( x ) )
#define swap( Type, a, b ) \
do \
{ \
Type tmp = ( a ); \
( a ) = ( b ); \
( b ) = tmp; \
} while ( 0 )
#pragma endregion Macros
#pragma region Basic Types
#define GEN_U8_MIN 0u
#define GEN_U8_MAX 0xffu
#define GEN_I8_MIN ( -0x7f - 1 )
#define GEN_I8_MAX 0x7f
#define GEN_U16_MIN 0u
#define GEN_U16_MAX 0xffffu
#define GEN_I16_MIN ( -0x7fff - 1 )
#define GEN_I16_MAX 0x7fff
#define GEN_U32_MIN 0u
#define GEN_U32_MAX 0xffffffffu
#define GEN_I32_MIN ( -0x7fffffff - 1 )
#define GEN_I32_MAX 0x7fffffff
#define GEN_U64_MIN 0ull
#define GEN_U64_MAX 0xffffffffffffffffull
#define GEN_I64_MIN ( -0x7fffffffffffffffll - 1 )
#define GEN_I64_MAX 0x7fffffffffffffffll
#if defined( GEN_ARCH_32_BIT )
# define GEN_USIZE_MIN GEN_U32_MIN
# define GEN_USIZE_MAX GEN_U32_MAX
# define GEN_ISIZE_MIN GEN_S32_MIN
# define GEN_ISIZE_MAX GEN_S32_MAX
#elif defined( GEN_ARCH_64_BIT )
# define GEN_USIZE_MIN GEN_U64_MIN
# define GEN_USIZE_MAX GEN_U64_MAX
# define GEN_ISIZE_MIN GEN_I64_MIN
# define GEN_ISIZE_MAX GEN_I64_MAX
#else
# error Unknown architecture size. This library only supports 32 bit and 64 bit architectures.
#endif
#define GEN_F32_MIN 1.17549435e-38f
#define GEN_F32_MAX 3.40282347e+38f
#define GEN_F64_MIN 2.2250738585072014e-308
#define GEN_F64_MAX 1.7976931348623157e+308
#if defined( GEN_COMPILER_MSVC )
# if _MSC_VER < 1300
typedef unsigned char u8;
typedef signed char s8;
typedef unsigned short u16;
typedef signed short s16;
typedef unsigned int u32;
typedef signed int s32;
# else
typedef unsigned __int8 u8;
typedef signed __int8 s8;
typedef unsigned __int16 u16;
typedef signed __int16 s16;
typedef unsigned __int32 u32;
typedef signed __int32 s32;
# endif
typedef unsigned __int64 u64;
typedef signed __int64 s64;
#else
# include <stdint.h>
typedef uint8_t u8;
typedef int8_t s8;
typedef uint16_t u16;
typedef int16_t s16;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint64_t u64;
typedef int64_t s64;
#endif
static_assert( sizeof( u8 ) == sizeof( s8 ), "sizeof(u8) != sizeof(s8)" );
static_assert( sizeof( u16 ) == sizeof( s16 ), "sizeof(u16) != sizeof(s16)" );
static_assert( sizeof( u32 ) == sizeof( s32 ), "sizeof(u32) != sizeof(s32)" );
static_assert( sizeof( u64 ) == sizeof( s64 ), "sizeof(u64) != sizeof(s64)" );
static_assert( sizeof( u8 ) == 1, "sizeof(u8) != 1" );
static_assert( sizeof( u16 ) == 2, "sizeof(u16) != 2" );
static_assert( sizeof( u32 ) == 4, "sizeof(u32) != 4" );
static_assert( sizeof( u64 ) == 8, "sizeof(u64) != 8" );
typedef size_t uw;
typedef ptrdiff_t sw;
static_assert( sizeof( uw ) == sizeof( sw ), "sizeof(uw) != sizeof(sw)" );
// NOTE: (u)zpl_intptr is only here for semantic reasons really as this library will only support 32/64 bit OSes.
#if defined( _WIN64 )
typedef signed __int64 sptr;
typedef unsigned __int64 uptr;
#elif defined( _WIN32 )
// NOTE; To mark types changing their size, e.g. zpl_intptr
# ifndef _W64
# if ! defined( __midl ) && ( defined( _X86_ ) || defined( _M_IX86 ) ) && _MSC_VER >= 1300
# define _W64 __w64
# else
# define _W64
# endif
# endif
typedef _W64 signed int sptr;
typedef _W64 unsigned int uptr;
#else
typedef uintptr_t uptr;
typedef intptr_t sptr;
#endif
static_assert( sizeof( uptr ) == sizeof( sptr ), "sizeof(uptr) != sizeof(sptr)" );
typedef float f32;
typedef double f64;
static_assert( sizeof( f32 ) == 4, "sizeof(f32) != 4" );
static_assert( sizeof( f64 ) == 8, "sizeof(f64) != 8" );
typedef s8 b8;
typedef s16 b16;
typedef s32 b32;
#pragma endregion Basic Types
#pragma region Debug
#if defined( _MSC_VER )
# if _MSC_VER < 1300
# define GEN_DEBUG_TRAP() __asm int 3 /* Trap to debugger! */
# else
# define GEN_DEBUG_TRAP() __debugbreak()
# endif
#elif defined( GEN_COMPILER_TINYC )
# define GEN_DEBUG_TRAP() process_exit( 1 )
#else
# define GEN_DEBUG_TRAP() __builtin_trap()
#endif
#define GEN_ASSERT( cond ) GEN_ASSERT_MSG( cond, NULL )
#define GEN_ASSERT_MSG( cond, msg, ... ) \
do \
{ \
if ( ! ( cond ) ) \
{ \
assert_handler( #cond, __FILE__, zpl_cast( s64 ) __LINE__, msg, ##__VA_ARGS__ ); \
GEN_DEBUG_TRAP(); \
} \
} while ( 0 )
#define GEN_ASSERT_NOT_NULL( ptr ) GEN_ASSERT_MSG( ( ptr ) != NULL, #ptr " must not be NULL" )
// NOTE: Things that shouldn't happen with a message!
#define GEN_PANIC( msg, ... ) GEN_ASSERT_MSG( 0, msg, ##__VA_ARGS__ )
void assert_handler( char const* condition, char const* file, s32 line, char const* msg, ... );
s32 assert_crash( char const* condition );
void process_exit( u32 code );
#pragma endregion Debug
#pragma region Memory
#define kilobytes( x ) ( ( x ) * ( s64 )( 1024 ) )
#define megabytes( x ) ( kilobytes( x ) * ( s64 )( 1024 ) )
#define gigabytes( x ) ( megabytes( x ) * ( s64 )( 1024 ) )
#define terabytes( x ) ( gigabytes( x ) * ( s64 )( 1024 ) )
#define GEN__ONES ( zpl_cast( uw ) - 1 / GEN_U8_MAX )
#define GEN__HIGHS ( GEN__ONES * ( GEN_U8_MAX / 2 + 1 ) )
#define GEN__HAS_ZERO( x ) ( ( ( x )-GEN__ONES ) & ~( x )&GEN__HIGHS )
//! Checks if value is power of 2.
GEN_DEF_INLINE b32 is_power_of_two( sw x );
//! Aligns address to specified alignment.
GEN_DEF_INLINE void* align_forward( void* ptr, sw alignment );
//! Aligns value to a specified alignment.
GEN_DEF_INLINE s64 align_forward_i64( s64 value, sw alignment );
//! Moves pointer forward by bytes.
GEN_DEF_INLINE void* pointer_add( void* ptr, sw bytes );
//! Copy non-overlapping memory from source to destination.
void* mem_copy( void* dest, void const* source, sw size );
//! Search for a constant value within the size limit at memory location.
void const* mem_find( void const* data, u8 byte_value, sw size );
//! Copy memory from source to destination.
GEN_DEF_INLINE void* mem_move( void* dest, void const* source, sw size );
//! Set constant value at memory location with specified size.
GEN_DEF_INLINE void* mem_set( void* data, u8 byte_value, sw size );
//! @param ptr Memory location to clear up.
//! @param size The size to clear up with.
GEN_DEF_INLINE void zero_size( void* ptr, sw size );
//! Clears up an item.
#define zero_item( t ) zero_size( ( t ), size_of( *( t ) ) ) // NOTE: Pass pointer of struct
//! Clears up an array.
#define zero_array( a, count ) zero_size( ( a ), size_of( *( a ) ) * count )
enum AllocType : u8
{
EAllocation_ALLOC,
EAllocation_FREE,
EAllocation_FREE_ALL,
EAllocation_RESIZE,
};
using AllocatorProc = void* ( void* allocator_data, AllocType type
, sw size, sw alignment
, void* old_memory, sw old_size
, u64 flags );
struct AllocatorInfo
{
AllocatorProc* Proc;
void* Data;
};
enum AllocFlag
{
ALLOCATOR_FLAG_CLEAR_TO_ZERO = bit( 0 ),
};
#ifndef GEN_DEFAULT_MEMORY_ALIGNMENT
# define GEN_DEFAULT_MEMORY_ALIGNMENT ( 2 * size_of( void* ) )
#endif
#ifndef GEN_DEFAULT_ALLOCATOR_FLAGS
# define GEN_DEFAULT_ALLOCATOR_FLAGS ( ALLOCATOR_FLAG_CLEAR_TO_ZERO )
#endif
//! Allocate memory with default alignment.
GEN_DEF_INLINE void* alloc( AllocatorInfo a, sw size );
//! Allocate memory with specified alignment.
GEN_DEF_INLINE void* alloc_align( AllocatorInfo a, sw size, sw alignment );
//! Free allocated memory.
GEN_DEF_INLINE void free( AllocatorInfo a, void* ptr );
//! Free all memory allocated by an allocator.
GEN_DEF_INLINE void free_all( AllocatorInfo a );
//! Resize an allocated memory.
GEN_DEF_INLINE void* resize( AllocatorInfo a, void* ptr, sw old_size, sw new_size );
//! Resize an allocated memory with specified alignment.
GEN_DEF_INLINE void* resize_align( AllocatorInfo a, void* ptr, sw old_size, sw new_size, sw alignment );
//! Allocate memory for an item.
#define alloc_item( allocator_, Type ) ( Type* )alloc( allocator_, size_of( Type ) )
//! Allocate memory for an array of items.
#define alloc_array( allocator_, Type, count ) ( Type* )alloc( allocator_, size_of( Type ) * ( count ) )
/* heap memory analysis tools */
/* define GEN_HEAP_ANALYSIS to enable this feature */
/* call zpl_heap_stats_init at the beginning of the entry point */
/* you can call zpl_heap_stats_check near the end of the execution to validate any possible leaks */
void heap_stats_init( void );
sw heap_stats_used_memory( void );
sw heap_stats_alloc_count( void );
void heap_stats_check( void );
//! Allocate/Resize memory using default options.
//! Use this if you don't need a "fancy" resize allocation
GEN_DEF_INLINE void* default_resize_align( AllocatorInfo a, void* ptr, sw old_size, sw new_size, sw alignment );
void* heap_allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags );
//! The heap allocator backed by operating system's memory manager.
constexpr AllocatorInfo heap( void ) { return { heap_allocator_proc, nullptr }; }
//! Helper to allocate memory using heap allocator.
#define malloc( sz ) alloc( heap(), sz )
//! Helper to free memory allocated by heap allocator.
#define mfree( ptr ) free( heap(), ptr )
GEN_IMPL_INLINE b32 is_power_of_two( sw x )
{
if ( x <= 0 )
return false;
return ! ( x & ( x - 1 ) );
}
GEN_IMPL_INLINE void* align_forward( void* ptr, sw alignment )
{
uptr p;
GEN_ASSERT( is_power_of_two( alignment ) );
p = zpl_cast( uptr ) ptr;
return zpl_cast( void* )( ( p + ( alignment - 1 ) ) & ~( alignment - 1 ) );
}
GEN_IMPL_INLINE s64 align_forward_i64( s64 value, sw alignment )
{
return value + ( alignment - value % alignment ) % alignment;
}
GEN_IMPL_INLINE void* pointer_add( void* ptr, sw bytes )
{
return zpl_cast( void* )( zpl_cast( u8* ) ptr + bytes );
}
GEN_IMPL_INLINE void* mem_move( void* dest, void const* source, sw n )
{
if ( dest == NULL )
{
return NULL;
}
u8* d = zpl_cast( u8* ) dest;
u8 const* s = zpl_cast( u8 const* ) source;
if ( d == s )
return d;
if ( s + n <= d || d + n <= s ) // NOTE: Non-overlapping
return mem_copy( d, s, n );
if ( d < s )
{
if ( zpl_cast( uptr ) s % size_of( sw ) == zpl_cast( uptr ) d % size_of( sw ) )
{
while ( zpl_cast( uptr ) d % size_of( sw ) )
{
if ( ! n-- )
return dest;
*d++ = *s++;
}
while ( n >= size_of( sw ) )
{
*zpl_cast( sw* ) d = *zpl_cast( sw* ) s;
n -= size_of( sw );
d += size_of( sw );
s += size_of( sw );
}
}
for ( ; n; n-- )
*d++ = *s++;
}
else
{
if ( ( zpl_cast( uptr ) s % size_of( sw ) ) == ( zpl_cast( uptr ) d % size_of( sw ) ) )
{
while ( zpl_cast( uptr )( d + n ) % size_of( sw ) )
{
if ( ! n-- )
return dest;
d[ n ] = s[ n ];
}
while ( n >= size_of( sw ) )
{
n -= size_of( sw );
*zpl_cast( sw* )( d + n ) = *zpl_cast( sw* )( s + n );
}
}
while ( n )
n--, d[ n ] = s[ n ];
}
return dest;
}
GEN_IMPL_INLINE void* mem_set( void* dest, u8 c, sw n )
{
if ( dest == NULL )
{
return NULL;
}
u8* s = zpl_cast( u8* ) dest;
sw k;
u32 c32 = ( ( u32 )-1 ) / 255 * c;
if ( n == 0 )
return dest;
s[ 0 ] = s[ n - 1 ] = c;
if ( n < 3 )
return dest;
s[ 1 ] = s[ n - 2 ] = c;
s[ 2 ] = s[ n - 3 ] = c;
if ( n < 7 )
return dest;
s[ 3 ] = s[ n - 4 ] = c;
if ( n < 9 )
return dest;
k = -zpl_cast( sptr ) s & 3;
s += k;
n -= k;
n &= -4;
*zpl_cast( u32* )( s + 0 ) = c32;
*zpl_cast( u32* )( s + n - 4 ) = c32;
if ( n < 9 )
return dest;
*zpl_cast( u32* )( s + 4 ) = c32;
*zpl_cast( u32* )( s + 8 ) = c32;
*zpl_cast( u32* )( s + n - 12 ) = c32;
*zpl_cast( u32* )( s + n - 8 ) = c32;
if ( n < 25 )
return dest;
*zpl_cast( u32* )( s + 12 ) = c32;
*zpl_cast( u32* )( s + 16 ) = c32;
*zpl_cast( u32* )( s + 20 ) = c32;
*zpl_cast( u32* )( s + 24 ) = c32;
*zpl_cast( u32* )( s + n - 28 ) = c32;
*zpl_cast( u32* )( s + n - 24 ) = c32;
*zpl_cast( u32* )( s + n - 20 ) = c32;
*zpl_cast( u32* )( s + n - 16 ) = c32;
k = 24 + ( zpl_cast( uptr ) s & 4 );
s += k;
n -= k;
{
u64 c64 = ( zpl_cast( u64 ) c32 << 32 ) | c32;
while ( n > 31 )
{
*zpl_cast( u64* )( s + 0 ) = c64;
*zpl_cast( u64* )( s + 8 ) = c64;
*zpl_cast( u64* )( s + 16 ) = c64;
*zpl_cast( u64* )( s + 24 ) = c64;
n -= 32;
s += 32;
}
}
return dest;
}
GEN_IMPL_INLINE void* alloc_align( AllocatorInfo a, sw size, sw alignment )
{
return a.Proc( a.Data, EAllocation_ALLOC, size, alignment, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
GEN_IMPL_INLINE void* alloc( AllocatorInfo a, sw size )
{
return alloc_align( a, size, GEN_DEFAULT_MEMORY_ALIGNMENT );
}
GEN_IMPL_INLINE void free( AllocatorInfo a, void* ptr )
{
if ( ptr != nullptr )
a.Proc( a.Data, EAllocation_FREE, 0, 0, ptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
GEN_IMPL_INLINE void free_all( AllocatorInfo a )
{
a.Proc( a.Data, EAllocation_FREE_ALL, 0, 0, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
GEN_IMPL_INLINE void* resize( AllocatorInfo a, void* ptr, sw old_size, sw new_size )
{
return resize_align( a, ptr, old_size, new_size, GEN_DEFAULT_MEMORY_ALIGNMENT );
}
GEN_IMPL_INLINE void* resize_align( AllocatorInfo a, void* ptr, sw old_size, sw new_size, sw alignment )
{
return a.Proc( a.Data, EAllocation_RESIZE, new_size, alignment, ptr, old_size, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
GEN_IMPL_INLINE void* default_resize_align( AllocatorInfo a, void* old_memory, sw old_size, sw new_size, sw alignment )
{
if ( ! old_memory )
return alloc_align( a, new_size, alignment );
if ( new_size == 0 )
{
free( a, old_memory );
return nullptr;
}
if ( new_size < old_size )
new_size = old_size;
if ( old_size == new_size )
{
return old_memory;
}
else
{
void* new_memory = alloc_align( a, new_size, alignment );
if ( ! new_memory )
return nullptr;
mem_move( new_memory, old_memory, min( new_size, old_size ) );
free( a, old_memory );
return new_memory;
}
}
GEN_IMPL_INLINE void zero_size( void* ptr, sw size )
{
mem_set( ptr, 0, size );
}
struct Arena
{
static
void* allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags );
static
Arena init_from_memory( void* start, sw size )
{
return
{
{ nullptr, nullptr },
start,
size,
0,
0
};
}
static
Arena init_from_allocator( AllocatorInfo backing, sw size )
{
Arena result =
{
backing,
alloc( backing, size),
size,
0,
0
};
return result;
}
static
Arena init_sub( Arena& parent, sw size )
{
return init_from_allocator( parent.Backing, size );
}
sw alignment_of( sw alignment )
{
sw alignment_offset, result_pointer, mask;
GEN_ASSERT( is_power_of_two( alignment ) );
alignment_offset = 0;
result_pointer = (sw) PhysicalStart + TotalUsed;
mask = alignment - 1;
if ( result_pointer & mask )
alignment_offset = alignment - ( result_pointer & mask );
return alignment_offset;
}
void check()
{
GEN_ASSERT( TempCount == 0 );
}
void free()
{
if ( Backing.Proc )
{
gen::free( Backing, PhysicalStart );
PhysicalStart = nullptr;
}
}
sw size_remaining( sw alignment )
{
sw result = TotalSize - ( TotalUsed + alignment_of( alignment ) );
return result;
}
AllocatorInfo Backing;
void* PhysicalStart;
sw TotalSize;
sw TotalUsed;
sw TempCount;
operator AllocatorInfo()
{
return { allocator_proc, this };
}
};
struct Pool
{
static
void* allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags );
static
Pool init( AllocatorInfo backing, sw num_blocks, sw block_size )
{
return init_align( backing, num_blocks, block_size, GEN_DEFAULT_MEMORY_ALIGNMENT );
}
static
Pool init_align( AllocatorInfo backing, sw num_blocks, sw block_size, sw block_align );
void free()
{
if ( Backing.Proc )
{
gen::free( Backing, PhysicalStart );
}
}
AllocatorInfo Backing;
void* PhysicalStart;
void* FreeList;
sw BlockSize;
sw BlockAlign;
sw TotalSize;
sw NumBlocks;
operator AllocatorInfo()
{
return { allocator_proc, this };
}
};
#pragma endregion Memory
#pragma region String Ops
GEN_DEF_INLINE const char* char_first_occurence( const char* str, char c );
GEN_DEF_INLINE b32 char_is_alpha( char c );
GEN_DEF_INLINE b32 char_is_alphanumeric( char c );
GEN_DEF_INLINE b32 char_is_digit( char c );
GEN_DEF_INLINE b32 char_is_hex_digit( char c );
GEN_DEF_INLINE b32 char_is_space( char c );
GEN_DEF_INLINE char char_to_lower( char c );
GEN_DEF_INLINE char char_to_upper( char c );
GEN_DEF_INLINE s32 digit_to_int( char c );
GEN_DEF_INLINE s32 hex_digit_to_int( char c );
GEN_DEF_INLINE s32 str_compare( const char* s1, const char* s2 );
GEN_DEF_INLINE s32 str_compare( const char* s1, const char* s2, sw len );
GEN_DEF_INLINE char* str_copy( char* dest, const char* source, sw len );
GEN_DEF_INLINE sw str_copy_nulpad( char* dest, const char* source, sw len );
GEN_DEF_INLINE sw str_len( const char* str );
GEN_DEF_INLINE sw str_len( const char* str, sw max_len );
GEN_DEF_INLINE char* str_reverse( char* str ); // NOTE: ASCII only
// NOTE: ASCII only
GEN_DEF_INLINE void str_to_lower( char* str );
GEN_DEF_INLINE void str_to_upper( char* str );
s64 str_to_i64( const char* str, char** end_ptr, s32 base ); // TODO : Support more than just decimal and hexadecimal
void i64_to_str( s64 value, char* string, s32 base );
void u64_to_str( u64 value, char* string, s32 base );
GEN_IMPL_INLINE const char* char_first_occurence( const char* s, char c )
{
char ch = c;
for ( ; *s != ch; s++ )
{
if ( *s == '\0' )
return NULL;
}
return s;
}
GEN_IMPL_INLINE b32 char_is_alpha( char c )
{
if ( ( c >= 'A' && c <= 'Z' ) || ( c >= 'a' && c <= 'z' ) )
return true;
return false;
}
GEN_IMPL_INLINE b32 char_is_alphanumeric( char c )
{
return char_is_alpha( c ) || char_is_digit( c );
}
GEN_IMPL_INLINE b32 char_is_digit( char c )
{
if ( c >= '0' && c <= '9' )
return true;
return false;
}
GEN_IMPL_INLINE b32 char_is_hex_digit( char c )
{
if ( char_is_digit( c ) || ( c >= 'a' && c <= 'f' ) || ( c >= 'A' && c <= 'F' ) )
return true;
return false;
}
GEN_IMPL_INLINE b32 char_is_space( char c )
{
if ( c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f' || c == '\v' )
return true;
return false;
}
GEN_IMPL_INLINE char char_to_lower( char c )
{
if ( c >= 'A' && c <= 'Z' )
return 'a' + ( c - 'A' );
return c;
}
GEN_IMPL_INLINE char char_to_upper( char c )
{
if ( c >= 'a' && c <= 'z' )
return 'A' + ( c - 'a' );
return c;
}
GEN_IMPL_INLINE s32 digit_to_int( char c )
{
return char_is_digit( c ) ? c - '0' : c - 'W';
}
GEN_IMPL_INLINE s32 hex_digit_to_int( char c )
{
if ( char_is_digit( c ) )
return digit_to_int( c );
else if ( is_between( c, 'a', 'f' ) )
return c - 'a' + 10;
else if ( is_between( c, 'A', 'F' ) )
return c - 'A' + 10;
return -1;
}
GEN_IMPL_INLINE s32 str_compare( const char* s1, const char* s2 )
{
while ( *s1 && ( *s1 == *s2 ) )
{
s1++, s2++;
}
return *( u8* )s1 - *( u8* )s2;
}
GEN_IMPL_INLINE s32 str_compare( const char* s1, const char* s2, sw len )
{
for ( ; len > 0; s1++, s2++, len-- )
{
if ( *s1 != *s2 )
return ( ( s1 < s2 ) ? -1 : +1 );
else if ( *s1 == '\0' )
return 0;
}
return 0;
}
GEN_IMPL_INLINE char* str_copy( char* dest, const char* source, sw len )
{
GEN_ASSERT_NOT_NULL( dest );
if ( source )
{
char* str = dest;
while ( len > 0 && *source )
{
*str++ = *source++;
len--;
}
while ( len > 0 )
{
*str++ = '\0';
len--;
}
}
return dest;
}
GEN_IMPL_INLINE sw str_copy_nulpad( char* dest, const char* source, sw len )
{
sw result = 0;
GEN_ASSERT_NOT_NULL( dest );
if ( source )
{
const char* source_start = source;
char* str = dest;
while ( len > 0 && *source )
{
*str++ = *source++;
len--;
}
while ( len > 0 )
{
*str++ = '\0';
len--;
}
result = source - source_start;
}
return result;
}
GEN_IMPL_INLINE sw str_len( const char* str )
{
if ( str == NULL )
{
return 0;
}
const char* p = str;
while ( *str )
str++;
return str - p;
}
GEN_IMPL_INLINE sw str_len( const char* str, sw max_len )
{
const char* end = zpl_cast( const char* ) mem_find( str, 0, max_len );
if ( end )
return end - str;
return max_len;
}
GEN_IMPL_INLINE char* str_reverse( char* str )
{
sw len = str_len( str );
char* a = str + 0;
char* b = str + len - 1;
len /= 2;
while ( len-- )
{
swap( char, *a, *b );
a++, b--;
}
return str;
}
GEN_IMPL_INLINE void str_to_lower( char* str )
{
if ( ! str )
return;
while ( *str )
{
*str = char_to_lower( *str );
str++;
}
}
GEN_IMPL_INLINE void str_to_upper( char* str )
{
if ( ! str )
return;
while ( *str )
{
*str = char_to_upper( *str );
str++;
}
}
#pragma endregion String Ops
#pragma region Containers
template<class Type>
struct Array
{
struct Header
{
AllocatorInfo Allocator;
uw Capacity;
uw Num;
};
static
Array init( AllocatorInfo allocator )
{
return init_reserve( allocator, grow_formula(0) );
}
static
Array init_reserve( AllocatorInfo allocator, sw capacity )
{
Header* header = rcast( Header*, alloc( allocator, sizeof(Header) + sizeof(Type) * capacity ));
if ( header == nullptr )
return { nullptr };
header->Allocator = allocator;
header->Capacity = capacity;
header->Num = 0;
return { rcast( Type*, header + 1) };
}
static
uw grow_formula( uw value )
{
return 2 * value + 8;
}
bool append( Type value )
{
Header* header = get_header();
if ( header->Num == header->Capacity )
{
if ( ! grow( header->Capacity ))
return false;
header = get_header();
}
Data[ header->Num ] = value;
header->Num++;
return true;
}
Type& back( void )
{
Header& header = * get_header();
return Data[ header.Num - 1 ];
}
void clear( void )
{
Header& header = * get_header();
header.Num = 0;
}
bool fill( uw begin, uw end, Type value )
{
Header& header = * get_header();
if ( begin < 0 || end >= header.Num )
return false;
for ( sw idx = begin; idx < end; idx++ )
{
Data[ idx ] = value;
}
return true;
}
void free( void )
{
Header& header = * get_header();
gen::free( header.Allocator, &header );
}
Header* get_header( void )
{
return rcast( Header*, Data ) - 1 ;
}
bool grow( uw min_capacity )
{
Header& header = * get_header();
uw new_capacity = grow_formula( header.Capacity );
if ( new_capacity < min_capacity )
new_capacity = min_capacity;
return set_capacity( new_capacity );
}
uw num( void )
{
return get_header()->Num;
}
bool pop( void )
{
Header& header = * get_header();
GEN_ASSERT( header.Num > 0 );
header.Num--;
}
void remove_at( uw idx )
{
Header* header = get_header();
GEN_ASSERT( idx < header->Num );
mem_move( header + idx, header + idx + 1, sizeof( Type ) * ( header->Num - idx - 1 ) );
header->Num--;
}
bool reserve( uw new_capacity )
{
Header& header = * get_header();
if ( header.Capacity < new_capacity )
return set_capacity( new_capacity );
return true;
}
bool resize( uw num )
{
Header* header = get_header();
if ( header->Capacity < num )
{
if ( ! grow( num ) )
return false;
header = get_header();
}
header->Num = num;
return true;
}
bool set_capacity( uw new_capacity )
{
Header& header = * get_header();
if ( new_capacity == header.Capacity )
return true;
if ( new_capacity < header.Num )
header.Num = new_capacity;
sw size = sizeof( Header ) + sizeof( Type ) * new_capacity;
Header* new_header = rcast( Header*, alloc( header.Allocator, size ) );
if ( new_header == nullptr )
return false;
mem_move( new_header, &header, sizeof( Header ) + sizeof( Type ) * header.Num );
new_header->Capacity = new_capacity;
gen::free( header.Allocator, &header );
Data = rcast( Type*, new_header + 1);
return true;
}
Type* Data;
operator Type*()
{
return Data;
}
operator Type const*() const
{
return Data;
}
// For-range based support
Type* begin()
{
return Data;
}
Type* end()
{
return Data + get_header()->Num;
}
};
template<typename Type>
struct HashTable
{
struct FindResult
{
sw HashIndex;
sw PrevIndex;
sw EntryIndex;
};
struct Entry
{
u64 Key;
sw Next;
Type Value;
};
static
HashTable init( AllocatorInfo allocator )
{
HashTable<Type> result = { { nullptr }, { nullptr } };
result.Hashes = Array<sw>::init( allocator );
result.Entries = Array<Entry>::init( allocator );
return result;
}
static
HashTable init_reserve( AllocatorInfo allocator, sw num )
{
HashTable<Type> result = { { nullptr }, { nullptr } };
result.Hashes = Array<sw>::init_reserve( allocator, num );
result.Hashes.get_header()->Num = num;
result.Entries = Array<Entry>::init_reserve( allocator, num );
return result;
}
void clear( void )
{
for ( sw idx = 0; idx < Hashes.num(); idx++ )
Hashes[ idx ] = -1;
Hashes.clear();
Entries.clear();
}
void destroy( void )
{
if ( Hashes && Hashes.get_header()->Capacity )
{
Hashes.free();
Entries.free();
}
}
Type* get( u64 key )
{
sw idx = find( key ).EntryIndex;
if ( idx >= 0 )
return & Entries[ idx ].Value;
return nullptr;
}
using MapProc = void (*)( u64 key, Type value );
void map( MapProc map_proc )
{
GEN_ASSERT_NOT_NULL( map_proc );
for ( sw idx = 0; idx < Entries.num(); idx++ )
{
map_proc( Entries[ idx ].Key, Entries[ idx ].Value );
}
}
using MapMutProc = void (*)( u64 key, Type* value );
void map_mut( MapMutProc map_proc )
{
GEN_ASSERT_NOT_NULL( map_proc );
for ( sw idx = 0; idx < Entries.num(); idx++ )
{
map_proc( Entries[ idx ].Key, & Entries[ idx ].Value );
}
}
void grow()
{
sw new_num = Array<Entry>::grow_formula( Entries.num() );
rehash( new_num );
}
void rehash( sw new_num )
{
sw idx;
sw last_added_index;
HashTable<Type> new_ht = init_reserve( Hashes.get_header()->Allocator, new_num );
Array<sw>::Header* hash_header = new_ht.Hashes.get_header();
for ( idx = 0; idx < new_ht.Hashes.num(); ++idx )
new_ht.Hashes[ idx ] = -1;
for ( idx = 0; idx < Entries.num(); ++idx )
{
Entry& entry = Entries[ idx ];
FindResult find_result;
if ( new_ht.Hashes.num() == 0 )
new_ht.grow();
entry = Entries[ idx ];
find_result = new_ht.find( entry.Key );
last_added_index = new_ht.add_entry( entry.Key );
if ( find_result.PrevIndex < 0 )
new_ht.Hashes[ find_result.HashIndex ] = last_added_index;
else
new_ht.Entries[ find_result.PrevIndex ].Next = last_added_index;
new_ht.Entries[ last_added_index ].Next = find_result.EntryIndex;
new_ht.Entries[ last_added_index ].Value = entry.Value;
}
destroy();
*this = new_ht;
}
void rehash_fast()
{
sw idx;
for ( idx = 0; idx < Entries.num(); idx++ )
Entries[ idx ].Next = -1;
for ( idx = 0; idx < Hashes.num(); idx++ )
Hashes[ idx ] = -1;
for ( idx = 0; idx < Entries.num(); idx++ )
{
Entry* entry;
FindResult find_result;
}
}
void remove( u64 key )
{
FindResult find_result = find( key);
if ( find_result.EntryIndex >= 0 )
{
Entries.remove_at( find_result.EntryIndex );
rehash_fast();
}
}
void remove_entry( sw idx )
{
Entries.remove_at( idx );
}
void set( u64 key, Type value )
{
sw idx;
FindResult find_result;
if ( Hashes.num() == 0 )
grow();
find_result = find( key );
if ( find_result.EntryIndex >= 0 )
{
idx = find_result.EntryIndex;
}
else
{
idx = add_entry( key );
if ( find_result.PrevIndex >= 0 )
{
Entries[ find_result.PrevIndex ].Next = idx;
}
else
{
Hashes[ find_result.HashIndex ] = idx;
}
}
Entries[ idx ].Value = value;
if ( full() )
grow();
}
sw slot( u64 key )
{
for ( sw idx = 0; idx < Hashes.num(); ++idx )
if ( Hashes[ idx ] == key )
return idx;
return -1;
}
Array< sw> Hashes;
Array< Entry> Entries;
protected:
sw add_entry( u64 key )
{
sw idx;
Entry entry = { key, -1 };
idx = Entries.num();
Entries.append( entry );
return idx;
}
FindResult find( u64 key )
{
FindResult result = { -1, -1, -1 };
if ( Hashes.num() > 0 )
{
result.HashIndex = key % Hashes.num();
result.EntryIndex = Hashes[ result.HashIndex ];
while ( result.EntryIndex >= 0 )
{
if ( Entries[ result.EntryIndex ].Key == key )
break;
result.PrevIndex = result.EntryIndex;
result.EntryIndex = Entries[ result.EntryIndex ].Next;
}
}
return result;
}
b32 full()
{
return 0.75f * Hashes.num() < Entries.num();
}
};
#pragma endregion Containers
#pragma region Hashing
u32 crc32( void const* data, sw len );
u64 crc64( void const* data, sw len );
#pragma endregion Hashing
#pragma region String
// Constant string with length.
struct StrC
{
sw Len;
char const* Ptr;
operator char const* () const
{
return Ptr;
}
};
#define txt_StrC( text ) \
(StrC){ sizeof( text ) - 1, text }
StrC to_StrC( char const* str )
{
return { str_len( str ), str };
}
// Currently sed with strings as a parameter to indicate to free after append.
constexpr sw FreeAfter = 0xF4EEAF7E4;
// Dynamic String
// This is directly based off the ZPL string api.
// They used a header pattern
// I kept it for simplicty of porting but its not necessary to keep it that way.
struct String
{
struct Header
{
AllocatorInfo Allocator;
sw Length;
sw Capacity;
};
static
uw grow_formula( uw value )
{
// Using a very aggressive growth formula to reduce time mem_copying with recursive calls to append in this library.
return 4 * value + 8;
}
static
String make( AllocatorInfo allocator, char const* str )
{
sw length = str ? str_len( str ) : 0;
return make_length( allocator, str, length );
}
static
String make( AllocatorInfo allocator, StrC str )
{
return make_length( allocator, str.Ptr, str.Len );
}
static
String make_reserve( AllocatorInfo allocator, sw capacity )
{
constexpr sw header_size = sizeof( Header );
s32 alloc_size = header_size + capacity + 1;
void* allocation = alloc( allocator, alloc_size );
if ( allocation == nullptr )
return { nullptr };
mem_set( allocation, 0, alloc_size );
Header*
header = rcast(Header*, allocation);
header->Allocator = allocator;
header->Capacity = capacity;
header->Length = 0;
String result = { (char*)allocation + header_size };
return result;
}
static
String make_length( AllocatorInfo allocator, char const* str, sw length )
{
constexpr sw header_size = sizeof( Header );
s32 alloc_size = header_size + length + 1;
void* allocation = alloc( allocator, alloc_size );
if ( allocation == nullptr )
return { nullptr };
Header&
header = * rcast(Header*, allocation);
header = { allocator, length, length };
String result = { rcast( char*, allocation) + header_size };
if ( length && str )
mem_copy( result, str, length );
else
mem_set( result, 0, alloc_size - header_size );
result[ length ] = '\0';
return result;
}
static
String fmt( AllocatorInfo allocator, char* buf, sw buf_size, char const* fmt, ... );
static
String fmt_buf( AllocatorInfo allocator, char const* fmt, ... );
static
String join( AllocatorInfo allocator, char const** parts, sw num_parts, char const* glue )
{
String result = make( allocator, "" );
for ( sw idx = 0; idx < num_parts; ++idx )
{
result.append( parts[ idx ] );
if ( idx < num_parts - 1 )
result.append( glue );
}
return result;
}
static
bool are_equal( String lhs, String rhs )
{
if ( lhs.length() != rhs.length() )
return false;
for ( sw idx = 0; idx < lhs.length(); ++idx )
if ( lhs[ idx ] != rhs[ idx ] )
return false;
return true;
}
bool make_space_for( char const* str, sw add_len );
bool append( char const* str )
{
return append( str, str_len( str ) );
}
bool append( char const* str, sw length );
bool append( StrC str)
{
return append( str.Ptr, str.Len );
}
bool append( const String other )
{
return append( other.Data, other.length() );;
}
bool append_fmt( char const* fmt, ... );
sw avail_space() const
{
Header const&
header = * rcast( Header const*, Data - sizeof( Header ));
return header.Capacity - header.Length;
}
sw capacity() const
{
Header const&
header = * rcast( Header const*, Data - sizeof( Header ));
return header.Capacity;
}
void clear()
{
get_header().Length = 0;
}
String duplicate( AllocatorInfo allocator )
{
return make_length( allocator, Data, length() );
}
void free()
{
if ( ! Data )
return;
Header& header = get_header();
gen::free( header.Allocator, & header );
}
Header& get_header()
{
return *(Header*)(Data - sizeof(Header));
}
sw length() const
{
Header const&
header = * rcast( Header const*, Data - sizeof( Header ));
return header.Length;
}
void trim( char const* cut_set )
{
sw len = 0;
char* start_pos = Data;
char* end_pos = Data + length() - 1;
while ( start_pos <= end_pos && char_first_occurence( cut_set, *start_pos ) )
start_pos++;
while ( end_pos > start_pos && char_first_occurence( cut_set, *end_pos ) )
end_pos--;
len = scast( sw, ( start_pos > end_pos ) ? 0 : ( ( end_pos - start_pos ) + 1 ) );
if ( Data != start_pos )
mem_move( Data, start_pos, len );
Data[ len ] = '\0';
get_header().Length = len;
}
void trim_space()
{
return trim( " \t\r\n\v\f" );
}
// For-range support
char* begin()
{
return Data;
}
char* end()
{
Header const&
header = * rcast( Header const*, Data - sizeof( Header ));
return Data + header.Length;
}
operator bool()
{
return Data;
}
operator char* ()
{
return Data;
}
operator char const* () const
{
return Data;
}
operator StrC() const
{
return
{
length(),
Data
};
}
// Used with cached strings
// Essentially makes the string a string view.
String const& operator = ( String const& other ) const
{
if ( this == & other )
return *this;
String& this_ = ccast( String, *this );
this_.Data = other.Data;
return this_;
}
char& operator [] ( sw index )
{
return Data[ index ];
}
char const& operator [] ( sw index ) const
{
return Data[ index ];
}
char* Data = nullptr;
};
struct String_POD
{
char* Data;
operator String()
{
return * rcast(String*, this);
}
};
static_assert( sizeof( String_POD ) == sizeof( String ), "String is not a POD" );
#pragma endregion String
#pragma region File Handling
typedef u32 FileMode;
enum FileModeFlag
{
EFileMode_READ = bit( 0 ),
EFileMode_WRITE = bit( 1 ),
EFileMode_APPEND = bit( 2 ),
EFileMode_RW = bit( 3 ),
GEN_FILE_MODES = EFileMode_READ | EFileMode_WRITE | EFileMode_APPEND | EFileMode_RW,
};
// NOTE: Only used internally and for the file operations
enum SeekWhenceType
{
ESeekWhence_BEGIN = 0,
ESeekWhence_CURRENT = 1,
ESeekWhence_END = 2,
};
enum FileError
{
EFileError_NONE,
EFileError_INVALID,
EFileError_INVALID_FILENAME,
EFileError_EXISTS,
EFileError_NOT_EXISTS,
EFileError_PERMISSION,
EFileError_TRUNCATION_FAILURE,
EFileError_NOT_EMPTY,
EFileError_NAME_TOO_LONG,
EFileError_UNKNOWN,
};
union FileDescriptor
{
void* p;
sptr i;
uptr u;
};
typedef struct FileOperations FileOperations;
#define GEN_FILE_OPEN_PROC( name ) FileError name( FileDescriptor* fd, FileOperations* ops, FileMode mode, char const* filename )
#define GEN_FILE_READ_AT_PROC( name ) b32 name( FileDescriptor fd, void* buffer, sw size, s64 offset, sw* bytes_read, b32 stop_at_newline )
#define GEN_FILE_WRITE_AT_PROC( name ) b32 name( FileDescriptor fd, void const* buffer, sw size, s64 offset, sw* bytes_written )
#define GEN_FILE_SEEK_PROC( name ) b32 name( FileDescriptor fd, s64 offset, SeekWhenceType whence, s64* new_offset )
#define GEN_FILE_CLOSE_PROC( name ) void name( FileDescriptor fd )
typedef GEN_FILE_OPEN_PROC( file_open_proc );
typedef GEN_FILE_READ_AT_PROC( FileReadProc );
typedef GEN_FILE_WRITE_AT_PROC( FileWriteProc );
typedef GEN_FILE_SEEK_PROC( FileSeekProc );
typedef GEN_FILE_CLOSE_PROC( FileCloseProc );
struct FileOperations
{
FileReadProc* read_at;
FileWriteProc* write_at;
FileSeekProc* seek;
FileCloseProc* close;
};
extern FileOperations const default_file_operations;
typedef u64 FileTime;
enum DirType
{
GEN_DIR_TYPE_FILE,
GEN_DIR_TYPE_FOLDER,
GEN_DIR_TYPE_UNKNOWN,
};
struct DirInfo;
struct DirEntry
{
char const* FileName;
DirInfo* Info;
u8 Type;
};
struct DirInfo
{
char const* FullPath;
DirEntry* Entries; // zpl_array
// Internals
char** Filenames; // zpl_array
String Buffer;
};
struct FileInfo
{
FileOperations Ops;
FileDescriptor FD;
b32 IsTemp;
char const* Filename;
FileTime LastWriteTime;
DirEntry* Dir;
};
enum FileStandardType
{
EFileStandard_INPUT,
EFileStandard_OUTPUT,
EFileStandard_ERROR,
EFileStandard_COUNT,
};
/**
* Get standard file I/O.
* @param std Check zpl_file_standard_type
* @return File handle to standard I/O
*/
FileInfo* file_get_standard( FileStandardType std );
/**
* Closes the file
* @param file
*/
FileError file_close( FileInfo* file );
/**
* Returns the currently opened file's name
* @param file
*/
inline
char const* file_name( FileInfo* file )
{
return file->Filename ? file->Filename : "";
}
/**
* Opens a file using a specified mode
* @param file
* @param mode Access mode to use
* @param filename
*/
FileError file_open_mode( FileInfo* file, FileMode mode, char const* filename );
/**
* Reads from a file
* @param file
* @param buffer Buffer to read to
* @param size Size to read
*/
GEN_DEF_INLINE b32 file_read( FileInfo* file, void* buffer, sw size );
/**
* Reads file at a specific offset
* @param file
* @param buffer Buffer to read to
* @param size Size to read
* @param offset Offset to read from
* @param bytes_read How much data we've actually read
*/
GEN_DEF_INLINE b32 file_read_at( FileInfo* file, void* buffer, sw size, s64 offset );
/**
* Reads file safely
* @param file
* @param buffer Buffer to read to
* @param size Size to read
* @param offset Offset to read from
* @param bytes_read How much data we've actually read
*/
GEN_DEF_INLINE b32 file_read_at_check( FileInfo* file, void* buffer, sw size, s64 offset, sw* bytes_read );
/**
* Returns a size of the file
* @param file
* @return File size
*/
s64 file_size( FileInfo* file );
/**
* Seeks the file cursor from the beginning of file to a specific position
* @param file
* @param offset Offset to seek to
*/
GEN_DEF_INLINE s64 file_seek( FileInfo* file, s64 offset );
/**
* Seeks the file cursor to the end of the file
* @param file
*/
GEN_DEF_INLINE s64 file_seek_to_end( FileInfo* file );
/**
* Returns the length from the beginning of the file we've read so far
* @param file
* @return Our current position in file
*/
GEN_DEF_INLINE s64 file_tell( FileInfo* file );
/**
* Writes to a file
* @param file
* @param buffer Buffer to read from
* @param size Size to read
*/
b32 file_write( FileInfo* file, void const* buffer, sw size );
/**
* Writes to file at a specific offset
* @param file
* @param buffer Buffer to read from
* @param size Size to write
* @param offset Offset to write to
* @param bytes_written How much data we've actually written
*/
GEN_DEF_INLINE b32 file_write_at( FileInfo* file, void const* buffer, sw size, s64 offset );
/**
* Writes to file safely
* @param file
* @param buffer Buffer to read from
* @param size Size to write
* @param offset Offset to write to
* @param bytes_written How much data we've actually written
*/
GEN_DEF_INLINE b32 file_write_at_check( FileInfo* file, void const* buffer, sw size, s64 offset, sw* bytes_written );
GEN_IMPL_INLINE s64 file_seek( FileInfo* f, s64 offset )
{
s64 new_offset = 0;
if ( ! f->Ops.read_at )
f->Ops = default_file_operations;
f->Ops.seek( f->FD, offset, ESeekWhence_BEGIN, &new_offset );
return new_offset;
}
GEN_IMPL_INLINE s64 file_seek_to_end( FileInfo* f )
{
s64 new_offset = 0;
if ( ! f->Ops.read_at )
f->Ops = default_file_operations;
f->Ops.seek( f->FD, 0, ESeekWhence_END, &new_offset );
return new_offset;
}
GEN_IMPL_INLINE s64 file_tell( FileInfo* f )
{
s64 new_offset = 0;
if ( ! f->Ops.read_at )
f->Ops = default_file_operations;
f->Ops.seek( f->FD, 0, ESeekWhence_CURRENT, &new_offset );
return new_offset;
}
GEN_IMPL_INLINE b32 file_read( FileInfo* f, void* buffer, sw size )
{
s64 cur_offset = file_tell( f );
b32 result = file_read_at( f, buffer, size, file_tell( f ) );
file_seek( f, cur_offset + size );
return result;
}
GEN_IMPL_INLINE b32 file_read_at( FileInfo* f, void* buffer, sw size, s64 offset )
{
return file_read_at_check( f, buffer, size, offset, NULL );
}
GEN_IMPL_INLINE b32 file_read_at_check( FileInfo* f, void* buffer, sw size, s64 offset, sw* bytes_read )
{
if ( ! f->Ops.read_at )
f->Ops = default_file_operations;
return f->Ops.read_at( f->FD, buffer, size, offset, bytes_read, false );
}
GEN_IMPL_INLINE b32 file_write( FileInfo* f, void const* buffer, sw size )
{
s64 cur_offset = file_tell( f );
b32 result = file_write_at( f, buffer, size, file_tell( f ) );
file_seek( f, cur_offset + size );
return result;
}
GEN_IMPL_INLINE b32 file_write_at( FileInfo* f, void const* buffer, sw size, s64 offset )
{
return file_write_at_check( f, buffer, size, offset, NULL );
}
GEN_IMPL_INLINE b32 file_write_at_check( FileInfo* f, void const* buffer, sw size, s64 offset, sw* bytes_written )
{
if ( ! f->Ops.read_at )
f->Ops = default_file_operations;
return f->Ops.write_at( f->FD, buffer, size, offset, bytes_written );
}
#pragma endregion File Handling
#pragma region Printing
#ifndef GEN_PRINTF_MAXLEN
# define GEN_PRINTF_MAXLEN 65536
#endif
// NOTE: A locally persisting buffer is used internally
char* str_fmt_buf( char const* fmt, ... );
char* str_fmt_buf_va( char const* fmt, va_list va );
sw str_fmt_va( char* str, sw n, char const* fmt, va_list va );
sw str_fmt_out_va( char const* fmt, va_list va );
sw str_fmt_out_err( char const* fmt, ... );
sw str_fmt_out_err_va( char const* fmt, va_list va );
sw str_fmt_file_va( FileInfo* f, char const* fmt, va_list va );
#pragma endregion Printing
#ifdef GEN_BENCHMARK
//! Return CPU timestamp.
u64 read_cpu_time_stamp_counter( void );
//! Return relative time (in seconds) since the application start.
f64 time_rel( void );
//! Return relative time since the application start.
u64 time_rel_ms( void );
#endif
namespace Memory
{
// NOTE: This limits the maximum size of an allocation
// If you are generating a string larger than this, increase the size of the bucket here.
constexpr uw Global_BucketSize = megabytes(10);
// Global allocator used for data with process lifetime.
extern AllocatorInfo GlobalAllocator;
// Heap allocator is being used for now to isolate errors from being memory related (tech debt till ready to address)
// #define g_allocator heap()
void setup();
void cleanup();
}
constexpr
char const* Msg_Invalid_Value = "INVALID VALUE PROVIDED";
inline
sw log_fmt(char const* fmt, ...)
{
sw res;
va_list va;
va_start(va, fmt);
res = str_fmt_out_va(fmt, va);
va_end(va);
return res;
}
inline
sw fatal(char const* fmt, ...)
{
local_persist thread_local
char buf[GEN_PRINTF_MAXLEN] = { 0 };
va_list va;
#if Build_Debug
va_start(va, fmt);
str_fmt_va(buf, GEN_PRINTF_MAXLEN, fmt, va);
va_end(va);
assert_crash(buf);
return -1;
#else
va_start(va, fmt);
str_fmt_out_err_va( fmt, va);
va_end(va);
exit(1);
return -1;
#endif
}
bool String::make_space_for( char const* str, sw add_len )
{
sw available = avail_space();
// NOTE: Return if there is enough space left
if ( available >= add_len )
{
return true;
}
else
{
sw new_len, old_size, new_size;
void* ptr;
void* new_ptr;
AllocatorInfo allocator = get_header().Allocator;
Header* header = nullptr;
new_len = grow_formula( length() + add_len );
ptr = & get_header();
old_size = size_of( Header ) + length() + 1;
new_size = size_of( Header ) + new_len + 1;
new_ptr = resize( allocator, ptr, old_size, new_size );
if ( new_ptr == nullptr )
return false;
header = zpl_cast( Header* ) new_ptr;
header->Allocator = allocator;
header->Capacity = new_len;
Data = rcast( char*, header + 1 );
return str;
}
}
bool String::append( char const* str, sw length )
{
u64 time_start = time_rel_ms();
if ( sptr(str) > 0 )
{
sw curr_len = this->length();
if ( ! make_space_for( str, length ) )
return false;
Header& header = get_header();
mem_copy( Data + curr_len, str, length );
Data[ curr_len + length ] = '\0';
header.Length = curr_len + length;
}
return str;
}
// gen namespace
}
// gen_time
#endif