gencpp/project/dependencies/memory.cpp

521 lines
12 KiB
C++
Raw Permalink Normal View History

#ifdef GEN_INTELLISENSE_DIRECTIVES
# pragma once
# include "printing.cpp"
#endif
#pragma region Memory
void* mem_copy( void* dest, void const* source, ssize n )
2023-07-24 15:35:16 -07:00
{
if ( dest == NULL )
{
return NULL;
}
return memcpy( dest, source, n );
}
void const* mem_find( void const* data, u8 c, ssize n )
2023-07-24 15:35:16 -07:00
{
u8 const* s = rcast( u8 const*, data);
while ( ( rcast( uptr, s) & ( sizeof( usize ) - 1 ) ) && n && *s != c )
2023-07-24 15:35:16 -07:00
{
s++;
n--;
}
if ( n && *s != c )
{
ssize const* w;
ssize k = GEN__ONES * c;
w = rcast( ssize const*, s);
while ( n >= size_of( ssize ) && ! GEN__HAS_ZERO( *w ^ k ) )
2023-07-24 15:35:16 -07:00
{
w++;
n -= size_of( ssize );
2023-07-24 15:35:16 -07:00
}
s = rcast( u8 const*, w);
2023-07-24 15:35:16 -07:00
while ( n && *s != c )
{
s++;
n--;
}
}
return n ? rcast( void const*, s ) : NULL;
2023-07-24 15:35:16 -07:00
}
#define GEN_HEAP_STATS_MAGIC 0xDEADC0DE
struct _heap_stats
{
u32 magic;
ssize used_memory;
ssize alloc_count;
2023-07-24 15:35:16 -07:00
};
global _heap_stats _heap_stats_info;
void heap_stats_init( void )
{
zero_item( &_heap_stats_info );
_heap_stats_info.magic = GEN_HEAP_STATS_MAGIC;
}
ssize heap_stats_used_memory( void )
2023-07-24 15:35:16 -07:00
{
GEN_ASSERT_MSG( _heap_stats_info.magic == GEN_HEAP_STATS_MAGIC, "heap_stats is not initialised yet, call heap_stats_init first!" );
return _heap_stats_info.used_memory;
}
ssize heap_stats_alloc_count( void )
2023-07-24 15:35:16 -07:00
{
GEN_ASSERT_MSG( _heap_stats_info.magic == GEN_HEAP_STATS_MAGIC, "heap_stats is not initialised yet, call heap_stats_init first!" );
return _heap_stats_info.alloc_count;
}
void heap_stats_check( void )
{
GEN_ASSERT_MSG( _heap_stats_info.magic == GEN_HEAP_STATS_MAGIC, "heap_stats is not initialised yet, call heap_stats_init first!" );
GEN_ASSERT( _heap_stats_info.used_memory == 0 );
GEN_ASSERT( _heap_stats_info.alloc_count == 0 );
}
struct _heap_alloc_info
{
ssize size;
2023-07-24 15:35:16 -07:00
void* physical_start;
};
void* heap_allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags )
2023-07-24 15:35:16 -07:00
{
void* ptr = NULL;
// unused( allocator_data );
// unused( old_size );
if ( ! alignment )
alignment = GEN_DEFAULT_MEMORY_ALIGNMENT;
#ifdef GEN_HEAP_ANALYSIS
ssize alloc_info_size = size_of( _heap_alloc_info );
ssize alloc_info_remainder = ( alloc_info_size % alignment );
ssize track_size = max( alloc_info_size, alignment ) + alloc_info_remainder;
2023-07-24 15:35:16 -07:00
switch ( type )
{
case EAllocation_FREE :
{
if ( ! old_memory )
break;
_heap_alloc_info* alloc_info = rcast( _heap_alloc_info*, old_memory) - 1;
2023-07-24 15:35:16 -07:00
_heap_stats_info.used_memory -= alloc_info->size;
_heap_stats_info.alloc_count--;
old_memory = alloc_info->physical_start;
}
break;
case EAllocation_ALLOC :
{
size += track_size;
}
break;
default :
break;
}
#endif
switch ( type )
{
#if defined( GEN_COMPILER_MSVC ) || ( defined( GEN_COMPILER_GCC ) && defined( GEN_SYSTEM_WINDOWS ) ) || ( defined( GEN_COMPILER_TINYC ) && defined( GEN_SYSTEM_WINDOWS ) )
case EAllocation_ALLOC :
ptr = _aligned_malloc( size, alignment );
if ( flags & ALLOCATOR_FLAG_CLEAR_TO_ZERO )
zero_size( ptr, size );
break;
case EAllocation_FREE :
_aligned_free( old_memory );
break;
case EAllocation_RESIZE :
{
AllocatorInfo a = heap();
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
#elif defined( GEN_SYSTEM_LINUX ) && ! defined( GEN_CPU_ARM ) && ! defined( GEN_COMPILER_TINYC )
case EAllocation_ALLOC :
{
ptr = aligned_alloc( alignment, ( size + alignment - 1 ) & ~( alignment - 1 ) );
if ( flags & GEN_ALLOCATOR_FLAG_CLEAR_TO_ZERO )
{
zero_size( ptr, size );
}
}
break;
case EAllocation_FREE :
{
free( old_memory );
}
break;
case EAllocation_RESIZE :
{
AllocatorInfo a = heap();
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
#else
case EAllocation_ALLOC :
{
posix_memalign( &ptr, alignment, size );
if ( flags & GEN_ALLOCATOR_FLAG_CLEAR_TO_ZERO )
{
zero_size( ptr, size );
}
}
break;
case EAllocation_FREE :
{
free( old_memory );
}
break;
case EAllocation_RESIZE :
{
AllocatorInfo a = heap();
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
#endif
case EAllocation_FREE_ALL :
break;
}
#ifdef GEN_HEAP_ANALYSIS
if ( type == EAllocation_ALLOC )
{
_heap_alloc_info* alloc_info = rcast( _heap_alloc_info*, rcast( char*, ptr) + alloc_info_remainder );
2023-07-24 15:35:16 -07:00
zero_item( alloc_info );
alloc_info->size = size - track_size;
alloc_info->physical_start = ptr;
ptr = rcast( void*, alloc_info + 1 );
2023-07-24 15:35:16 -07:00
_heap_stats_info.used_memory += alloc_info->size;
_heap_stats_info.alloc_count++;
}
#endif
return ptr;
}
#pragma region VirtualMemory
VirtualMemory vm_from_memory( void* data, ssize size )
{
VirtualMemory vm;
vm.data = data;
vm.size = size;
return vm;
}
#if defined( GEN_SYSTEM_WINDOWS )
VirtualMemory vm_alloc( void* addr, ssize size )
{
VirtualMemory vm;
GEN_ASSERT( size > 0 );
vm.data = VirtualAlloc( addr, size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE );
vm.size = size;
return vm;
}
b32 vm_free( VirtualMemory vm )
{
MEMORY_BASIC_INFORMATION info;
while ( vm.size > 0 )
{
if ( VirtualQuery( vm.data, &info, size_of( info ) ) == 0 )
return false;
if ( info.BaseAddress != vm.data || info.AllocationBase != vm.data || info.State != MEM_COMMIT || info.RegionSize > scast( usize, vm.size) )
{
return false;
}
if ( VirtualFree( vm.data, 0, MEM_RELEASE ) == 0 )
return false;
vm.data = pointer_add( vm.data, info.RegionSize );
vm.size -= info.RegionSize;
}
return true;
}
VirtualMemory vm_trim( VirtualMemory vm, ssize lead_size, ssize size )
{
VirtualMemory new_vm = { 0 };
void* ptr;
GEN_ASSERT( vm.size >= lead_size + size );
ptr = pointer_add( vm.data, lead_size );
vm_free( vm );
new_vm = vm_alloc( ptr, size );
if ( new_vm.data == ptr )
return new_vm;
if ( new_vm.data )
vm_free( new_vm );
return new_vm;
}
b32 vm_purge( VirtualMemory vm )
{
VirtualAlloc( vm.data, vm.size, MEM_RESET, PAGE_READWRITE );
// NOTE: Can this really fail?
return true;
}
ssize virtual_memory_page_size( ssize* alignment_out )
{
SYSTEM_INFO info;
GetSystemInfo( &info );
if ( alignment_out )
*alignment_out = info.dwAllocationGranularity;
return info.dwPageSize;
}
#else
# include <sys/mman.h>
# ifndef MAP_ANONYMOUS
# define MAP_ANONYMOUS MAP_ANON
# endif
VirtualMemory vm_alloc( void* addr, ssize size )
{
VirtualMemory vm;
GEN_ASSERT( size > 0 );
vm.data = mmap( addr, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0 );
vm.size = size;
return vm;
}
b32 vm_free( VirtualMemory vm )
{
munmap( vm.data, vm.size );
return true;
}
VirtualMemory vm_trim( VirtualMemory vm, ssize lead_size, ssize size )
{
void* ptr;
ssize trail_size;
GEN_ASSERT( vm.size >= lead_size + size );
ptr = pointer_add( vm.data, lead_size );
trail_size = vm.size - lead_size - size;
if ( lead_size != 0 )
vm_free( vm_from_memory(( vm.data, lead_size ) );
if ( trail_size != 0 )
vm_free( vm_from_memory( ptr, trail_size ) );
return vm_from_memory( ptr, size );
}
b32 vm_purge( VirtualMemory vm )
{
int err = madvise( vm.data, vm.size, MADV_DONTNEED );
return err != 0;
}
ssize virtual_memory_page_size( ssize* alignment_out )
{
// TODO: Is this always true?
ssize result = scast( ssize, sysconf( _SC_PAGE_SIZE ));
if ( alignment_out )
*alignment_out = result;
return result;
}
#endif
#pragma endregion VirtualMemory
void* Arena::allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags )
2023-07-24 15:35:16 -07:00
{
Arena* arena = rcast(Arena*, allocator_data);
void* ptr = NULL;
// unused( old_size );
switch ( type )
{
case EAllocation_ALLOC :
{
void* end = pointer_add( arena->PhysicalStart, arena->TotalUsed );
ssize total_size = align_forward_i64( size, alignment );
2023-07-24 15:35:16 -07:00
// NOTE: Out of memory
if ( arena->TotalUsed + total_size > (ssize) arena->TotalSize )
2023-07-24 15:35:16 -07:00
{
// zpl__printf_err("%s", "Arena out of memory\n");
GEN_FATAL("Arena out of memory! (Possibly could not fit for the largest size Arena!!)");
2023-07-24 15:35:16 -07:00
return nullptr;
}
ptr = align_forward( end, alignment );
arena->TotalUsed += total_size;
if ( flags & ALLOCATOR_FLAG_CLEAR_TO_ZERO )
zero_size( ptr, size );
}
break;
case EAllocation_FREE :
// NOTE: Free all at once
// Use Temp_Arena_Memory if you want to free a block
break;
case EAllocation_FREE_ALL :
arena->TotalUsed = 0;
break;
case EAllocation_RESIZE :
{
// TODO : Check if ptr is on top of stack and just extend
AllocatorInfo a = arena->Backing;
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
}
return ptr;
}
void* Pool::allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags )
2023-07-24 15:35:16 -07:00
{
Pool* pool = rcast( Pool*, allocator_data);
2023-07-24 15:35:16 -07:00
void* ptr = NULL;
// unused( old_size );
switch ( type )
{
case EAllocation_ALLOC :
{
uptr next_free;
GEN_ASSERT( size == pool->BlockSize );
GEN_ASSERT( alignment == pool->BlockAlign );
GEN_ASSERT( pool->FreeList != NULL );
next_free = * rcast( uptr*, pool->FreeList);
2023-07-24 15:35:16 -07:00
ptr = pool->FreeList;
pool->FreeList = rcast( void*, next_free);
2023-07-24 15:35:16 -07:00
pool->TotalSize += pool->BlockSize;
if ( flags & ALLOCATOR_FLAG_CLEAR_TO_ZERO )
zero_size( ptr, size );
}
break;
case EAllocation_FREE :
{
uptr* next;
if ( old_memory == NULL )
return NULL;
next = rcast( uptr*, old_memory);
*next = rcast( uptr, pool->FreeList);
2023-07-24 15:35:16 -07:00
pool->FreeList = old_memory;
pool->TotalSize -= pool->BlockSize;
}
break;
case EAllocation_FREE_ALL :
{
ssize actual_block_size, block_index;
2023-07-24 15:35:16 -07:00
void* curr;
uptr* end;
actual_block_size = pool->BlockSize + pool->BlockAlign;
pool->TotalSize = 0;
// NOTE: Init intrusive freelist
curr = pool->PhysicalStart;
for ( block_index = 0; block_index < pool->NumBlocks - 1; block_index++ )
{
uptr* next = rcast( uptr*, curr);
* next = rcast( uptr, curr) + actual_block_size;
2023-07-24 15:35:16 -07:00
curr = pointer_add( curr, actual_block_size );
}
end = rcast( uptr*, curr);
* end = scast( uptr, NULL);
2023-07-24 15:35:16 -07:00
pool->FreeList = pool->PhysicalStart;
}
break;
case EAllocation_RESIZE :
// NOTE: Cannot resize
GEN_PANIC( "You cannot resize something allocated by with a pool." );
break;
}
return ptr;
}
Pool Pool::init_align( AllocatorInfo backing, ssize num_blocks, ssize block_size, ssize block_align )
2023-07-24 15:35:16 -07:00
{
Pool pool = {};
ssize actual_block_size, pool_size, block_index;
2023-07-24 15:35:16 -07:00
void *data, *curr;
uptr* end;
zero_item( &pool );
pool.Backing = backing;
pool.BlockSize = block_size;
pool.BlockAlign = block_align;
pool.NumBlocks = num_blocks;
actual_block_size = block_size + block_align;
pool_size = num_blocks * actual_block_size;
data = alloc_align( backing, pool_size, block_align );
// NOTE: Init intrusive freelist
curr = data;
for ( block_index = 0; block_index < num_blocks - 1; block_index++ )
{
uptr* next = ( uptr* ) curr;
*next = ( uptr ) curr + actual_block_size;
curr = pointer_add( curr, actual_block_size );
}
end = ( uptr* ) curr;
*end = ( uptr ) NULL;
pool.PhysicalStart = data;
pool.FreeList = data;
return pool;
}
void Pool::clear()
{
ssize actual_block_size, block_index;
2023-07-24 15:35:16 -07:00
void* curr;
uptr* end;
actual_block_size = BlockSize + BlockAlign;
curr = PhysicalStart;
for ( block_index = 0; block_index < NumBlocks - 1; block_index++ )
{
uptr* next = ( uptr* ) curr;
*next = ( uptr ) curr + actual_block_size;
curr = pointer_add( curr, actual_block_size );
}
end = ( uptr* ) curr;
*end = ( uptr ) NULL;
FreeList = PhysicalStart;
}
#pragma endregion Memory