Files
WATL_Exercise/C/watl.v0.llvm.lottes.c
2025-11-06 19:39:33 -05:00

1626 lines
66 KiB
C

/*
WATL Exercise
Version: 0 (From Scratch, 1-Stage Compilation, LLVM & WinAPI Only, Win CRT Multi-threaded Static Linkage)
Host: Windows 11 (x86-64)
Toolchain: LLVM (2025-08-30), C-Stanard: 11
Following strictly: Neokineogfx - Fixing C
https://youtu.be/RrL7121MOeA
*/
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpre-c11-compat"
// #pragma clang diagnostic ignored "-Wc++-keyword"
#pragma clang diagnostic ignored "-Wcast-qual"
// #pragma clang diagnostic ignored "-Wunused-constvariable"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#pragma clang diagnostic ignored "-Wswitch"
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunknown-pragmas"
#pragma clang diagnostic ignored "-Wvarargs"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wbraced-scalar-init"
#pragma clang diagnostic ignored "-W#pragma-messages"
#pragma clang diagnostic ignored "-Wstatic-in-inline"
#pragma clang diagnostic ignored "-Wkeyword-macro"
#pragma clang diagnostic ignored "-Wc23-compat"
#pragma clang diagnostic ignored "-Wreserved-identifier"
#pragma clang diagnostic ignored "-Wc23-extensions"
#pragma clang diagnostic ignored "-Wunused-macros"
#pragma clang diagnostic ignored "-Wdeclaration-after-statement"
#pragma clang diagnostic ignored "-Wunsafe-buffer-usage"
#pragma clang diagnostic ignored "-Wimplicit-function-declaration"
#pragma clang diagnostic ignored "-Wcast-align"
#pragma clang diagnostic ignored "-Wunused-parameter"
#pragma clang diagnostic ignored "-Wswitch-default"
#pragma clang diagnostic ignored "-Wmissing-field-initializers"
#pragma clang diagnostic ignored "-Wgnu-zero-variadic-macro-arguments"
#pragma clang diagnostic ignored "-Wpointer-sign"
#pragma region Header
#pragma region DSL
#define LP_ static
#define G_ static
#define A_(x) __attribute__((aligned (x)))
#define E_(x,y) __builtin_expect(x,y)
#define S_ static
#define I_ S_ inline __attribute__((always_inline))
#define N_ S_ __attribute__((noinline))
#define R_ __restrict
#define V_ volatile
#define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
// #define reg register
#define glue_impl(A, B) A ## B
#define glue(A, B) glue_impl(A, B)
#define stringify_impl(S) #S
#define stringify(S) cast(UTF8*, stringify_impl(S))
#define tmpl(prefix, type) prefix ## _ ## type
#define static_assert _Static_assert
#define typeof __typeof__
#define typeof_ptr(ptr) typeof(ptr[0])
#define typeof_same(a, b) _Generic((a), typeof((b)): 1, default: 0)
#define def_R_(type) type*restrict type ## _R
#define def_V_(type) type*volatile type ## _V
#define def_ptr_set(type) def_R_(type); typedef def_V_(type)
#define def_tset(type) type; typedef def_ptr_set(type)
/* Deviation from Lottes's Convention: Using byte-width for the with a single letter to indicating underlying type or intent.
U1: B1
U2: W1
U4: I1
U8: L1
S1: SB1
S2: SW1
S4: SI1
S8: SL1
F4: F1
F8: D1
F4_4: F4
*/
typedef __UINT8_TYPE__ def_tset(U1); typedef __UINT16_TYPE__ def_tset(U2); typedef __UINT32_TYPE__ def_tset(U4); typedef __UINT64_TYPE__ def_tset(U8);
typedef __INT8_TYPE__ def_tset(S1); typedef __INT16_TYPE__ def_tset(S2); typedef __INT32_TYPE__ def_tset(S4); typedef __INT64_TYPE__ def_tset(S8);
typedef unsigned char def_tset(B1); typedef __UINT16_TYPE__ def_tset(B2); typedef __UINT32_TYPE__ def_tset(B4); typedef __UINT64_TYPE__ def_tset(B8);
typedef float def_tset(F4);
typedef double def_tset(F8);
typedef float F4_4 __attribute__((vector_size(16))); typedef def_ptr_set(F4_4);
enum { false = 0, true = 1, true_overflow, };
#define u1_r(value) cast(U1_R, value)
#define u2_r(value) cast(U2_R, value)
#define u4_r(value) cast(U4_R, value)
#define u8_r(value) cast(U8_R, value)
#define u1_v(value) cast(U1_V, value)
#define u2_v(value) cast(U2_V, value)
#define u4_v(value) cast(U4_V, value)
#define u8_v(value) cast(U8_V, value)
#define u1_(value) cast(U1, value)
#define u2_(value) cast(U2, value)
#define u4_(value) cast(U4, value)
#define u8_(value) cast(U8, value)
#define s1_(value) cast(S1, value)
#define s2_(value) cast(S2, value)
#define s4_(value) cast(S4, value)
#define s8_(value) cast(S8, value)
#define f4_(value) cast(F4, value)
#define f8_(value) cast(F8, value)
#define uvar(Type, sym) B1 sym[sizeof(Type)]
#define farray_len(array) (U8)sizeof(array) / size_of( typeof((array)[0]))
#define farray_init(type, ...) (type[]){__VA_ARGS__}
#define def_farray_sym(_type, _len) A ## _len ## _ ## _type
#define def_farray_impl(_type, _len) _type def_farray_sym(_type, _len)[_len]; typedef def_ptr_set(def_farray_sym(_type, _len))
#define def_farray(type, len) def_farray_impl(type, len)
#define def_enum(underlying_type, symbol) underlying_type def_tset(symbol); enum symbol
#define def_field(s,member) tmpl(s,member) = __builtin_offsetof(s,member) // Used within enum blocks
#define def_struct(symbol) struct symbol def_tset(symbol); struct symbol
#define def_union(symbol) union symbol def_tset(symbol); union symbol
#define def_proc(symbol) symbol
#define opt_args(symbol, ...) &(symbol){__VA_ARGS__}
#define alignas _Alignas
#define alignof _Alignof
#define cast(type, data) ((type)(data))
#define pcast(type, data) cast(type*, & (data))[0]
#define nullptr cast(void*, 0)
#define null cast(U8, 0)
#define offset_of(type, member) cast(U8,__builtin_offsetof(type,member))
#define size_of(data) cast(U8, sizeof(data))
#define r_(ptr) cast(typeof_ptr(ptr)*R_, ptr)
#define v_(ptr) cast(typeof_ptr(ptr)*V_, ptr)
#define tr_(type, ptr) cast(type*R_, ptr)
#define tv_(type, ptr) cast(type*V_, ptr)
#define kilo(n) (cast(U8, n) << 10)
#define mega(n) (cast(U8, n) << 20)
#define giga(n) (cast(U8, n) << 30)
#define tera(n) (cast(U8, n) << 40)
// Deviation from Lottes's Convention: Using lower snake case for the naming.
#define sop_1(op, a, b) cast(U1, s1_(a) op s1_(b))
#define sop_2(op, a, b) cast(U2, s2_(a) op s2_(b))
#define sop_4(op, a, b) cast(U4, s4_(a) op s4_(b))
#define sop_8(op, a, b) cast(U8, s8_(a) op s8_(b))
#define def_signed_op(id, op, width) I_ U ## width id ## _s ## width(U ## width a, U ## width b) {return sop_ ## width(op, a, b); }
#define def_signed_ops(id, op) def_signed_op(id, op, 1) def_signed_op(id, op, 2) def_signed_op(id, op, 4) def_signed_op(id, op, 8)
def_signed_ops(add, +) def_signed_ops(sub, -)
def_signed_ops(mut, *) def_signed_ops(div, /)
def_signed_ops(gt, >) def_signed_ops(lt, <)
def_signed_ops(ge, >=) def_signed_ops(le, <=)
#define def_generic_sop(op, a, ...) _Generic((a), U1: op ## _s1, U2: op ## _s2, U4: op ## _s4, U8: op ## _s8) (a, __VA_ARGS__)
#define add_s(a,b) def_generic_sop(add,a,b)
#define sub_s(a,b) def_generic_sop(sub,a,b)
#define mut_s(a,b) def_generic_sop(mut,a,b)
#define gt_s(a,b) def_generic_sop(gt, a,b)
#define lt_s(a,b) def_generic_sop(lt, a,b)
#define ge_s(a,b) def_generic_sop(ge, a,b)
#define le_s(a,b) def_generic_sop(le, a,b)
I_ U4 atm_add_u4 (U4_R a, U4 v){__asm__ volatile("lock xaddl %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
I_ U8 atm_add_u8 (U8_R a, U8 v){__asm__ volatile("lock xaddq %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
I_ U4 atm_swap_u4(U4_R a, U4 v){__asm__ volatile("lock xchgl %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
I_ U8 atm_swap_u8(U8_R a, U8 v){__asm__ volatile("lock xchgq %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
I_ void barrier_compiler(void){__asm__ volatile("::""memory");} // Compiler Barrier
I_ void barrier_memory (void){__builtin_ia32_mfence();} // Memory Barrier
I_ void barrier_read (void){__builtin_ia32_lfence();} // Read Barrier
I_ void barrier_write (void){__builtin_ia32_sfence();} // Write Barrier
I_ U8 clock(void){U8 aa,dd;__asm__ volatile("rdtsc":"=a"(aa),"=d"(dd));return aa;}
I_ void pause(void){__asm__ volatile("pause":::"memory");}
#pragma endregion DSL
#pragma region Strings
typedef unsigned char def_tset(UTF8);
typedef def_struct(Str8) { U8 ptr; U8 len; }; typedef Str8 def_tset(Slice_UTF8);
typedef def_struct(Slice_Str8) { U8 ptr; U8 len; };
#define lit(string_literal) (Str8){ u8_(string_literal), size_of(string_literal) - 1 }
#pragma endregion Strings
#pragma region Debug
#ifdef BUILD_DEBUG
#define debug_trap() __debugbreak()
#define assert_trap(cond) do { if (cond) __debug_trap(); } while(0)
#define assert(cond) assert_msg(cond, nullptr)
#define assert_msg(cond, msg, ...) do { \
if (! (cond)) \
{ \
assert_handler( \
stringify(cond), \
(UTF8*)__FILE__, \
(UTF8*)__func__, \
cast(S4, __LINE__), \
msg, \
## __VA_ARGS__); \
debug_trap(); \
} \
} while(0)
// Deviation from Lottes's Convention: Don't want to mess with passing in typeless strings to the assert handler.
S_ void assert_handler(UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line, UTF8*R_ msg, ... );
#else
#define debug_trap()
#define assert_trap(cond)
#define assert(cond)
#define assert_msg(cond, msg, ...)
#endif
#pragma endregion Debug
#pragma region Memory
typedef def_farray(B1, 1);
typedef def_farray(B1, 2);
typedef def_farray(B1, 4);
typedef def_farray(B1, 8);
I_ U8 mem_copy (U8 dest, U8 src, U8 len) { return (U8)(__builtin_memcpy ((void*)dest, (void const*)src, len)); }
I_ U8 mem_copy_overlapping(U8 dest, U8 src, U8 len) { return (U8)(__builtin_memmove((void*)dest, (void const*)src, len)); }
I_ U8 mem_fill (U8 dest, U8 value, U8 len) { return (U8)(__builtin_memset ((void*)dest, (int) value, len)); }
I_ B4 mem_zero (U8 dest, U8 len) { if (dest == 0) return false; mem_fill(dest, 0, len); return true; }
#define struct_copy(type, dest, src) mem_copy(dest, src, sizeof(type))
#define struct_zero(type, dest) mem_zero(dest, sizeof(type))
#define struct_assign(type, dest, src) cast(type*R_, dest)[0] = cast(type*R_, src)[0]
I_ U8 align_pow2(U8 x, U8 b) {
assert(b != 0);
assert((b & (b - 1)) == 0); // Check power of 2
return ((x + b - 1) & (~(b - 1)));
}
#define align_struct(type_width) ((U8)(((type_width) + 7) / 8 * 8))
#define assert_bounds(point, start, end) do { \
assert(start <= point); \
assert(point <= end); \
} while(0)
#define check_nil(nil, p) ((p) == 0 || (p) == nil)
#define set_nil(nil, p) ((p) = nil)
#define sll_stack_push_n(f, n, next) do { (n)->next = (f); (f) = (n); } while(0)
#define sll_queue_push_nz(nil, f, l, n, next) \
( \
check_nil(nil, f) ? ( \
(f) = (l) = (n), \
set_nil(nil, (n)->next) \
) \
: ( \
(l)->next=(n), \
(l) = (n), \
set_nil(nil,(n)->next) \
) \
)
#define sll_queue_push_n(f, l, n, next) sll_queue_push_nz(0, f, l, n, next)
#define def_Slice(type) def_struct(tmpl(Slice,type)) { type* ptr; U8 len; }; typedef def_ptr_set(tmpl(Slice,type))
#define slice_assert(slice) do { assert((slice).ptr != 0); assert((slice).len > 0); } while(0)
#define slice_end(slice) ((slice).ptr + (slice).len)
#define size_of_slice_type(slice) size_of( (slice).ptr[0] )
typedef def_struct(Slice_Mem) { U8 ptr; U8 len; };
enum {
Slice_ptr = offset_of(Slice_Mem, ptr),
Slice_len = offset_of(Slice_Mem, len),
};
#define slice_mem(ptr, len) ((Slice_Mem){u8_(ptr), u8_(len)})
#define slice_mem_s(slice) ((Slice_Mem){u8_((slice).ptr), (slice).len * size_of_slice_type(slice) })
typedef def_Slice(void);
typedef def_Slice(B1);
#define slice_to_bytes(slice) ((Slice_B1){cast(B1*, (slice).ptr), (slice).len * size_of_slice_type(slice)})
#define slice_fmem(mem) slice_mem(u8_(mem), size_of(mem))
I_ void slice__zero(Slice_B1 mem, U8 typewidth) { slice_assert(mem); mem_zero(u8_(mem.ptr), mem.len); }
#define slice_zero(slice) slice__zero(slice_mem_s(slice), size_of_slice_type(slice))
I_ void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth) {
assert(dest.len >= src.len);
slice_assert(dest);
slice_assert(src);
mem_copy(u8_(dest.ptr), u8_(src.ptr), src.len);
}
#define slice_copy(dest, src) do { \
static_assert(typeof_same(dest, src)); \
slice__copy(slice_to_bytes(dest), size_of_slice_type(dest), slice_to_bytes(src), size_of_slice_type(src)); \
} while (0)
#define slice_iter(container, iter) (typeof((container).ptr) iter = (container).ptr; iter != slice_end(container); ++ iter)
#define slice_arg_from_array(type, ...) & (tmpl(Slice,type)) { .ptr = farray_init(type, __VA_ARGS__), .len = farray_len( farray_init(type, __VA_ARGS__)) }
I_ void slice_assign(U8 dest, U8 src) {
u8_r(dest + Slice_ptr)[0] = u8_r(src + Slice_ptr)[0];
u8_r(dest + Slice_len)[0] = u8_r(src + Slice_len)[0];
}
I_ void slice_assign_comp(U8 dest, U8 ptr, U8 len) {
u8_r(dest + Slice_ptr)[0] = ptr;
u8_r(dest + Slice_len)[0] = len;
}
I_ void slice_clear(U8 base) {
u8_r(base + Slice_ptr)[0] = 0;
u8_r(base + Slice_len)[0] = 0;
}
#define span_iter(type, iter, m_begin, op, m_end) \
( \
tmpl(Iter_Span,type) iter = { \
.r = {(m_begin), (m_end)}, \
.cursor = (m_begin) }; \
iter.cursor op iter.r.end; \
++ iter.cursor \
)
#define def_span(type) \
def_struct(tmpl( Span,type)) { type begin; type end; }; \
typedef def_struct(tmpl(Iter_Span,type)) { tmpl(Span,type) r; type cursor; }
typedef def_span(B1);
typedef def_span(U4);
typedef def_span(U8);
#pragma endregion Memory
#pragma region Math
#define min(A, B) (((A) < (B)) ? (A) : (B))
#define max(A, B) (((A) > (B)) ? (A) : (B))
#define clamp_bot(X, B) max(X, B)
#pragma endregion Math
#pragma region Allocator Interface
typedef def_enum(U4, AllocatorOp) {
AllocatorOp_Alloc_NoZero = 0, // If Alloc exist, so must No_Zero
AllocatorOp_Alloc,
AllocatorOp_Free,
AllocatorOp_Reset,
AllocatorOp_Grow_NoZero,
AllocatorOp_Grow,
AllocatorOp_Shrink,
AllocatorOp_Rewind,
AllocatorOp_SavePoint,
AllocatorOp_Query, // Must always be implemented
};
typedef def_enum(U4, AllocatorQueryFlags) {
AllocatorQuery_Alloc = (1 << 0),
AllocatorQuery_Free = (1 << 1),
// Wipe the allocator's state
AllocatorQuery_Reset = (1 << 2),
// Supports both grow and shrink
AllocatorQuery_Shrink = (1 << 4),
AllocatorQuery_Grow = (1 << 5),
AllocatorQuery_Resize = AllocatorQuery_Grow | AllocatorQuery_Shrink,
// Ability to rewind to a save point (ex: arenas, stack), must also be able to save such a point
AllocatorQuery_Rewind = (1 << 6),
};
typedef struct AllocatorProc_Out def_tset(AllocatorProc_Out);
typedef struct AllocatorSP AllocatorSP;
typedef void def_proc(AllocatorProc) (U8 data, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out);
struct AllocatorSP {
AllocatorProc* type_sig;
U8 slot;
};
enum {
def_field(AllocatorSP,type_sig),
def_field(AllocatorSP,slot),
};
struct AllocatorProc_Out {
union {
Slice_Mem allocation;
AllocatorSP save_point;
};
AllocatorQueryFlags features;
A4_B1 _PAD_;
U8 left; // Contiguous memory left
U8 max_alloc;
U8 min_alloc;
A4_B1 _PAD_2;
};
enum {
def_field(AllocatorProc_Out,allocation),
def_field(AllocatorProc_Out,save_point),
def_field(AllocatorProc_Out,features),
def_field(AllocatorProc_Out,left),
def_field(AllocatorProc_Out,max_alloc),
def_field(AllocatorProc_Out,min_alloc),
};
typedef def_struct(AllocatorInfo) {
AllocatorProc* proc;
U8 data;
};
static_assert(size_of(AllocatorSP) <= size_of(Slice_Mem));
enum {
def_field(AllocatorInfo,proc),
def_field(AllocatorInfo,data),
};
typedef def_struct(AllocatorQueryInfo) {
AllocatorSP save_point;
AllocatorQueryFlags features;
A4_B1 _PAD_;
U8 left; // Contiguous memory left
U8 max_alloc;
U8 min_alloc;
A4_B1 _PAD_2;
};
static_assert(size_of(AllocatorProc_Out) == size_of(AllocatorQueryInfo));
enum {
def_field(AllocatorQueryInfo,save_point),
def_field(AllocatorQueryInfo,features),
def_field(AllocatorQueryInfo,left),
def_field(AllocatorQueryInfo,max_alloc),
def_field(AllocatorQueryInfo,min_alloc),
};
#define MEMORY_ALIGNMENT_DEFAULT (2 * size_of(void*))
I_ void allocator_query__u(U8 ainfo_proc, U8 ainfo_data, U8 allocator_query_info);
I_ void mem_free__u (U8 proc, U8 data, U8 mem_ptr, U8 mem_len);
I_ void mem_reset__u (U8 proc, U8 data);
I_ void mem_rewind__u (U8 proc, U8 data, U8 sp_type_sig, U8 sp_slot);
I_ void mem_save_point__u(U8 proc, U8 data, U8 sp);
I_ AllocatorQueryInfo allocator_query(AllocatorInfo ainfo);
I_ void mem_free (AllocatorInfo ainfo, Slice_Mem mem);
I_ void mem_reset (AllocatorInfo ainfo);
I_ void mem_rewind (AllocatorInfo ainfo, AllocatorSP save_point);
I_ AllocatorSP mem_save_point(AllocatorInfo ainfo);
I_ void mem__alloc__u (U8 out_mem, U8 proc, U8 data, U8 size, U8 alignemnt, B4 no_zero);
I_ void mem__grow__u (U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_actual);
I_ void mem__resize__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_actual);
I_ void mem__shrink__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment);
typedef def_struct(Opts_mem_alloc) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
typedef def_struct(Opts_mem_grow) { U8 alignment; B4 no_zero; B4 give_actual; };
typedef def_struct(Opts_mem_resize) { U8 alignment; B4 no_zero; B4 give_actual; };
typedef def_struct(Opts_mem_shrink) { U8 alignment; };
I_ Slice_Mem mem__alloc (AllocatorInfo ainfo, U8 size, Opts_mem_alloc_R opts);
I_ Slice_Mem mem__grow (AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow_R opts);
I_ Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resize_R opts);
I_ Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shrink_R opts);
#define mem_alloc(ainfo, size, ...) mem__alloc (ainfo, size, opt_args(Opts_mem_alloc, __VA_ARGS__))
#define mem_grow(ainfo, mem, size, ...) mem__grow (ainfo, mem, size, opt_args(Opts_mem_grow, __VA_ARGS__))
#define mem_resize(ainfo, mem, size, ...) mem__resize(ainfo, mem, size, opt_args(Opts_mem_resize, __VA_ARGS__))
#define mem_shrink(ainfo, mem, size, ...) mem__shrink(ainfo, mem, size, opt_args(Opts_mem_shrink, __VA_ARGS__))
#define alloc_type(ainfo, type, ...) (type*) mem__alloc(ainfo, size_of(type), opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr
#define alloc_slice(ainfo, type, num, ...) (tmpl(Slice,type)){ (type*)mem__alloc(ainfo, size_of(type) * num, opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr, num }
#pragma endregion Allocator Interface
#pragma region FArena (Fixed-Sized Arena)
typedef def_struct(Opts_farena) {
U8 alignment;
};
typedef def_struct(FArena) {
U8 start;
U8 capacity;
U8 used;
};
enum {
def_field(FArena,start),
def_field(FArena,capacity),
def_field(FArena,used),
};
I_ void farena_init__u (U8 arena, U8 mem_ptr, U8 mem_len);
S_ void farena__push__u (U8 arena, U8 amount, U8 type_width, U8 alignment, U8 slice_addr);
I_ void farena_reset__u (U8 arena);
I_ void farena_rewind__u(U8 arena, U8 sp_slot);
I_ void farena_save__u (U8 arena, U8 sp);
I_ FArena farena_make (Slice_Mem mem);
I_ void farena_init (FArena_R arena, Slice_Mem byte);
I_ Slice_Mem farena__push (FArena_R arena, U8 amount, U8 type_width, Opts_farena*R_ opts);
I_ void farena_reset (FArena_R arena);
I_ void farena_rewind(FArena_R arena, AllocatorSP save_point);
I_ AllocatorSP farena_save (FArena arena);
S_ void farena_allocator_proc(U8 data, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out);
#define ainfo_farena(arena) (AllocatorInfo){ .proc = farena_allocator_proc, .data = u8_(& arena) }
#define farena_push_mem(arena, amount, ...) farena__push(arena, amount, 1, opt_args(Opts_farena, lit(stringify(B1)), __VA_ARGS__))
#define farena_push(arena, type, ...) \
cast(type*, farena__push(arena, size_of(type), 1, opt_args(Opts_farena, __VA_ARGS__))).ptr
#define farena_push_array(arena, type, amount, ...) \
(Slice ## type){ farena__push(arena, size_of(type), amount, opt_args(Opts_farena, __VA_ARGS__)).ptr, amount }
#pragma endregion FArena
#pragma region OS
typedef def_struct(OS_SystemInfo) { U8 target_page_size; };
typedef def_struct(Opts_vmem) { U8 base_addr; B4 no_large_pages; A4_B1 _PAD_; };
typedef def_struct(OS_Windows_State) { OS_SystemInfo system_info; };
enum {
def_field(OS_SystemInfo,target_page_size),
def_field(Opts_vmem,base_addr),
def_field(Opts_vmem,no_large_pages),
def_field(OS_Windows_State,system_info),
};
G_ OS_Windows_State os__windows_info;
I_ U8 os_system_info(void);
S_ void os_init (void);
I_ U8 os_vmem_reserve__u( U8 size, B4 no_large_pages, U8 base_addr);
I_ B4 os_vmem_commit__u (U8 vm, U8 size, B4 no_large_pages);
I_ void os_vmem_release__u(U8 vm, U8 size);
I_ U8 os__vmem_reserve( U8 size, Opts_vmem_R opts);
I_ B4 os__vmem_commit (U8 vm, U8 size, Opts_vmem_R opts);
I_ void os_vmem_release (U8 vm, U8 size);
#define os_vmem_commit(vm, size, ...) os__vmem_commit (vm, size, opt_args(Opts_vmem, __VA_ARGS__))
#define os_vmem_reserve(size, ...) os__vmem_reserve( size, opt_args(Opts_vmem, __VA_ARGS__))
#pragma endregion OS
#pragma region VArena (Virtual Address Space Arena)
typedef Opts_farena Opts_varena;
typedef def_enum(U4, VArenaFlags) {
VArenaFlag_NoLargePages = (1 << 0),
};
typedef def_struct(VArena) {
U8 reserve_start;
U8 reserve;
U8 commit_size;
U8 committed;
U8 commit_used;
VArenaFlags flags;
};
enum {
def_field(VArena,reserve_start),
def_field(VArena,reserve),
def_field(VArena,commit_size),
def_field(VArena,committed),
def_field(VArena,commit_used),
def_field(VArena,flags),
};
typedef def_struct(Opts_varena_make) {
U8 base_addr;
U8 reserve_size;
U8 commit_size;
VArenaFlags flags;
};
enum {
def_field(Opts_varena_make,base_addr),
def_field(Opts_varena_make,reserve_size),
def_field(Opts_varena_make,commit_size),
def_field(Opts_varena_make,flags),
};
S_ U8 varena__make__u (U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr);
I_ void varena_release__u(U8 arena);
I_ void varena_reset__u (U8 arena);
I_ void varena_rewind__u (U8 arena, U8 sp_slot);
I_ void varena_save__u (U8 arena, U8 sp_addr);
S_ void varena__push__u (U8 arena, U8 amount, U8 type_width, U8 alignment, U8 slice_addr);
S_ void varena__grow__u (U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero);
S_ void varena__shrink__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment);
I_ VArena* varena__make (Opts_varena_make*R_ opts);
I_ Slice_Mem varena__push (VArena_R arena, U8 amount, U8 type_width, Opts_varena*R_ opts);
I_ void varena_release(VArena_R arena);
I_ void varena_reset (VArena_R arena);
I_ void varena_rewind (VArena_R arena, AllocatorSP save_point);
I_ Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size, Opts_varena*R_ opts);
I_ AllocatorSP varena_save (VArena_R arena);
#define varena_make(...) varena__make(opt_args(Opts_varena_make, __VA_ARGS__))
S_ void varena_allocator_proc(U8 data, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out);
#define ainfo_varena(arena) (AllocatorInfo){ .proc = varena_allocator_proc, .data = u8_(arena) }
#define varena_push_mem(arena, amount, ...) varena__push(arena, amount, 1, opt_args(Opts_varena, __VA_ARGS__))
#define varena_push(arena, type, ...) \
cast(type*, varena__push(arena, size_of(type), 1, opt_args(Opts_varena, __VA_ARGS__)).ptr)
#define varena_push_array(arena, type, amount, ...) \
(tmpl(Slice,type)){ varena__push(arena, size_of(type), amount, opt_args(Opts_varena, __VA_ARGS__)).ptr, amount }
#pragma endregion VArena
#pragma region Arena
typedef Opts_varena Opts_arena;
typedef def_enum(U4, ArenaFlags) {
ArenaFlag_NoLargePages = (1 << 0),
ArenaFlag_NoChain = (1 << 1),
};
typedef def_struct(Arena) {
VArena* backing;
Arena* prev;
Arena* current;
U8 base_pos;
U8 pos;
ArenaFlags flags;
A4_B1 _PAD_;
};
enum {
def_field(Arena,backing),
def_field(Arena,prev),
def_field(Arena,current),
def_field(Arena,base_pos),
def_field(Arena,pos),
def_field(Arena,flags),
};
S_ U8 arena_make__u (U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr);
S_ void arena__push__u (U8 arena, U8 amount, U8 type_width, U8 alignemnt, U8 out_mem);
I_ void arena_release__u(U8 arena);
I_ void arena_reset__u (U8 arena);
S_ void arena_rewind__u (U8 arena, U8 slot);
I_ void arena_save__u (U8 arena, U8 out_sp);
typedef Opts_varena_make Opts_arena_make;
S_ Arena* arena__make (Opts_arena_make*R_ opts);
S_ Slice_Mem arena__push (Arena_R arena, U8 amount, U8 type_width, Opts_arena*R_ opts);
I_ void arena_release(Arena_R arena);
I_ void arena_reset (Arena_R arena);
S_ void arena_rewind (Arena_R arena, AllocatorSP save_point);
I_ AllocatorSP arena_save (Arena_R arena);
S_ void arena_allocator_proc(U8 data, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out);
#define ainfo_arena(arena) (AllocatorInfo){ .proc = & arena_allocator_proc, .data = u8_(arena) }
#define arena_make(...) arena__make(opt_args(Opts_arena_make, __VA_ARGS__))
#define arena_push_mem(arena, amount, ...) arena__push(arena, amount, 1, opt_args(Opts_arena, lit(stringify(B1)), __VA_ARGS__))
#define arena_push(arena, type, ...) \
cast(type*, arena__push(arena, 1, size_of(type), opt_args(Opts_arena, lit(stringify(type)), __VA_ARGS__) ).ptr)
#define arena_push_array(arena, type, amount, ...) \
(tmpl(Slice,type)){ arena__push(arena, size_of(type), amount, opt_args(Opts_arena, lit(stringify(type)), __VA_ARGS__)).ptr, amount }
#pragma endregion Arena
#pragma region Hashing
I_ void hash64_fnv1a__u(U8 hash, U8 data_ptr, U8 data_len, U8 seed) {
LP_ U8 const default_seed = 0xcbf29ce484222325;
if (seed != 0) { u8_r(hash)[0] = seed; }
else { u8_r(hash)[0] = default_seed; }
U8 elem = data_ptr;
loop:
if (elem == data_ptr + data_len) goto end;
u8_r(hash)[0] ^= u1_r(elem)[0];
u8_r(hash)[0] *= 0x100000001b3;
elem += 1;
goto loop;
end:
return;
}
typedef def_struct(Opts_hash64_fnv1a) { U8 seed; };
I_ void hash64__fnv1a(U8_R hash, Slice_Mem data, Opts_hash64_fnv1a*R_ opts) {
assert(opts != nullptr);
hash64_fnv1a__u(u8_(hash), data.ptr, data.len, opts->seed);
}
#define hash64_fnv1a(hash, data, ...) hash64__fnv1a(hash, data, opt_args(Opts_hash64_fnv1a, __VA_ARGS__))
#pragma endregion Hashing
#pragma region Key Table Linear (KTL)
#define def_KTL_Slot(type) \
def_struct(tmpl(KTL_Slot,type)) { \
U8 key; \
type value; \
}
#define def_KTL(type) \
def_Slice(tmpl(KTL_Slot,type)); \
typedef tmpl(Slice_KTL_Slot,type) tmpl(KTL,type)
enum {
KTL_Slot_key = 0,
KTL_Slot_value = 8,
};
typedef Slice_Mem KTL_Byte;
typedef def_struct(KTL_Meta) {
U8 slot_size;
U8 kt_value_offset;
U8 type_width;
Str8 type_name;
};
typedef def_farray(Str8, 2);
typedef def_Slice(A2_Str8);
typedef def_KTL_Slot(Str8);
typedef def_KTL(Str8);
I_ void ktl_populate_slice_a2_str8(U8 kt, U8 backing_proc, U8 backing_data, U8 values);
#pragma endregion KTL
#pragma region Key Table 1-Layer Chained-Chunked-Cells (KT1CX)
#define def_KT1CX_Slot(type) \
def_struct(tmpl(KT1CX_Slot,type)) { \
type value; \
U8 key; \
B4 occupied; \
A4_B1 _PAD_; \
}
#define def_KT1CX_Cell(type, depth) \
def_struct(tmpl(KT1CX_Cell,type)) { \
tmpl(KT1CX_Slot,type) slots[depth]; \
tmpl(KT1CX_Slot,type)* next; \
}
#define def_KT1CX(type) \
def_struct(tmpl(KT1CX,type)) { \
tmpl(Slice_KT1CX_Cell,type) table; \
}
typedef def_struct(KT1CX_Byte_Slot) {
U8 key;
B4 occupied;
A4_B1 _PAD_;
};
typedef def_struct(KT1CX_Byte_Cell) {
U8 next;
};
typedef def_struct(KT1CX_Byte) {
Slice_Mem table;
};
typedef def_struct(KT1CX_ByteMeta) {
U8 slot_size;
U8 slot_key_offset;
U8 cell_next_offset;
U8 cell_depth;
U8 cell_size;
U8 type_width;
Str8 type_name;
};
typedef def_struct(KT1CX_InfoMeta) {
U8 cell_pool_size;
U8 table_size;
U8 slot_size;
U8 slot_key_offset;
U8 cell_next_offset;
U8 cell_depth;
U8 cell_size;
U8 type_width;
Str8 type_name;
};
typedef def_struct(KT1CX_Info) {
AllocatorInfo backing_table;
AllocatorInfo backing_cells;
};
enum {
def_field(KT1CX_Byte_Slot,key),
def_field(KT1CX_Byte_Slot,occupied),
def_field(KT1CX_ByteMeta,slot_size),
def_field(KT1CX_ByteMeta,slot_key_offset),
def_field(KT1CX_ByteMeta,cell_next_offset),
def_field(KT1CX_ByteMeta,cell_depth),
def_field(KT1CX_ByteMeta,cell_size),
def_field(KT1CX_ByteMeta,type_width),
def_field(KT1CX_ByteMeta,type_name),
def_field(KT1CX_InfoMeta,cell_pool_size),
def_field(KT1CX_InfoMeta,table_size),
def_field(KT1CX_InfoMeta,slot_size),
def_field(KT1CX_InfoMeta,slot_key_offset),
def_field(KT1CX_InfoMeta,cell_next_offset),
def_field(KT1CX_InfoMeta,cell_depth),
def_field(KT1CX_InfoMeta,cell_size),
def_field(KT1CX_InfoMeta,type_width),
def_field(KT1CX_InfoMeta,type_name),
};
S_ void kt1cx_init__u (U8 backing_tbl, U8 backing_cells, U8 m, U8 result);
S_ void kt1cx_clear__u (U8 kt, U8 m);
I_ U8 kt1cx_slot_id__u(U8 kt, U8 key);
S_ U8 kt1cx_get__u (U8 kt, U8 key, U8 m);
S_ U8 kt1cx_set__u (U8 kt, U8 key, U8 v_ptr, U8 v_len, U8 backing_cells, U8 m);
I_ void kt1cx_init (KT1CX_Info info, KT1CX_InfoMeta m, KT1CX_Byte*R_ result);
I_ void kt1cx_clear (KT1CX_Byte kt, KT1CX_ByteMeta meta);
I_ U8 kt1cx_slot_id(KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta);
I_ U8 kt1cx_get (KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta);
I_ U8 kt1cx_set (KT1CX_Byte kt, U8 key, Slice_Mem value, AllocatorInfo backing_cells, KT1CX_ByteMeta meta);
#define kt1cx_assert(kt) do { \
slice_assert(kt.table); \
} while(0)
#define kt1cx_byte(kt) (KT1CX_Byte){ (Slice_Mem){u8_(kt.table.ptr), kt.table.len} }
#pragma endregion KT1CX
#pragma region String Operations
#pragma endregion String Operations
#pragma region File System
#pragma endregion FIle System
#pragma region WATL
#pragma endregion WATL
#pragma endregion Header
#pragma region Implementation
#pragma region Allocator Interface
I_ void allocator_query__u(U8 ainfo_proc, U8 ainfo_data, U8 allocator_query_info) {
assert(ainfo_proc != null);
cast(AllocatorProc*, ainfo_proc)(ainfo_data, 0, 0, 0, 0, AllocatorOp_Query, allocator_query_info);
}
I_ void mem_free__u(U8 proc, U8 data, U8 mem_ptr, U8 mem_len) {
assert(proc != null);
cast(AllocatorProc*, proc)(data, 0, 0, mem_ptr, mem_len, AllocatorOp_Free, 0);
}
I_ void mem_reset__u(U8 proc, U8 data) {
assert(proc != null);
cast(AllocatorProc*, proc)(data, 0, 0, 0, 0, AllocatorOp_Reset, 0);
}
I_ void mem_rewind__u(U8 proc, U8 data, U8 sp_type_sig, U8 sp_slot) {
assert(proc != null);
cast(AllocatorProc*, proc)(data, 0, 0, sp_type_sig, sp_slot, AllocatorOp_Rewind, 0);
}
I_ void mem_save_point__u(U8 proc, U8 data, U8 sp) {
assert(proc != null);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, 0, 0, 0, 0, AllocatorOp_SavePoint, u8_(out));
struct_assign(AllocatorSP, sp, (U8) out + AllocatorProc_Out_save_point);
}
I_ void mem__alloc__u(U8 out_mem, U8 proc, U8 data, U8 size, U8 alignment, B4 no_zero) {
assert(proc != null);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, size, alignment, 0, 0, no_zero ? AllocatorOp_Alloc_NoZero : AllocatorOp_Alloc, u8_(out));
slice_assign(out_mem, (U8) out + AllocatorProc_Out_allocation);
}
I_ void mem__grow__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_actual) {
assert(proc != null);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, size, alignment, old_ptr, old_len, no_zero ? AllocatorOp_Grow_NoZero : AllocatorOp_Grow, u8_(out));
if (give_actual == false) { u8_r(out + AllocatorProc_Out_allocation + Slice_len)[0] = size; }
slice_assign(out_mem, (U8) out + AllocatorProc_Out_allocation);
}
I_ void mem__shrink__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment) {
assert(proc != null);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, size, alignment, old_ptr, old_len, AllocatorOp_Shrink, u8_(out));
slice_assign(out_mem, (U8) out + AllocatorProc_Out_allocation);
}
I_ void mem__resize__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_acutal) {
if (old_len == size) { slice_assign_comp(out_mem, old_ptr, old_len); }
if (old_len < size) { mem__grow__u (out_mem, proc, data, old_ptr, old_len, size, alignment, no_zero, give_acutal); }
else { mem__shrink__u(out_mem, proc, data, old_ptr, old_len, size, alignment); }
}
I_ AllocatorQueryInfo allocator_query(AllocatorInfo ainfo) { AllocatorQueryInfo out; allocator_query__u(u8_(ainfo.proc), ainfo.data, u8_(& out)); return out; }
I_ void mem_free (AllocatorInfo ainfo, Slice_Mem mem) { mem_free__u (u8_(ainfo.proc), ainfo.data, mem.ptr, mem.len); }
I_ void mem_reset (AllocatorInfo ainfo) { mem_reset__u (u8_(ainfo.proc), ainfo.data); }
I_ void mem_rewind(AllocatorInfo ainfo, AllocatorSP save_point) { mem_rewind__u(u8_(ainfo.proc), ainfo.data, u8_(save_point.type_sig), save_point.slot); }
I_ AllocatorSP mem_save_point(AllocatorInfo ainfo) { AllocatorSP sp; mem_save_point__u(u8_(ainfo.proc), ainfo.data, u8_(& sp)); return sp; }
I_ Slice_Mem mem__alloc(AllocatorInfo ainfo, U8 size, Opts_mem_alloc_R opts) {
assert(opts != nullptr); Slice_Mem result;
mem__alloc__u(u8_(& result), u8_(ainfo.proc), ainfo.data, size, opts->alignment, opts->no_zero);
return result;
}
I_ Slice_Mem mem__grow(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow_R opts) {
assert(opts != nullptr);
Slice_Mem out; mem__grow__u(u8_(& out), u8_(ainfo.proc), ainfo.data, mem.ptr, mem.len, size, opts->alignment, opts->no_zero, opts->give_actual);
if (!opts->give_actual) { out.len = size; }
return out;
}
I_ Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resize_R opts) {
assert(opts != nullptr);
Slice_Mem out; mem__resize__u(u8_(& out), u8_(ainfo.proc), ainfo.data, mem.ptr, mem.len, size, opts->alignment, opts->no_zero, opts->give_actual);
return out;
}
I_ Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shrink_R opts) {
assert(opts != nullptr);
Slice_Mem out; mem__shrink__u(u8_(& out), u8_(ainfo.proc), ainfo.data, mem.ptr, mem.len, size, opts->alignment);
return out;
}
#pragma endregion Allocator Interface
#pragma region FArena (Fixed-Sized Arena)
I_ void farena_init__u(U8 arena, U8 mem_ptr, U8 mem_len) {
assert(arena != null);
u8_r(arena + FArena_start )[0] = mem_ptr;
u8_r(arena + FArena_capacity)[0] = mem_len;
u8_r(arena + FArena_used )[0] = 0;
}
S_ inline void farena__push__u(U8 arena, U8 amount, U8 type_width, U8 alignment, U8 result) {
if (amount == 0) { slice_clear(result); }
U8 desired = type_width * amount;
U8 to_commit = align_pow2(desired, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
U8_R used = u8_r(arena + FArena_used);
U8 unused = u8_r(arena + FArena_capacity)[0] - used[0]; assert(to_commit <= unused);
U8 ptr = u8_r(arena + FArena_start )[0] + used[0];
used[0] += to_commit;
slice_assign_comp(result, ptr, desired);
}
S_ inline void farena__grow__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero) {
assert(result != null);
assert(arena != null);
U8_R used = u8_r(arena + FArena_used);
/*Check if the allocation is at the end of the arena*/{
U8 alloc_end = old_ptr + old_len;
U8 arena_end = u8_r(arena + FArena_start)[0] + used[0];
if (alloc_end != arena_end) {
// Not at the end, can't grow in place
slice_clear(result);
return;
}
}
// Calculate growth
U8 grow_amount = requested_size - old_len;
U8 aligned_grow = align_pow2(grow_amount, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
U8 unused = u8_r(arena + FArena_capacity)[0] - used[0];
if (aligned_grow > unused) {
// Not enough space
slice_clear(result);
return;
}
used[0] += aligned_grow;
slice_assign_comp(result, old_ptr, aligned_grow + requested_size);
mem_zero(old_ptr + old_len, grow_amount * cast(U8, should_zero));
}
S_ inline void farena__shrink__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment) {
assert(result != null);
assert(arena != null);
U8_R used = u8_r(arena + FArena_used);
/*Check if the allocation is at the end of the arena*/ {
U8 alloc_end = old_ptr + old_len;
U8 arena_end = u8_r(arena + FArena_start)[0] + used[0];
if (alloc_end != arena_end) {
// Not at the end, can't shrink but return adjusted size
slice_assign_comp(result, old_ptr, requested_size);
return;
}
}
U8 aligned_original = align_pow2(old_len, MEMORY_ALIGNMENT_DEFAULT);
U8 aligned_new = align_pow2(requested_size, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
used[0] -= (aligned_original - aligned_new);
slice_assign_comp(result, old_ptr, requested_size);
}
I_ void farena_reset__u(U8 arena) { u8_r(arena + FArena_used)[0] = 0; }
I_ void farena_rewind__u(U8 arena, U8 sp_slot) {
U8 start = u8_r(arena + FArena_start)[0];
U8_R used = u8_r(arena + FArena_used);
U8 end = start + used[0]; assert_bounds(sp_slot, start, end);
used[0] -= sp_slot - start;
}
I_ void farena_save__u(U8 arena, U8 sp) {
u8_r(sp + AllocatorSP_type_sig)[0] = (U8)& farena_allocator_proc;
u8_r(sp + AllocatorSP_slot )[0] = u8_r(arena + FArena_used)[0];
}
S_ void farena_allocator_proc(U8 arena, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out)
{
assert(out != null);
assert(arena != null);
U8 allocation = arena + AllocatorProc_Out_allocation;
switch (op)
{
case AllocatorOp_Alloc:
case AllocatorOp_Alloc_NoZero:
farena__push__u(arena, requested_size, 1, alignment, allocation);
mem_zero(u8_r(allocation + Slice_ptr)[0], u8_r(allocation + Slice_len)[0] * op);
break;
case AllocatorOp_Free: break;
case AllocatorOp_Reset: farena_reset__u(arena); break;
case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero:
farena__grow__u(allocation, arena, old_ptr, old_len, requested_size, alignment, op - AllocatorOp_Grow_NoZero);
break;
case AllocatorOp_Shrink:
farena__shrink__u(allocation, arena, old_ptr, old_len, requested_size, alignment);
break;
case AllocatorOp_Rewind: farena_rewind__u(arena, old_len); break;
case AllocatorOp_SavePoint: farena_save__u(arena, allocation); break;
case AllocatorOp_Query:
u4_r(out + AllocatorQueryInfo_features)[0] =
AllocatorQuery_Alloc
| AllocatorQuery_Reset
| AllocatorQuery_Resize
| AllocatorQuery_Rewind
;
U8 max_alloc = u8_r(arena + FArena_capacity)[0] - u8_r(arena + FArena_used)[0];
u8_r(out + AllocatorQueryInfo_max_alloc)[0] = max_alloc;
u8_r(out + AllocatorQueryInfo_min_alloc)[0] = 0;
u8_r(out + AllocatorQueryInfo_left )[0] = max_alloc;
farena_save__u(arena, out + AllocatorQueryInfo_save_point);
break;
}
return;
}
#pragma endregion FArena
#pragma region OS
#pragma warning(push)
#pragma warning(disable: 4820)
#pragma comment(lib, "Kernel32.lib")
#pragma comment(lib, "Advapi32.lib")
#define MS_INVALID_HANDLE_VALUE ((MS_HANDLE)(S8)-1)
#define MS_ANYSIZE_ARRAY 1
#define MS_MEM_COMMIT 0x00001000
#define MS_MEM_RESERVE 0x00002000
#define MS_MEM_RELEASE 0x00002000
#define MS_MEM_LARGE_PAGES 0x20000000
#define MS_PAGE_READWRITE 0x04
#define MS_TOKEN_ADJUST_PRIVILEGES (0x0020)
#define MS_SE_PRIVILEGE_ENABLED (0x00000002L)
#define MS_TOKEN_QUERY (0x0008)
#define MS__TEXT(quote) L ## quote
#define MS_TEXT(quote) MS__TEXT(quote)
#define MS_SE_LOCK_MEMORY_NAME MS_TEXT("SeLockMemoryPrivilege")
typedef U4 MS_BOOL;
typedef U4 MS_DWORD;
typedef U8 MS_PDWORD;
typedef U8 MS_HANDLE;
typedef U8 MS_PHANDLE;
typedef U4 MS_LONG;
typedef U8 MS_LONGLONG;
typedef U8 MS_LPCSTR;
typedef U8 MS_LPWSTR, MS_PWSTR;
typedef U8 MS_LPVOID;
typedef U8 MS_LPDWORD;
typedef U8 MS_ULONG_PTR, MS_PULONG_PTR;
typedef U8 MS_LPCVOID;
typedef struct MS_SECURITY_ATTRIBUTES MS_SECURITY_ATTRIBUTES; typedef U8 MS_PSECURITY_ATTRIBUTES, MS_LPSECURITY_ATTRIBUTES;
typedef struct MS_OVERLAPPED MS_OVERLAPPED; typedef U8 MS_LPOVERLAPPED;
typedef def_union(MS_LARGE_INTEGER) { struct { MS_DWORD LowPart; MS_LONG HighPart; } _; struct { MS_DWORD LowPart; MS_LONG HighPart; } u; MS_LONGLONG QuadPart; };
typedef def_struct(MS_FILE) { U8 _Placeholder; };
typedef def_struct(MS_SECURITY_ATTRIBUTES) { MS_DWORD nLength; A4_B1 _PAD_; MS_LPVOID lpSecurityDescriptor; MS_BOOL bInheritHandle; };
typedef def_struct(MS_OVERLAPPED) { MS_ULONG_PTR Internal; MS_ULONG_PTR InternalHigh; union { struct { MS_DWORD Offset; MS_DWORD OffsetHigh; } _; U8 Pointer; } _; MS_HANDLE hEvent; };
typedef struct MS_LUID MS_LUID; typedef U8 MS_PLUID;
typedef struct MS_LUID_AND_ATTRIBUTES MS_LUID_AND_ATTRIBUTES; typedef U8 MS_PLUID_AND_ATTRIBUTES;
typedef struct MS_TOKEN_PRIVILEGES MS_TOKEN_PRIVILEGES; typedef U8 MS_PTOKEN_PRIVILEGES;
typedef def_struct(MS_LUID) { MS_DWORD LowPart; MS_LONG HighPart; };
typedef def_struct(MS_LUID_AND_ATTRIBUTES) { MS_LUID Luid; MS_DWORD Attributes; };
typedef def_struct(MS_TOKEN_PRIVILEGES) { MS_DWORD PrivilegeCount; MS_LUID_AND_ATTRIBUTES Privileges[MS_ANYSIZE_ARRAY]; };
W_ MS_BOOL ms_close_handle(MS_HANDLE hObject) __asm__("CloseHandle");
W_ MS_BOOL ms_adjust_token_privleges(MS_HANDLE TokenHandle, MS_BOOL DisableAllPrivileges, MS_PTOKEN_PRIVILEGES NewState, MS_DWORD BufferLength, MS_PTOKEN_PRIVILEGES PreviousState, MS_PDWORD ReturnLength) __asm__("AdjustTokenPrivileges");
W_ MS_HANDLE ms_get_current_process(void) __asm__("GetCurrentProcess");
W_ U8 ms_get_larg_page_minimum(void) __asm__("GetLargePageMinimum");
W_ MS_BOOL ms_lookup_priviledge_value_w(MS_LPWSTR lpSystemName, MS_LPWSTR lpName, MS_PLUID lpLuid) __asm__("LookupPrivilegeValueW");
W_ MS_BOOL ms_open_process_token(MS_HANDLE ProcessHandle, MS_DWORD DesiredAccess, MS_PHANDLE TokenHandle) __asm__("OpenProcessToken");
W_ MS_LPVOID ms_virtual_alloc(MS_LPVOID lpAddress, U8 dwSize, MS_DWORD flAllocationType, MS_DWORD flProtect) __asm__("VirtualAlloc");
W_ MS_BOOL ms_virtual_free(MS_LPVOID lpAddress, U8 dwSize, MS_DWORD dwFreeType) __asm__("VirtualFree");
#pragma warning(pop)
I_ U8 os_system_info(void) {
return u8_(& os__windows_info.system_info);
}
I_ void os__enable_large_pages(void) {
MS_HANDLE token;
if (ms_open_process_token(ms_get_current_process(), MS_TOKEN_ADJUST_PRIVILEGES | MS_TOKEN_QUERY, u8_(& token))) {
MS_LUID luid;
if (ms_lookup_priviledge_value_w(0, u8_(MS_SE_LOCK_MEMORY_NAME), u8_(& luid))) {
MS_TOKEN_PRIVILEGES priv;
priv.PrivilegeCount = 1;
priv.Privileges[0].Luid = luid;
priv.Privileges[0].Attributes = MS_SE_PRIVILEGE_ENABLED;
ms_adjust_token_privleges(token, 0, u8_(& priv), size_of(priv), 0, 0);
}
ms_close_handle(token);
}
}
S_ inline
void os_init(void) {
// os__enable_large_pages();
u8_r(os_system_info() + OS_SystemInfo_target_page_size)[0] = ms_get_larg_page_minimum();
}
I_ U8 os_vmem_reserve__u(U8 size, B4 no_large_pages, U8 base_addr) {
return cast(U8, ms_virtual_alloc(cast(MS_LPVOID, base_addr), size, MS_MEM_RESERVE,
MS_PAGE_READWRITE /* | (opts->no_large_pages ? 0 : MS_MEM_LARGE_PAGES) */)
);
}
I_ B4 os_vmem_commit__u (U8 vm, U8 size, B4 no_large_pages) {
// if (no_large_pages == false ) { return 1; }
return ms_virtual_alloc(cast(MS_LPVOID, vm), size, MS_MEM_COMMIT, MS_PAGE_READWRITE) != null;
}
I_ void os_vmem_release__u(U8 vm, U8 size) { ms_virtual_free(cast(MS_LPVOID, vm), 0, MS_MEM_RELEASE); }
I_ U8 os__vmem_reserve( U8 size, Opts_vmem_R opts) {
assert(opts != nullptr);
return os_vmem_reserve__u(size, opts->no_large_pages, opts->base_addr);
}
I_ B4 os__vmem_commit (U8 vm, U8 size, Opts_vmem_R opts) {
assert(opts != nullptr);
return os_vmem_commit__u(vm, size, opts->no_large_pages);
}
I_ void os_vmem_release(U8 vm, U8 size) { os_vmem_release__u(vm, size); }
#pragma endregion OS
#pragma region VArena (Virtual Address Space Arena)
I_ U8 varena_header_size(void) { return align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); }
S_ inline U8 varena__make__u(U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr) {
if (reserve_size == 0) { reserve_size = mega(64); }
if (commit_size == 0) { commit_size = mega(64); }
U8 page = u8_r(os_system_info() + OS_SystemInfo_target_page_size)[0];
U8 reserve_sz = align_pow2(reserve_size, page);
U8 commit_sz = align_pow2(commit_size, page);
B4 no_large = (flags & VArenaFlag_NoLargePages) != 0;
U8 base = os_vmem_reserve__u(reserve_sz, no_large, base_addr); assert(base != 0);
B4 ok = os_vmem_commit__u(base, commit_sz, no_large); assert(ok != 0);
U8 header = varena_header_size();
U8 data_start = base + header;
u8_r(base + VArena_reserve_start)[0] = base;
u8_r(base + VArena_reserve )[0] = reserve_sz;
u8_r(base + VArena_commit_size )[0] = commit_sz;
u8_r(base + VArena_committed )[0] = commit_sz;
u8_r(base + VArena_commit_used )[0] = header;
u4_r(base + VArena_flags )[0] = flags;
return base;
}
S_ inline void varena__push__u(U8 vm, U8 amount, U8 type_width, U8 alignment, U8 result) {
assert(result != null);
assert(vm != null);
if (amount == 0) { slice_clear(result); return; }
alignment = alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT;
U8 requested_size = amount * type_width;
U8 aligned_size = align_pow2(requested_size, alignment);
U8_R commit_used = u8_r(vm + VArena_commit_used);
U8 to_be_used = commit_used[0] + aligned_size;
U8 reserve_left = u8_r(vm + VArena_reserve )[0] - commit_used[0];
U8 committed = u8_r(vm + VArena_committed)[0];
U8 commit_left = committed - commit_used[0];
assert(to_be_used< reserve_left);
if (/*exhausted?*/commit_left < aligned_size) {
U8 commit_size = u8_r(vm + VArena_commit_size)[0];
U8 next_commit_size = reserve_left > aligned_size ? max(commit_size, aligned_size) : reserve_left;
if (next_commit_size != 0) {
B4 no_large_pages = (u4_r(vm + VArena_flags)[0] & VArenaFlag_NoLargePages) != 0;
U8 next_commit_start = vm + committed;
if (os_vmem_commit__u(next_commit_start, next_commit_size, no_large_pages) == false) {
slice_clear(result);
return;
}
committed += next_commit_size;
u8_r(vm + VArena_committed)[0] = committed;
}
}
commit_used[0] += aligned_size;
U8 current_offset = u8_r(vm + VArena_reserve_start)[0] + commit_used[0];
slice_assign_comp(result, current_offset, requested_size);
}
S_ inline void varena__grow__u(U8 result, U8 vm, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero) {
assert(vm != null);
assert(result != null);
U8 grow_amount = requested_size - old_len;
if (grow_amount == 0) { slice_assign_comp(result, old_ptr, old_len); return; }
U8 current_offset = u8_r(vm + VArena_reserve_start)[0] + u8_r(vm + VArena_commit_used)[0];
// Growing when not the last allocation not allowed
assert(old_ptr == current_offset);
uvar(Slice_Mem, allocation); varena__push__u(vm, grow_amount, 1, alignment, u8_(allocation));
U8 a_ptr = u8_r(allocation + Slice_ptr)[0];
U8 a_len = u8_r(allocation + Slice_len)[0];
assert(a_ptr != 0);
mem_zero(a_ptr, a_len * should_zero);
slice_assign_comp(result, old_ptr, old_len + a_len);
}
S_ inline void varena__shrink__u(U8 result, U8 vm, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment) {
assert(vm != null);
assert(result != null);
U8 shrink_amount = old_len - requested_size;
if (lt_s(shrink_amount, 0)) { slice_assign_comp(result, old_ptr, old_len); return; }
U8_R commit_used = u8_r(vm + VArena_commit_used);
U8 current_offset = u8_r(vm + VArena_reserve_start)[0] + commit_used[0]; assert(old_ptr == current_offset);
commit_used[0] -= shrink_amount;
slice_assign_comp(result, old_ptr, requested_size);
}
I_ void varena_release__u(U8 vm) {
assert(vm != null);
os_vmem_release__u(vm, u8_r(vm + VArena_reserve)[0]);
}
I_ void varena_reset__u(U8 vm) {
assert(vm != null);
u8_r(vm + VArena_commit_used)[0] = 0;
}
I_ void varena_rewind__u(U8 vm, U8 sp_slot) {
assert(vm != null);
U8 header = varena_header_size();
if (sp_slot < header) { sp_slot = header; }
u8_r(vm + VArena_commit_used)[0] = sp_slot;
}
I_ void varena_save__u(U8 vm, U8 sp_addr) {
assert(vm != null);
assert(sp_addr != null);
u8_r(sp_addr + AllocatorSP_type_sig)[0] = (U8) varena_allocator_proc;
u8_r(sp_addr + AllocatorSP_slot )[0] = u8_r(vm + VArena_commit_used)[0];
}
I_ VArena* varena__make(Opts_varena_make*R_ opts) {
assert(opts != nullptr);
return cast(VArena*, varena__make__u(opts->reserve_size, opts->commit_size, opts->flags, opts->base_addr));
}
I_ Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena* opts) {
Slice_Mem result;
varena__push__u(u8_(vm), amount, type_width, opts ? opts->alignment : 0, u8_(& result));
return result;
}
I_ Slice_Mem varena__shrink(VArena_R vm, Slice_Mem old_allocation, U8 requested_size, Opts_varena* opts) {
Slice_Mem result;
varena__shrink__u(u8_(& result), u8_(vm), old_allocation.ptr, old_allocation.len, requested_size, opts ? opts->alignment : 0);
return result;
}
I_ void varena_release(VArena_R vm) { varena_release__u(u8_(vm)); }
I_ void varena_reset (VArena_R vm) { varena_reset__u (u8_(vm)); }
I_ void varena_rewind (VArena_R vm, AllocatorSP save_point) {
assert(save_point.type_sig == varena_allocator_proc);
varena_rewind__u(u8_(vm), save_point.slot);
}
I_ AllocatorSP varena_save(VArena_R vm) { AllocatorSP sp; varena_save__u(u8_(vm), u8_(& sp)); return sp; }
S_ void varena_allocator_proc(U8 vm, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, U8 out_addr)
{
assert(vm != null);
assert(out_addr != null);
U8 out_allocation = out_addr ? out_addr + AllocatorProc_Out_allocation : 0;
switch (op)
{
case AllocatorOp_Alloc:
case AllocatorOp_Alloc_NoZero:
varena__push__u(vm, requested_size, 1, alignment, out_allocation);
if (op == AllocatorOp_Alloc) {
U8 ptr = u8_r(out_allocation + Slice_ptr)[0];
U8 len = u8_r(out_allocation + Slice_len)[0];
if (ptr && len) { mem_zero(ptr, len); }
}
break;
case AllocatorOp_Free: break;
case AllocatorOp_Reset: varena_reset__u(vm); break;
case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero:
varena__grow__u(out_allocation, vm, old_ptr, old_len, requested_size, alignment, op - AllocatorOp_Grow_NoZero);
break;
case AllocatorOp_Shrink:
varena__shrink__u(out_allocation, vm, old_ptr, old_len, requested_size, alignment);
break;
case AllocatorOp_Rewind: varena_rewind__u(vm, old_len); break;
case AllocatorOp_SavePoint: varena_save__u (vm, out_addr + AllocatorProc_Out_save_point); break;
case AllocatorOp_Query:
u4_r(out_addr + AllocatorQueryInfo_features)[0] =
AllocatorQuery_Alloc
| AllocatorQuery_Reset
| AllocatorQuery_Resize
| AllocatorQuery_Rewind;
U8 reserve = u8_r(vm + VArena_reserve )[0];
U8 committed = u8_r(vm + VArena_committed)[0];
U8 max_alloc = (reserve > committed) ? (reserve - committed) : 0;
u8_r(out_addr + AllocatorQueryInfo_max_alloc)[0] = max_alloc;
u8_r(out_addr + AllocatorQueryInfo_min_alloc)[0] = kilo(4);
u8_r(out_addr + AllocatorQueryInfo_left )[0] = max_alloc;
AllocatorSP sp = { .type_sig = varena_allocator_proc, .slot = u8_r(vm + VArena_commit_used)[0] };
struct_assign(AllocatorSP, out_addr + AllocatorQueryInfo_save_point, (U8)& sp);
break;
}
}
#pragma endregion VArena
#pragma region Arena
I_ U8 arena_header_size(void) { return align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT); }
S_ inline U8 arena_make__u(U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr) {
U8 header_size = arena_header_size();
U8 current = varena__make__u(reserve_size, commit_size, flags, base_addr); assert(current != null);
U8 arena; varena__push__u(current, header_size, 1, MEMORY_ALIGNMENT_DEFAULT, (U8)& arena);
u8_r(arena + Arena_backing )[0] = current;
u8_r(arena + Arena_prev )[0] = null;
u8_r(arena + Arena_current )[0] = arena;
u8_r(arena + Arena_base_pos)[0] = 0;
u8_r(arena + Arena_pos )[0] = header_size;
u8_r(arena + Arena_flags )[0] = flags;
return arena;
}
S_ inline void arena__push__u(U8 arena, U8 amount, U8 type_width, U8 alignment, U8 out_mem) {
assert(arena != null);
U8 active = u8_r(arena + Arena_current)[0];
U8 size_requested = amount * type_width;
alignment = alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT;
U8 size_aligned = align_pow2(size_requested, alignment);
U8 pos_pre = u8_r(active + Arena_pos)[0];
U8 pos_pst = pos_pre + size_aligned;
U8 backing = active + Arena_backing;
U8 reserve = u8_r(backing + VArena_reserve)[0];
B4 should_chain =
((u8_r(arena + Arena_flags)[0] & ArenaFlag_NoChain) == 0)
&& reserve < pos_pst;
if (should_chain)
{
U8 current = arena + Arena_current;
U8 new_arena = arena_make__u(
reserve,
u8_r(backing + VArena_commit_size)[0],
u4_r(backing + VArena_flags )[0],
0
);
u8_r(new_arena + Arena_base_pos)[0] = u8_r(active + Arena_base_pos)[0] + reserve;
u8_r(new_arena + Arena_prev )[0] = u8_r(current)[0];
u8_r(current)[0] = new_arena;
active = u8_r(current)[0];
}
U8 result = active + pos_pre;
varena__push__u(u8_r(backing)[0], size_aligned, 1, alignment, out_mem);
assert(u8_r(out_mem + Slice_ptr)[0] == result);
assert(u8_r(out_mem + Slice_len)[0] > 0);
u8_r(active + Arena_pos)[0] = pos_pst;
}
S_ inline void arena__grow__u(U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero, U8 out_mem) {
U8 active = arena + Arena_current;
U8_R active_pos = u8_r(active + Arena_pos);
U8 alloc_end = old_ptr + old_len;
U8 arena_end = active + active_pos[0];
if (alloc_end == arena_end)
{
U8 grow_amount = requested_size - old_len;
U8 aligned_grow = align_pow2(grow_amount, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
if (active_pos[0] + aligned_grow <= u8_r(active + Arena_backing + VArena_reserve)[0]) {
uvar(Slice_Mem, vresult); varena__push__u(u8_r(active + Arena_backing)[0], aligned_grow, 1, alignment, (U8)vresult);
if (u8_r(vresult + Slice_ptr)[0] != null) {
active_pos[0] += aligned_grow;
mem_zero(old_ptr + old_len, aligned_grow * should_zero);
slice_assign_comp(out_mem, u8_(vresult) + Slice_ptr, u8_(vresult) + Slice_len);
return;
}
}
}
arena__push__u(arena, requested_size, 1, alignment, out_mem);
if (u8_r(out_mem + Slice_ptr)[0] == null) { slice_assign_comp(out_mem, 0, 0); return; }
mem_copy(u8_r(out_mem + Slice_ptr)[0], old_ptr, old_len);
mem_zero(u8_r(out_mem + Slice_ptr)[0], (u8_r(out_mem + Slice_len)[0] - old_len) * should_zero);
}
S_ inline void arena__shrink__u(U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, U8 out_mem) {
U8 active = arena + Arena_current;
U8_R active_pos = u8_r(active + Arena_pos);
U8 alloc_end = old_ptr + old_len;
U8 arena_end = active + active_pos[0];
if (alloc_end != arena_end) { slice_assign_comp(out_mem, old_ptr, old_len); return; }
U8 aligned_original = align_pow2(old_len, MEMORY_ALIGNMENT_DEFAULT);
U8 aligned_new = align_pow2(requested_size, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
U8 pos_reduction = aligned_original - aligned_new;
u8_r(active + Arena_pos)[0] -= pos_reduction;
varena__shrink__u(out_mem, active + Arena_backing, old_ptr, old_len, requested_size, alignment);
}
I_ void arena_release__u(U8 arena) {
assert(arena != null);
U8 curr = arena + Arena_current;
U8 prev = null;
for (; u8_r(curr)[0] != null; curr = prev) {
u8_r(prev)[0] = u8_r(curr + Arena_prev)[0];
varena_release__u(u8_r(curr)[0]);
}
}
I_ void arena_reset__u(U8 arena) { arena_rewind__u(arena, 0); }
void arena_rewind__u(U8 arena, U8 slot) {
assert(arena != null);
U8 header_size = arena_header_size();
U8 curr = arena + Arena_current;
U8 big_pos = clamp_bot(header_size, slot);
for (U8 prev = null; u8_r(curr + Arena_base_pos)[0] >= big_pos; u8_r(curr)[0] = prev) {
prev = u8_r(curr + Arena_prev)[0];
varena_release__u(u8_r(curr + Arena_backing)[0]);
}
u8_r(arena + Arena_current)[0] = u8_r(curr)[0];
U8 new_pos = big_pos - u8_r(curr + Arena_base_pos)[0]; assert(new_pos <= u8_r(curr + Arena_pos)[0]);
u8_r(curr + Arena_pos)[0] = new_pos;
}
I_ void arena_save__u(U8 arena, U8 out_sp) {
u8_r(out_sp + AllocatorSP_type_sig)[0] = (U8)& arena_allocator_proc;
u8_r(out_sp + AllocatorSP_slot )[0] =
u8_r(arena + Arena_base_pos )[0]
+ u8_r(arena + Arena_current + Arena_pos)[0];
}
S_ inline void arena_allocator_proc(U8 arena, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, U8 out_addr)
{
assert(out_addr != null);
assert(arena != null);
U8 out_allocation = out_addr + AllocatorProc_Out_allocation;
switch (op)
{
case AllocatorOp_Alloc:
case AllocatorOp_Alloc_NoZero:
arena__push__u(arena, requested_size, 1, alignment, out_allocation);
mem_zero(out_allocation, u8_r(out_allocation + Slice_len)[0] * op);
break;
case AllocatorOp_Free: break;
case AllocatorOp_Reset: arena_reset__u(arena); break;
case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero:
arena__grow__u(arena, old_ptr, old_len, requested_size, alignment, op - AllocatorOp_Grow_NoZero, out_allocation);
break;
case AllocatorOp_Shrink:
arena__shrink__u(arena, old_ptr, old_len, requested_size, alignment, out_allocation);
break;
case AllocatorOp_Rewind: arena_rewind__u(arena, old_len); break;
case AllocatorOp_SavePoint: arena_save__u(arena, out_addr + AllocatorProc_Out_save_point); break;
case AllocatorOp_Query:
u4_r(out_addr + AllocatorQueryInfo_features)[0] =
AllocatorQuery_Alloc
| AllocatorQuery_Resize
| AllocatorQuery_Reset
| AllocatorQuery_Rewind
;
u8_r(out_addr + AllocatorQueryInfo_max_alloc )[0] = u8_r(arena + Arena_backing + VArena_reserve)[0];
u8_r(out_addr + AllocatorQueryInfo_min_alloc )[0] = kilo(4);
u8_r(out_addr + AllocatorQueryInfo_left )[0] = u8_r(out_addr + AllocatorQueryInfo_max_alloc)[0] - u8_r(arena + Arena_backing + VArena_commit_used)[0];
arena_save__u(arena, out_addr + AllocatorQueryInfo_save_point);
break;
}
}
I_ Arena* arena__make(Opts_arena_make*R_ opts) {
assert(opts != nullptr);
return cast(Arena*, arena_make__u(opts->reserve_size, opts->commit_size, opts->flags, opts->base_addr));
}
#pragma endregion Arena
#pragma region Key Table Linear (KTL)
I_ void ktl_populate_slice_a2_str8(U8 kt, U8 backing_ptr, U8 backing_len, U8 values) {
assert(kt != null);
U8 values_len = u8_r(values + Slice_len)[0];
if (values_len == 0) return;
mem__alloc__u(kt, backing_ptr, backing_len, size_of(KTL_Slot_Str8) * values_len, 0, false);
for (U8 id = 0; id < values_len; ++id) {
U8 kt_slot = kt + Slice_ptr * id;
U8 value = u8_r(values + Slice_ptr + size_of(A2_Str8) * id)[0];
mem_copy (kt_slot + KTL_Slot_value, value + size_of(Str8) * 1, size_of(Str8));
hash64__fnv1a__u(kt_slot + KTL_Slot_key, value);
}
}
#pragma endregion KTL
#pragma region Key Table 1-Layer Chained-Chunked_Cells (KT1CX)
S_ inline void kt1cx_init__u(U8 backing_tbl, U8 backing_cells, U8 m, U8 result) {
assert(result != null);
assert(u8_r(backing_cells + AllocatorInfo_proc)[0] != null);
assert(u8_r(backing_tbl + AllocatorInfo_proc)[0] != null);
U8 table_size = u8_r(m + KT1CX_InfoMeta_table_size)[0];
assert(u8_r(m + KT1CX_InfoMeta_cell_depth )[0] > 0);
assert(u8_r(m + KT1CX_InfoMeta_cell_pool_size)[0] >= kilo(4));
assert(table_size >= kilo(4));
assert(u8_r(m + KT1CX_InfoMeta_type_width )[0] >= 0);
U8 alloc_size = table_size + u8_r(m + KT1CX_InfoMeta_cell_size)[0];
mem__alloc__u(result, backing_tbl, backing_tbl + AllocatorInfo_data, alloc_size, 0, 0);
assert(u8_r(result + Slice_ptr)[0] != null);
assert(u8_r(result + Slice_len)[0] > 0);
u8_r(result + Slice_len)[0] = table_size;
}
S_ inline void kt1cx_clear__u(U8 kt, U8 m) {
U8 cell_cursor = u8_r(kt + Slice_ptr)[0];
U8 cell_size = u8_r(m + KT1CX_ByteMeta_cell_size)[0];
U8 cell_depth = u8_r(m + KT1CX_ByteMeta_cell_depth)[0];
U8 table_len = u8_r(kt + Slice_len)[0] * cell_size;
U8 table_end = cell_cursor + table_len;
U8 slot_size = u8_r(m + KT1CX_ByteMeta_slot_size)[0];
for (; cell_cursor != table_end; cell_cursor += cell_size)
{
U8 slots_end = cell_cursor + (cell_depth * slot_size);
U8 slot_cursor = cell_cursor;
for (; slot_cursor < slots_end; slot_cursor += slot_size) {
process_slots:
mem_zero(slot_cursor, u8_r(slot_cursor + Slice_len)[0]);
}
U8 next = slot_cursor + u8_r(m + KT1CX_ByteMeta_cell_next_offset)[0];
if (next != null) {
slot_cursor = next;
slots_end = slot_cursor + (cell_depth * slot_size);
goto process_slots;
}
}
}
I_ U8 kt1cx_slot_id__u(U8 kt, U8 key) {
return key % u8_r(kt + Slice_len)[0];
}
S_ inline U8 kt1cx_get__u(U8 kt, U8 key, U8 m) {
U8 hash_index = kt1cx_slot_id__u(kt, key);
U8 cell_offset = hash_index * u8_r(m + KT1CX_ByteMeta_cell_size)[0];
U8 cell_cursor = kt + cell_offset;
{
U8 slot_size = u8_r(m + KT1CX_ByteMeta_slot_size)[0];
U8 slot_cursor = cell_cursor;
U8 slots_end = cell_cursor + u8_r(m + KT1CX_ByteMeta_cell_depth)[0] * slot_size;
for (; slot_cursor != slots_end; slot_cursor += slot_size) {
process_slots:
if (u8_r(slot_cursor + KT1CX_Byte_Slot_occupied)[0] && u8_r(slot_cursor + KT1CX_Byte_Slot_key)[0] == key) {
return slot_cursor;
}
}
U8 cell_next = cell_cursor + u8_r(m + KT1CX_ByteMeta_cell_next_offset)[0];
if (cell_next != null) {
slot_cursor = cell_next;
cell_cursor = cell_next;
goto process_slots;
}
else {
return null;
}
}
}
S_ inline U8 kt1cx_set__u(U8 kt, U8 key, U8 v_ptr, U8 v_len, U8 backing_cells, U8 m) {
return 0;
}
#pragma endregion Key Table
#pragma region String Operations
#pragma endregion String Operations
#pragma region File System
#pragma endregion File System
#pragma region Debug
#if defined(BUILD_DEBUG)
// #include <stdio.h>
#define MS_CRT_INTERNAL_LOCAL_PRINTF_OPTIONS (*__local_stdio_printf_options())
#define MS_stderr (__acrt_iob_func(2))
#define MS__crt_va_start_a(ap, x) ((void)(__va_start(&ap, x)))
#define MS__crt_va_arg(ap, t) \
((sizeof(t) > sizeof(__int64) || (sizeof(t) & (sizeof(t) - 1)) != 0) \
? **(t**)((ap += sizeof(__int64)) - sizeof(__int64)) \
: *(t* )((ap += sizeof(__int64)) - sizeof(__int64)))
#define MS__crt_va_end(ap) ((void)(ap = (va_list)0))
#define va_start(ap, x) MS__crt_va_start_a(ap, x)
#define va_arg MS__crt_va_arg
#define va_end MS__crt_va_end
#define va_copy(destination, source) ((destination) = (source))
typedef def_struct(__crt_locale_pointers) { struct __crt_locale_data* locinfo; struct __crt_multibyte_data* mbcinfo; };
typedef __crt_locale_pointers* _locale_t;
typedef char* va_list;
MS_FILE* __cdecl __acrt_iob_func(unsigned _Ix);
N_ U8* __cdecl __local_stdio_printf_options(void) {
// NOTE(CRT): This function must not be inlined into callers to avoid ODR violations. The
// static local variable has different names in C and in C++ translation units.
LP_ U8 _OptionsStorage; return &_OptionsStorage;
}
int __cdecl __stdio_common_vfprintf_s(
U8 _Options,
MS_FILE* _Stream,
char const* _Format,
_locale_t _Locale,
va_list _ArgList
);
void __cdecl __va_start(va_list* , ...);
I_ int printf_err(char const* fmt, ...) {
int result;
va_list args;
va_start(args, fmt);
result = __stdio_common_vfprintf_s(MS_CRT_INTERNAL_LOCAL_PRINTF_OPTIONS, MS_stderr, fmt, nullptr, args);
va_end(args);
return result;
}
S_ inline void assert_handler( UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line, UTF8*R_ msg, ... ) {
printf_err( "%s - %s:(%d): Assert Failure: ", file, function, line );
if ( condition )
printf_err( "`%s` \n", condition );
if ( msg ) {
va_list va = {0};
va_start( va, msg );
__stdio_common_vfprintf_s(MS_CRT_INTERNAL_LOCAL_PRINTF_OPTIONS, MS_stderr, msg, nullptr, va);
va_end( va );
}
printf_err( "%s", "\n" );
}
#endif
#pragma endregion Debug
#pragma region WATL
#pragma endregion WATL
#pragma endregion Implementation
int main(void)
{
os_init();
VArena_R vm_file = varena_make(.reserve_size = giga(4), .flags = VArenaFlag_NoLargePages);
// FileOpInfo file = file_read_contents(lit("watl.v0.llvm.lottes.c"), .backing = ainfo_varena(vm_file));
// slice_assert(file.content);
Arena_R a_msgs = arena_make();
Arena_R a_toks = arena_make();
// WATL_LexInfo lex_res = watl_lex(pcast(Str8, file.content),
// .ainfo_msgs = ainfo_arena(a_msgs),
// .ainfo_toks = ainfo_arena(a_toks),
// );
// assert((lex_res.signal & WATL_LexStatus_MemFail_SliceConstraintFail) == 0);
// Arena_R str_cache_kt1_ainfo = arena_make();
// Str8Cache str_cache = str8cache_make(
// .str_reserve = ainfo_arena(arena_make(.reserve_size = mega(256))),
// .cell_reserve = ainfo_arena(str_cache_kt1_ainfo),
// .tbl_backing = ainfo_arena(str_cache_kt1_ainfo),
// .cell_pool_size = kilo(8),
// .table_size = kilo(64),
// );
// Arena_R a_lines = arena_make();
// WATL_ParseInfo parse_res = watl_parse(lex_res.toks,
// .ainfo_msgs = ainfo_arena(a_msgs),
// .ainfo_nodes = ainfo_arena(a_toks),
// .ainfo_lines = ainfo_arena(a_lines),
// .str_cache = & str_cache
// );
//assert((parse_res.signal & WATL_ParseStatus_MemFail_SliceConstraintFail) == 0);
// arena_reset(a_msgs);
// arena_reset(a_toks);
// Str8 listing = watl_dump_listing(ainfo_arena(a_msgs), parse_res.lines);
// file_write_str8(lit("watl.v0.lottes.c.listing.txt"), listing);
// return 0;
}
#pragma clang diagnostic pop