Files
WATL_Exercise/C/watl.v0.lottes.c

592 lines
22 KiB
C

/*
WATL Exercise
Version: 0 (From Scratch, 1-Stage Compilation, LLVM & WinAPI Only, Win CRT Multi-threaded Static Linkage)
Host: Windows 11 (x86-64)
Toolchain: LLVM (2025-08-30), C-Stanard: 11
Based on: Neokineogfx - Fixing C
https://youtu.be/RrL7121MOeA
*/
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-const-variable"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#pragma clang diagnostic ignored "-Wswitch"
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunknown-pragmas"
#pragma clang diagnostic ignored "-Wvarargs"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wbraced-scalar-init"
#pragma clang diagnostic ignored "-W#pragma-messages"
#pragma clang diagnostic ignored "-Wstatic-in-inline"
#pragma clang diagnostic ignored "-Wkeyword-macro"
#pragma clang diagnostic ignored "-Wc23-compat"
#pragma clang diagnostic ignored "-Wreserved-identifier"
#pragma clang diagnostic ignored "-Wpre-c11-compat"
#pragma clang diagnostic ignored "-Wc23-extensions"
#pragma clang diagnostic ignored "-Wunused-macros"
#pragma clang diagnostic ignored "-Wdeclaration-after-statement"
#pragma region Header
#pragma region DSL
#if 0
// Original macros
#define A_(x) __attribute__((aligned (x)))
#define E_(x,y) __builtin_expect(x,y)
#define S_ static
#define I_ static inline __attribute__((always_inline))
#define N_ static __attribute__((noinline))
#define R_ __restrict
#define V_ volatile
// #define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
#endif
// Ones I'm deciding to use..
#define align_(value) __attribute__((aligned (value))) // for easy alignment
#define expect_(x, y) __builtin_expect(x, y) // so compiler knows the common path
#define finline static inline __attribute__((always_inline)) // force inline
#define noinline static __attribute__((noinline)) // force no inline [used in thread api]
#define R_ __restrict // pointers are either restricted or volatile and nothing else
#define V_ volatile // pointers are either restricted or volatile and nothing else
// #define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
#define glue_impl(A, B) A ## B
#define glue(A, B) glue_impl(A, B)
#define stringify_impl(S) #S
#define stringify(S) stringify_impl(S)
#define tmpl(prefix, type) prefix ## _ ## type
#define local_persist static
#define global static
#define static_assert _Static_assert
#define typeof __typeof__
#define typeof_ptr(ptr) typeof(ptr[0])
#define typeof_same(a, b) _Generic((a), typeof((b)): 1, default: 0)
#define def_R_(type) type* restrict PR_ ## type
#define def_V_(type) type* volatile PV_ ## type
#define def_ptr_set(type) def_R_(type); typedef def_V_(type)
#define def_tset(type) type; typedef def_ptr_set(type)
typedef __UINT8_TYPE__ def_tset(U1); typedef __UINT16_TYPE__ def_tset(U2); typedef __UINT32_TYPE__ def_tset(U4); typedef __UINT64_TYPE__ def_tset(U8);
typedef __INT8_TYPE__ def_tset(S1); typedef __INT16_TYPE__ def_tset(S2); typedef __INT32_TYPE__ def_tset(S4); typedef __INT64_TYPE__ def_tset(S8);
typedef unsigned char B1; typedef __UINT16_TYPE__ B2; typedef __UINT32_TYPE__ B4;
typedef float def_tset(F4);
typedef double def_tset(F8);
typedef float V4_F4 __attribute__((vector_size(16)));
enum { false = 0, true = 1, true_overflow, };
#define u1_(value) cast(U1, value)
#define u2_(value) cast(U2, value)
#define u4_(value) cast(U4, value)
#define u8_(value) cast(U8, value)
#define s1_(value) cast(S1, value)
#define s2_(value) cast(S2, value)
#define s4_(value) cast(S4, value)
#define s8_(value) cast(S8, value)
#define f4_(value) cast(F4, value)
#define f8_(value) cast(F8, value)
#define farray_len(array) (SSIZE)sizeof(array) / size_of( typeof((array)[0]))
#define farray_init(type, ...) (type[]){__VA_ARGS__}
#define def_farray_impl(_type, _len) _type A ## _len ## _ ## _type[_len]
#define def_farray(type, len) def_farray_impl(type, len)
#define def_enum(underlying_type, symbol) underlying_type symbol; enum symbol
#define def_struct(symbol) struct symbol symbol; struct symbol
#define def_union(symbol) union symbol symbol; union symbol
#define def_proc(symbol) symbol
#define opt_args(symbol, ...) &(symbol){__VA_ARGS__}
#define alignas _Alignas
#define alignof _Alignof
#define cast(type, data) ((type)(data))
#define pcast(type, data) * cast(type*, & (data))
#define nullptr cast(void*, 0)
#define offset_of(type, member) cast(U8, & (((type*) 0)->member))
#define size_of(data) cast(U8, sizeof(data))
#define kilo(n) (cast(U8, n) << 10)
#define mega(n) (cast(U8, n) << 20)
#define giga(n) (cast(U8, n) << 30)
#define tera(n) (cast(U8, n) << 40)
// Signed stuff (still diff flavor from Lottes)
#define sop_1(op, a, b) cast(U1, s1_(a) op s1_(b))
#define sop_2(op, a, b) cast(U2, s2_(a) op s2_(b))
#define sop_4(op, a, b) cast(U4, s4_(a) op s4_(b))
#define sop_8(op, a, b) cast(U8, s8_(a) op s8_(b))
#define def_signed_op(id, op, width) finline U ## width id ## _s ## width(U ## width a, U ## width b) {return sop_ ## width(op, a, b); }
#define def_signed_ops(id, op) def_signed_op(id, op, 1) def_signed_op(id, op, 2) def_signed_op(id, op, 4) def_signed_op(id, op, 8)
def_signed_ops(add, +) def_signed_ops(sub, -) def_signed_ops(mut, *) def_signed_ops(div, /)
def_signed_ops(gt, >) def_signed_ops(lt, <) def_signed_ops(ge, >=) def_signed_ops(le, <=)
#define def_generic_sop(op, a, ...) _Generic((a), U1: op ## _s1, U2: op ## _s2, U4: op ## _s4, U8: op ## _s8) (a, __VA_ARGS__)
#define add_s(a,b) def_generic_sop(add,a,b)
#define sub_s(a,b) def_generic_sop(sub,a,b)
#define mut_s(a,b) def_generic_sop(mut,a,b)
#define gt_s(a,b) def_generic_sop(gt, a,b)
#define lt_s(a,b) def_generic_sop(lt, a,b)
#define ge_s(a,b) def_generic_sop(ge, a,b)
#define le_s(a,b) def_generic_sop(le, a,b)
#pragma endregion DSL
#pragma region Strings
typedef unsigned char UTF8;
typedef def_struct(Str8) { UTF8* ptr; U8 len; };
typedef Str8 Slice_UTF8;
typedef def_struct(Slice_Str8) { Str8* ptr; U8 len; };
#define lit(string_literal) (Str8){ (UTF8*) string_literal, size_of(string_literal) - 1 }
#pragma endregion Strings
#pragma region Debug
#define debug_trap() __debugbreak()
#define assert_trap(cond) do { if (cond) __debug_trap(); } while(0)
#define assert_msg(cond, msg, ...) do { \
if (! (cond)) \
{ \
assert_handler( \
stringify(cond), \
__FILE__, \
__func__, \
cast(S4, __LINE__), \
msg, \
## __VA_ARGS__); \
debug_trap(); \
} \
} while(0)
void assert_handler(UTF8* condition, UTF8* file, UTF8* function, S4 line, UTF8* msg, ... );
#pragma endregion Debug
#pragma region Memory
typedef def_farray(B1, 1);
typedef def_farray(B1, 2);
typedef def_farray(B1, 4);
typedef def_farray(B1, 8);
inline U8 align_pow2(U8 x, U8 b);
#define align_struct(type_width) ((U8)(((type_width) + 7) / 8 * 8))
#define assert_bounds(point, start, end) do { \
assert(pos_start <= pos_point); \
assert(pos_point <= pos_end); \
} while(0)
U8 mem_copy (U8 dest, U8 src, U8 length);
U8 mem_copy_overlapping(U8 dest, U8 src, U8 length);
B4 mem_zero (U8 dest, U8 length);
#define check_nil(nil, p) ((p) == 0 || (p) == nil)
#define set_nil(nil, p) ((p) = nil)
#define sll_stack_push_n(f, n, next) do { (n)->next = (f); (f) = (n); } while(0)
#define sll_queue_push_nz(nil, f, l, n, next) \
( \
check_nil(nil, f) ? ( \
(f) = (l) = (n), \
set_nil(nil, (n)->next) \
) \
: ( \
(l)->next=(n), \
(l) = (n), \
set_nil(nil,(n)->next) \
) \
)
#define sll_queue_push_n(f, l, n, next) sll_queue_push_nz(0, f, l, n, next)
typedef def_struct(Slice_Mem) { U8 ptr; U8 len; };
#define def_Slice(type) def_struct(tmpl(Slice,type)) { type* ptr; U8 len; }
#define slice_assert(slice) do { assert((slice).ptr != nullptr); assert((slice).len > 0); } while(0)
#define slice_end(slice) ((slice).ptr + (slice).len)
#define size_of_slice_type(slice) size_of( * (slice).ptr )
typedef def_Slice(void);
typedef def_Slice(B1);
#define slice_byte(slice) ((Slice_B1){cast(B1, (slice).ptr), (slice).len * size_of_slice_type(slice)})
#define slice_fmem(mem) ((Slice_B1){ mem, size_of(mem) })
void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth);
void slice__zero(Slice_B1 mem, U8 typewidth);
#define slice_copy(dest, src) do { \
static_assert(typeof_same(dest, src)); \
slice__copy(slice_byte(dest), size_of_slice_type(dest), slice_byte(src), size_of_slice_type(src)); \
} while (0)
#define slice_zero(slice) slice__zero(slice_byte(slice), size_of_slice_type(slice))
#define slice_iter(container, iter) typeof((container).ptr) iter = (container).ptr; iter != slice_end(container); ++ iter
#define slice_arg_from_array(type, ...) & (tmpl(Slice,type)) { .ptr = farray_init(type, __VA_ARGS__), .len = farray_len( farray_init(type, __VA_ARGS__)) }
#pragma endregion Memory
#pragma region Math
#define min(A, B) (((A) < (B)) ? (A) : (B))
#define max(A, B) (((A) > (B)) ? (A) : (B))
#define clamp_bot(X, B) max(X, B)
#pragma endregion Math
#pragma region Allocator Interface
typedef def_enum(U4, AllocatorOp) {
AllocatorOp_Alloc_NoZero = 0, // If Alloc exist, so must No_Zero
AllocatorOp_Alloc,
AllocatorOp_Free,
AllocatorOp_Reset,
AllocatorOp_Grow_NoZero,
AllocatorOp_Grow,
AllocatorOp_Shrink,
AllocatorOp_Rewind,
AllocatorOp_SavePoint,
AllocatorOp_Query, // Must always be implemented
};
typedef def_enum(U4, AllocatorQueryFlags) {
AllocatorQuery_Alloc = (1 << 0),
AllocatorQuery_Free = (1 << 1),
// Wipe the allocator's state
AllocatorQuery_Reset = (1 << 2),
// Supports both grow and shrink
AllocatorQuery_Shrink = (1 << 4),
AllocatorQuery_Grow = (1 << 5),
AllocatorQuery_Resize = AllocatorQuery_Grow | AllocatorQuery_Shrink,
// Ability to rewind to a save point (ex: arenas, stack), must also be able to save such a point
AllocatorQuery_Rewind = (1 << 6),
};
typedef struct AllocatorProc_In AllocatorProc_In;
typedef struct AllocatorProc_Out AllocatorProc_Out;
typedef struct AllocatorSP AllocatorSP;
typedef void def_proc(AllocatorProc) (AllocatorProc_In In, AllocatorProc_Out* Out);
struct AllocatorSP {
U8 type_sig;
S8 slot;
};
struct AllocatorProc_In {
U8 data;
U8 requested_size;
U8 alignment;
union {
Slice_Mem old_allocation;
AllocatorSP save_point;
};
AllocatorOp op;
A4_B1 _PAD_;
};
struct AllocatorProc_Out {
union {
Slice_Mem allocation;
AllocatorSP save_point;
};
AllocatorQueryFlags features;
A4_B1 _PAD_;
U8 left; // Contiguous memory left
U8 max_alloc;
U8 min_alloc;
B4 continuity_break; // Whether this allocation broke continuity with the previous (address space wise)
A4_B1 _PAD_2;
};
typedef def_struct(AllocatorInfo) {
AllocatorProc* proc;
void* data;
};
static_assert(size_of(AllocatorSP) <= size_of(Slice_Mem));
typedef def_struct(AllocatorQueryInfo) {
AllocatorSP save_point;
AllocatorQueryFlags features;
A4_B1 _PAD_;
U8 left; // Contiguous memory left
U8 max_alloc;
U8 min_alloc;
B4 continuity_break; // Whether this allocation broke continuity with the previous (address space wise)
A4_B1 _PAD_2;
};
static_assert(size_of(AllocatorProc_Out) == size_of(AllocatorQueryInfo));
#define MEMORY_ALIGNMENT_DEFAULT (2 * size_of(void*))
AllocatorQueryInfo allocator_query(AllocatorInfo ainfo);
void mem_free (AllocatorInfo ainfo, Slice_Mem mem);
void mem_reset (AllocatorInfo ainfo);
void mem_rewind (AllocatorInfo ainfo, AllocatorSP save_point);
AllocatorSP mem_save_point(AllocatorInfo ainfo);
typedef def_struct(Opts_mem_alloc) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
typedef def_struct(Opts_mem_grow) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
typedef def_struct(Opts_mem_shrink) { U8 alignment; };
typedef def_struct(Opts_mem_resize) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
Slice_Mem mem__alloc (AllocatorInfo ainfo, U8 size, Opts_mem_alloc* opts);
Slice_Mem mem__grow (AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow* opts);
Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resize* opts);
Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shrink* opts);
#define mem_alloc(ainfo, size, ...) mem__alloc (ainfo, size, opt_args(Opts_mem_alloc, __VA_ARGS__))
#define mem_grow(ainfo, mem, size, ...) mem__grow (ainfo, mem, size, opt_args(Opts_mem_grow, __VA_ARGS__))
#define mem_resize(ainfo, mem, size, ...) mem__resize(ainfo, mem, size, opt_args(Opts_mem_resize, __VA_ARGS__))
#define mem_shrink(ainfo, mem, size, ...) mem__shrink(ainfo, mem, size, opt_args(Opts_mem_shrink, __VA_ARGS__))
#define alloc_type(ainfo, type, ...) (type*) mem__alloc(ainfo, size_of(type), opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr
#define alloc_slice(ainfo, type, num, ...) (tmpl(Slice,type)){ mem__alloc(ainfo, size_of(type) * num, opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr, num }
#pragma endregion Allocator Interface
#pragma region FArena (Fixed-Sized Arena)
typedef def_struct(Opts_farena) {
Str8 type_name;
U8 alignment;
};
typedef def_struct(FArena) {
U8 start;
U8 capacity;
U8 used;
};
typedef def_ptr_set(FArena);
FArena farena_make (Slice_Mem mem);
void farena_init (FArena*R_ arena, Slice_Mem byte);
Slice_Mem farena__push (FArena*R_ arena, U8 amount, U8 type_width, Opts_farena* opts);
void farena_reset (FArena*R_ arena);
void farena_rewind(FArena*R_ arena, AllocatorSP save_point);
AllocatorSP farena_save (FArena arena);
void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out);
#define ainfo_farena(arena) (AllocatorInfo){ .proc = farena_allocator_proc, .data = & arena }
#define farena_push(arena, type, ...) \
cast(type*, farena__push(arena, size_of(type), 1, opt_args(Opts_farena_push, lit(stringify(type)), __VA_ARGS__))).ptr
#define farena_push_array(arena, type, amount, ...) \
(Slice ## type){ farena__push(arena, size_of(type), amount, opt_args(Opts_farena_push, lit(stringify(type)), __VA_ARGS__)).ptr, amount }
#pragma endregion FArena
#pragma region OS
typedef def_struct(OS_SystemInfo) {
U8 target_page_size;
};
typedef def_struct(Opts_vmem) {
U8 base_addr;
B4 no_large_pages;
A4_B1 _PAD_;
};
void os_init(void);
OS_SystemInfo* os_system_info(void);
inline B4 os__vmem_commit(U8 vm, U8 size, Opts_vmem* opts);
inline U8 os__vmem_reserve(U8 size, Opts_vmem* opts);
inline void os_vmem_release(U8 vm, U8 size);
#define os_vmem_reserve(size, ...) os__vmem_reserve(size, opt_args(Opts_vmem, __VA_ARGS__))
#define os_vmem_commit(vm, size, ...) os__vmem_commit(vm, size, opt_args(Opts_vmem, __VA_ARGS__))
#pragma endregion OS
#pragma region VArena (Virutal Address Space Arena)
typedef Opts_farena Opts_varena;
typedef def_enum(U4, VArenaFlags) {
VArenaFlag_NoLargePages = (1 << 0),
};
typedef def_struct(VArena) {
U8 reserve_start;
U8 reserve;
U8 commit_size;
U8 committed;
U8 commit_used;
VArenaFlags flags;
A4_B1 _PAD;
};
typedef def_struct(Opts_varena_make) {
U8 base_addr;
U8 reserve_size;
U8 commit_size;
VArenaFlags flags;
A4_B1 _PAD_;
};
VArena* varena__make(Opts_varena_make* opts);
#define varena_make(...) varena__make(opt_args(Opts_varena_make, __VA_ARGS__))
Slice_Mem varena__push (VArena* arena, U8 amount, U8 type_width, Opts_varena* opts);
void varena_release(VArena* arena);
void varena_rewind (VArena* arena, AllocatorSP save_point);
void varena_reset (VArena* arena);
Slice_Mem varena__shrink(VArena* arena, Slice_Mem old_allocation, U8 requested_size, Opts_varena* opts);
AllocatorSP varena_save (VArena* arena);
void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out);
#define ainfo_varena(varena) (AllocatorInfo) { .proc = & varena_allocator_proc, .data = varena }
#define varena_push(arena, type, ...) \
cast(type*, varena__push(arena, 1, size_of(type), opt_args(Opts_varena, lit(stringify(type)), __VA_ARGS__) ).ptr)
#define varena_push_array(arena, type, amount, ...) \
(tmpl(Slice,type)){ varena__push(arena, size_of(type), amount, opt_args(Opts_varena, lit(stringify(type)), __VA_ARGS__)).ptr, amount }
#pragma endregion VArena
#pragma region Arena (Casey-Ryan Composite Arenas)
typedef Opts_varena Opts_arena;
typedef def_enum(U4, ArenaFlags) {
ArenaFlag_NoLargePages = (1 << 0),
ArenaFlag_NoChain = (1 << 1),
};
typedef def_struct(Arena) {
VArena* backing;
Arena* prev;
Arena* current;
U8 base_pos;
U8 pos;
ArenaFlags flags;
A4_B1 _PAD_;
};
typedef Opts_varena_make Opts_arena_make;
Arena* arena__make (Opts_arena_make* opts);
Slice_Mem arena__push (Arena* arena, U8 amount, U8 type_width, Opts_arena* opts);
void arena_release(Arena* arena);
void arena_reset (Arena* arena);
void arena_rewind (Arena* arena, AllocatorSP save_point);
AllocatorSP arena_save (Arena* arena);
void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out);
#define ainfo_arena(arena) (AllocatorInfo){ .proc = & arena_allocator_proc, .data = arena }
#define arena_make(...) arena__make(opt_args(Opts_arena_make, __VA_ARGS__))
#define arena_push(arena, type, ...) \
cast(type*, arena__push(arena, 1, size_of(type), opt_args(Opts_arena, lit(stringify(type)), __VA_ARGS__) ).ptr)
#define arena_push_array(arena, type, amount, ...) \
(tmpl(Slice,type)){ arena__push(arena, size_of(type), amount, opt_args(Opts_arena, lit(stringify(type)), __VA_ARGS__)).ptr, amount }
#pragma endregion Arena
#pragma region Hashing
finline
void hash64_djb8(PR_U8 hash, Slice_Mem bytes) {
U8 elem = bytes.ptr;
U8 curr = hash[0];
loop:
hash[0] <<= 8;
hash[0] += hash[0];
curr += elem;
hash[0] = curr;
if (elem != bytes.ptr + bytes.len)
goto end;
++ elem;
goto loop;
end:
return;
}
#pragma endregion Hashing
#pragma region Key Table 1-Layer Linear (KT1L)
#define def_KT1L_Slot(type) \
def_struct(tmpl(KT1L_Slot,type)) { \
U64 key; \
type value; \
}
#define def_KT1L(type) \
def_Slice(tmpl(KT1L_Slot,type)); \
typedef tmpl(Slice_KT1L_Slot,type) tmpl(KT1L,type)
typedef Slice_Mem KT1L_Byte;
typedef def_struct(KT1L_Meta) {
U8 slot_size;
U8 kt_value_offset;
U8 type_width;
Str8 type_name;
};
void kt1l__populate_slice_a2(KT1L_Byte* kt, AllocatorInfo backing, KT1L_Meta m, Slice_Mem values, U8 num_values );
#define kt1l_populate_slice_a2(type, kt, ainfo, values) kt1l__populate_slice_a2( \
cast(KT1L_Byte*, kt), \
ainfo, \
(KT1L_Meta){ \
.slot_size = size_of(tmpl(KT1L_Slot,type)), \
.kt_value_offset = offset_of(tmpl(KT1L_Slot,type), value), \
.type_width = size_of(type), \
.type_name = lit(stringify(type)) \
}, \
slice_byte(values), (values).len \
)
#pragma endregion KT1L
#pragma region Key Table 1-Layer Chained-Chunked-Cells (KT1CX)
#define def_KT1CX_Slot(type) \
def_struct(tmpl(KT1CX_Slot,type)) { \
type value; \
U64 key; \
B32 occupied; \
byte_pad(4); \
}
#define def_KT1CX_Cell(type, depth) \
def_struct(tmpl(KT1CX_Cell,type)) { \
tmpl(KT1CX_Slot,type) slots[depth]; \
tmpl(KT1CX_Cell,type)* next; \
}
#define def_KT1CX(type) \
def_struct(tmpl(KT1CX,type)) { \
tmpl(Slice_KT1CX_Cell,type) cell_pool; \
tmpl(Slice_KT1CX_Cell,type) table; \
}
typedef def_struct(KT1CX_Byte_Slot) {
U8 key;
B4 occupied;
A4_B1 _PAD_;
};
typedef def_struct(KT1CX_Byte_Cell) {
U8 next;
};
typedef def_struct(KT1CX_Byte) {
Slice_Mem cell_pool;
Slice_Mem table;
};
typedef def_struct(KT1CX_ByteMeta) {
U8 slot_size;
U8 slot_key_offset;
U8 cell_next_offset;
U8 cell_depth;
U8 cell_size;
U8 type_width;
Str8 type_name;
};
typedef def_struct(KT1CX_InfoMeta) {
U8 cell_pool_size;
U8 table_size;
U8 slot_size;
U8 slot_key_offset;
U8 cell_next_offset;
U8 cell_depth;
U8 cell_size;
U8 type_width;
Str8 type_name;
};
typedef def_struct(KT1CX_Info) {
AllocatorInfo backing_table;
AllocatorInfo backing_cells;
};
void kt1cx_init (KT1CX_Info info, KT1CX_InfoMeta m, KT1CX_Byte* result);
void kt1cx_clear (KT1CX_Byte kt, KT1CX_ByteMeta meta);
U8 kt1cx_slot_id(KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta);
U8 kt1cx_get (KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta);
U8 kt1cx_set (KT1CX_Byte kt, U8 key, Slice_Mem value, AllocatorInfo backing_cells, KT1CX_ByteMeta meta);
#define kt1cx_assert(kt) do { \
slice_assert(kt.cell_pool); \
slice_assert(kt.table); \
} while(0)
#define kt1cx_byte(kt) (KT1CX_Byte){slice_byte(kt.cell_pool), { cast(Byte*, kt.table.ptr), kt.table.len } }
#pragma endregion KT1CX
#pragma endregion Header
#pragma region Implementation
#pragma endrgion Implementation
int main(void)
{
U8 a = 4;
U8 b = 2;
a = add_s(a, b);
U8 test = ge_s(a, b);
return 0;
}
#pragma clang diagnostic pop