Files
WATL_Exercise/Odin/watl.v0.odin
2025-06-25 17:03:28 -04:00

587 lines
16 KiB
Odin

/*
WATL Exercise
Version: 0 (From Scratch, 1-Stage Compilation, WinAPI Only, Win CRT Multi-threaded Static Linkage)
Host: Windows 11 (x86-64)
Toolchain: odin-lang/Odin dev-2025-06
*/
package odin
main :: proc()
{
}
import "base:builtin"
import "base:intrinsics"
//#region("Package Mappings")
abs :: builtin.abs
min :: builtin.min
max :: builtin.max
clamp :: builtin.clamp
copy :: proc {
memory_copy,
slice_copy,
}
copy_non_overlapping :: proc {
memory_copy_non_overlapping,
slice_copy_non_overlapping,
}
end :: proc {
slice_end,
}
zero :: proc {
memory_zero,
slice_zero,
}
zero_explicit :: proc {
memory_zero_explicit,
}
watl_lex :: proc {
api_watl_lex,
watl_lex_stack
}
watl_parse :: proc {
api_watl_parse,
watl_parse_stack,
}
//#endregion("Package Mappings")
//#region("Memory")
align_pow2 :: proc(x: int, b: int) -> int {
assert(b != 0)
assert((b & (b - 1)) == 0) // Check power of 2
return ((x + b - 1) & ~(b - 1))
}
memory_zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
intrinsics.mem_zero(data, len)
return data
}
memory_zero_explicit :: proc "contextless" (data: rawptr, len: int) -> rawptr {
intrinsics.mem_zero_volatile(data, len) // Use the volatile mem_zero
intrinsics.atomic_thread_fence(.Seq_Cst) // Prevent reordering
return data
}
memory_copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
intrinsics.mem_copy(dst, src, len)
return dst
}
memory_copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
intrinsics.mem_copy_non_overlapping(dst, src, len)
return dst
}
Raw_Slice :: struct {
data: rawptr,
len: int,
}
slice_assert :: proc "contextless" (s: $Type / []$SliceType) -> Type {
return assert(len(s) > 0) && assert(s != nil)
}
slice_end :: proc "contextless" (s : $Type / []$SliceType) -> Type {
return s[len(s) - 1]
}
size_of_slice_type :: proc "contextless" (slice: $Type / []$SliceType) -> int {
return size_of(E)
}
@(require_results)
slice_to_bytes :: proc "contextless" (s: []$Type) -> []byte {
return ([^]byte)(raw_data(s))[:len(s) * size_of(T)]
}
slice_zero :: proc "contextless" (data: $Type / []$SliceType) -> Type {
zero(raw_data(data), size_of(E) * len(data))
return data
}
slice_copy :: proc "contextless" (dst, src: $Ttype / []$SliceType) -> int {
n := max(0, min(len(dst), len(src)))
if n > 0 {
intrinsics.mem_copy(raw_data(dst), raw_data(src), n*size_of(E))
}
return n
}
slice_copy_non_overlapping :: proc "contextless" (dst, src: $Type / []$SliceType) -> int {
n := max(0, min(len(dst), len(src)))
if n > 0 {
intrinsics.mem_copy_non_overlapping(raw_data(dst), raw_data(src), n*size_of(E))
}
return n
}
sll_stack_push_n :: proc "contextless" (first: ^$SLL_NodeType, n: ^SLL_NodeType) {
n.next = first^
first^ = n
}
sll_queue_push_nz :: proc(nil_val: ^$SLL_NodeType, first: ^SLL_NodeType, last: ^SLL_NodeType, n: ^SLL_NodeType) {
if first^ == nil_val {
first^ = n
last^ = n
n.next = nil_val
}
else {
last^.next = n
last^ = n
n.next = nil_val
}
}
sll_queue_push_n :: proc "contextless" (first: ^$SLL_NodeType, last: ^SLL_NodeType, n: ^SLL_NodeType) {
sll_queue_push_nz(nil, first, last, n)
}
//#endregion("Memory")
//#region Allocator Interface
AllocatorOp :: enum u32 {
Alloc_NoZero = 0, // If Alloc exist, so must No_Zero
Alloc,
Free,
Reset,
Grow_NoZero,
Grow,
Shrink,
Rewind,
SavePoint,
Query, // Must always be implemented
}
AllocatorQueryFlag :: enum u64 {
AllocatorQuery_Alloc,
AllocatorQuery_Free,
// Wipe the allocator's state
AllocatorQuery_Reset,
// Supports both grow and shrink
AllocatorQuery_Shrink,
AllocatorQuery_Grow,
// Ability to rewind to a save point (ex: arenas, stack), must also be able to save such a point
AllocatorQuery_Rewind,
}
AllocatorQueryFlags :: bit_set[AllocatorQueryFlag; u64]
AllocatorSP :: struct {
type_sig: ^AllocatorProc,
slot: int,
}
AllocatorProc :: #type proc (input: AllocatorProc_In, out: ^AllocatorProc_Out)
AllocatorProc_In :: struct {
data: rawptr,
requested_size: int,
alignment: int,
old_allocation: []byte,
op: AllocatorOp,
}
AllocatorProc_Out :: struct {
using _ : struct #raw_union {
allocation: []byte,
save_point: AllocatorSP,
},
features: AllocatorQueryFlags,
left: int,
max_alloc: int,
min_alloc: int,
continuity_break: b32,
}
AlllocatorQueryInfo :: struct {
save_point: AllocatorSP,
features: AllocatorQueryFlags,
left: int,
max_alloc: int,
min_alloc: int,
continuity_break: b32,
}
AllocatorInfo :: struct {
procedure: AllocatorProc,
data: rawptr,
}
// #assert(size_of(AllocatorQueryInfo) == size_of(AllocatorProc_Out))
MEMORY_ALIGNMENT_DEFAULT :: 2 * size_of(rawptr)
allocator_query :: proc(ainfo: AllocatorInfo) -> AlllocatorQueryInfo {
return {}
}
mem_free :: proc(ainfo: AllocatorInfo, mem: []byte) {
}
mem_reset :: proc(ainfo: AllocatorInfo) {
}
mem_rewind :: proc(ainfo: AllocatorInfo, save_point: AllocatorSP) {
}
mem_save_point :: proc(ainfo: AllocatorInfo) -> AllocatorSP {
return {}
}
mem_alloc :: proc(ainfo: AllocatorInfo, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false) -> []byte {
return {}
}
mem_grow :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false) -> []byte {
return {}
}
mem_resize :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false) -> []byte {
return {}
}
mem_shrink :: proc(ainfo: AllocatorInfo, mem: []byte, size: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT, no_zero: b32 = false) -> []byte {
return {}
}
alloc_type :: proc(ainfo: AllocatorInfo, $Type: typeid) -> ^Type {
return nil
}
alloc_slice :: proc(ainfo: AllocatorInfo, $Type: typeid, num : int) -> []Type {
return {}
}
//#endregion Allocator Interface
//#region("Strings")
Raw_String :: struct {
data: [^]byte,
len: int,
}
//#endregion("Strings")
//#region("FArena")
FArena :: struct {
mem: []byte,
used: int,
}
farena_make :: proc(backing: []byte) -> FArena { arena := FArena {mem = backing}; return arena }
farena_init :: proc(arena: ^FArena, backing: []byte) {
}
farena_push :: proc(arena: ^FArena, $Type: typeid, amount: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT) -> []Type {
}
farena_reset :: proc(arena: ^FArena) {
arena.used = 0
}
farena_rewind :: proc(arena: ^FArena, save_point: AllocatorSP) {
}
farena_save :: proc(arena: FArena) -> AllocatorSP {
return {}
}
farena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Out) {
}
//#endregion("FArena")
//#region("OS")
OS_SystemInfo :: struct {
target_page_size: int,
}
os_init :: proc() {
}
os_system_info :: proc() {
}
os_vmem_commit :: proc(vm: rawptr, size: int, no_large_pages: b32 = false) {
}
os_vmem_reserve :: proc(size: int, base_addr: int = 0, no_large_pages: b32 = false) -> rawptr {
return nil
}
os_vmem_release :: proc(vm : rawptr, size: int) {
}
//#endregion("OS")
//#region("VArena")
VArenaFlag :: enum u32 {
No_Large_Pages,
}
VArenaFlags :: bit_set[VArenaFlag; u32]
VArena :: struct {
reserve_start: int,
reserve: int,
commit_size: int,
committed: int,
commit_used: int,
flags: VArenaFlags,
}
varena_make :: proc(base_addr, reserve_size, commit_size: int, flags: VArenaFlags) -> VArena {
return {}
}
varena_push :: proc(va: ^VArena, $Type: typeid, amount: int, alignment: int = MEMORY_ALIGNMENT_DEFAULT) -> []Type {
return {}
}
varena_release :: proc(va: ^VArena) {
}
varena_rewind :: proc(va: ^VArena) {
}
varena_shrink :: proc(va: ^VArena) {
}
varena_save :: proc(va: ^VArena) -> AllocatorSP {
return {}
}
varena_allocator_proc :: proc(input: AllocatorProc_In, output: ^AllocatorProc_Out) {
}
//#endregion("VArena")
//#region("Arena (Casey-Ryan Composite Arena")
ArenaFlag :: enum u32 {
No_Large_Pages,
No_Chaining,
}
ArenaFlags :: bit_set[ArenaFlag; u32]
Arena :: struct {
backing: ^VArena,
prev: ^Arena,
curr: ^Arena,
base_pos: int,
pos: int,
flags: ArenaFlags,
}
arena_make :: proc()
arena_push :: proc()
arena_release :: proc()
arena_reset :: proc()
arena_rewind :: proc()
arena_save :: proc()
arena_allocator_proc :: proc(input: AllocatorProc_In, output: AllocatorProc_Out)
//#endregion("Arena (Casey-Ryan Composite Arena")
//#region("Hashing")
hash64_djb8 :: proc() {}
//#endregion("Hashing")
//#region("Key Table 1-Layer Linear (KT1L)")
KT1L_Slot :: struct($type: typeid) {
key: u64,
value: type
}
KT1L_Meta :: struct {
slot_size: int,
kt_value_offset: int,
type_width: int,
type_name: int,
}
kt1l_populate_slice_a2_Slice_Byte :: proc(kt: ^[]KT1L_Slot(byte), m: KT1L_Meta, backing: AllocatorInfo, values: [][2]byte) -> int {
return 0
}
kt1l_populate_slice_a2 :: proc($Type: typeid, kt: ^[]KT1L_Slot(Type), backing: AllocatorInfo, values: [][2]Type) -> int {
return 0
}
//#endregion("Key Table 1-Layer Linear (KT1L)")
//#region("Key Table 1-Layer Chained-Chunked-Cells (KT1CX)")
KT1CX_Slot :: struct($type: typeid) {
value: type,
key: u64,
occupied: b32,
}
KT1CX_Cell :: struct($type: typeid, $depth: int) {
slots: [depth]KT1CX_Slot(type),
next: ^KT1CX_Cell(type, depth),
}
KT1CX :: struct($type: typeid, $depth: int, $cell: typeid / KT1CX_Cell(type, depth)) {
cell_pool: []cell,
table: []cell,
}
KT1CX_Byte_Slot :: struct {
key: u64,
occupied: b32,
}
KT1CX_Byte_Cell :: struct {
next: ^byte,
}
KT1CX_Byte :: struct {
cell_pool: []byte,
table: []byte,
}
KT1CX_ByteMeta :: struct {
slot_size: int,
slot_key_offset: int,
cell_next_offset: int,
cell_depth: int,
cell_size: int,
type_width: int,
type_name: string,
}
KT1CX_InfoMeta :: struct {
cell_pool_size: int,
table_size: int,
slot_size: int,
slot_key_offset: int,
cell_next_offset: int,
cell_depth: int,
cell_size: int,
type_width: int,
type_name: string,
}
KT1CX_Info :: struct {
backing_table: AllocatorInfo,
backing_cells: AllocatorInfo,
}
kt1cx_init :: proc(info: KT1CX_Info, m: KT1CX_InfoMeta, result: ^KT1CX_Byte) {
}
kt1cx_clear :: proc(kt: KT1CX_Byte, m: KT1CX_ByteMeta) {
}
kt1cx_slot_id :: proc(kt: KT1CX_Byte, key: u64, m: KT1CX_ByteMeta) -> u64 {
return 0
}
kt1cx_get :: proc(kt: KT1CX_Byte, key: u64, m: KT1CX_ByteMeta) -> ^byte {
return nil
}
kt1cx_set :: proc(kt: KT1CX_Byte, key: u64, value: []byte, backing_cells: AllocatorInfo, m: KT1CX_ByteMeta) -> ^byte {
return nil
}
kt1cx_assert :: proc(kt: $type / KT1CX) {
slice_assert(kt.cell_pool)
slice_assert(kt.table)
}
kt1cx_byte :: proc(kt: $type / KT1CX) -> KT1CX_Byte { return { slice_to_bytes(kt.cell_pool), slice_to_bytes(kt.table) } }
//#endregion("Key Table 1-Layer Chained-Chunked-Cells (KT1CX)")
//#region("String Operations")
char_is_upper :: proc(c: u8) -> b32 { return('A' <= c && c <= 'Z') }
char_to_lower :: proc(c: u8) -> u8 { c:=c; if (char_is_upper(c)) { c += ('a' - 'A') }; return (c) }
integer_symbols :: proc(value: u8) -> u8 {
@static lookup_table: [16]u8 = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F', };
return lookup_table[value];
}
str8_to_cstr_capped :: proc(content: string, mem: []byte) -> cstring {
return nil
}
str8_from_u32 :: proc(ainfo: AllocatorInfo, num: u32, radix: u32 = 10, min_digits: u8 = 0, digit_group_separator: u8 = 0) -> string {
return {}
}
str8_fmt_backed :: proc(tbl_ainfo, buf_ainfo: AllocatorInfo, fmt_template: string, entries: [][2]string) -> string {
return {}
}
str8_fmt_tmp :: proc(fmt_template: string, entries: [][2]string) -> string {
return {}
}
Str8Cache_CELL_DEPTH :: 4
KT1CX_Slot_Str8 :: KT1CX_Slot(string)
KT1CX_Cell_Str8 :: KT1CX_Cell(string, Str8Cache_CELL_DEPTH)
KT1CX_Str8 :: KT1CX(string, Str8Cache_CELL_DEPTH, KT1CX_Cell_Str8)
Str8Cache :: struct {
str_reserve: AllocatorInfo,
cell_reserve: AllocatorInfo,
tbl_backing: AllocatorInfo,
kt: KT1CX_Str8,
}
str8cache_init :: proc(cache: ^Str8Cache, str_reserve, cell_reserve, tbl_backing: AllocatorInfo, cell_pool_size, table_size: int) {
}
str8cache_make :: proc(str_reserve, cell_reserve, tbl_backing: AllocatorInfo, cell_pool_size, table_size: int) -> Str8Cache {
cache : Str8Cache; str8cache_init(& cache, str_reserve, cell_reserve, tbl_backing, cell_pool_size, table_size); return cache
}
str8cache_clear :: proc(kt: KT1CX_Str8) {
}
str8cache_get :: proc(kt: KT1CX_Str8, key: u64) -> ^string {
return nil
}
str8cache_set :: proc(kt: KT1CX_Str8, key: u64, value: string, str_reserve, cell_reserve: AllocatorInfo) -> ^string {
return nil
}
cache_str8 :: proc(cache: ^Str8Cache, str: string) -> ^string {
return nil
}
Str8Gen :: struct {
backing: AllocatorInfo,
ptr: ^u8,
len: int,
cap: int,
}
str8gen_init :: proc(gen: ^Str8Gen, ainfo: AllocatorInfo) {
}
str8gen_make :: proc(ainfo: AllocatorInfo) -> Str8Gen { gen: Str8Gen; str8gen_init(& gen, ainfo); return gen }
str8gen_to_bytes :: proc(gen: Str8Gen) -> []byte { return transmute([]byte) Raw_Slice {data = gen.ptr, len = gen.len} }
str8_from_str8gen :: proc(gen: Str8Gen) -> string { return transmute(string) Raw_Slice {data = gen.ptr, len = gen.len} }
str8gen_append_str8 :: proc(gen: ^Str8Gen, str: string) {
}
str8gen_append_fmt :: proc(gen: ^Str8Gen, fmt_template: string, tokens: [][2]string) {
}
//#endregion("String Operations")
//#region("File System")
FileOpInfo :: struct {
content: []byte,
}
api_file_read_contents :: proc(result: ^FileOpInfo, path: string, backing: AllocatorInfo, zero_backing: b32 = false) {
}
file_read_contents_stack :: proc(path: string, backing: AllocatorInfo, zero_backing: b32 = false) -> FileOpInfo {
return {}
}
//#endregion("File System")
//#region("WATL")
WATL_TokKind :: enum u32 {
Space = ' ',
Tab = '\t',
Carriage_Return = '\r',
Line_Feed = '\n',
Text = 0xFFFFFFFF,
}
WATL_Tok :: string
WATL_LexStatus_Flag :: enum u32 {
MemFail_SliceConstraintFail,
}
WATL_LexStatus :: bit_set[WATL_LexStatus_Flag; u32]
WATL_Pos :: struct {
line, column: i32,
}
WATL_LexMsg :: struct {
next: ^WATL_LexMsg,
content: string,
tok: ^WATL_Tok,
pos: WATL_Pos,
}
WATL_LexInfo :: struct {
msgs: ^WATL_LexMsg,
toks: []WATL_Tok,
signal: WATL_LexStatus,
}
api_watl_lex :: proc(info: ^WATL_LexInfo, source: string,
ainfo_msgs: AllocatorInfo,
ainfo_toks: AllocatorInfo,
failon_unsupported_codepoints: b8 = false,
failon_pos_untrackable: b8 = false,
failon_slice_constraint_fail : b8 = false,
) {
}
watl_lex_stack :: proc(source: string,
ainfo_msgs: AllocatorInfo,
ainfo_toks: AllocatorInfo,
failon_unsupported_codepoints: b8 = false,
failon_pos_untrackable: b8 = false,
failon_slice_constraint_fail : b8 = false,
) -> (info: WATL_LexInfo)
{
return
}
WATL_Node :: string
WATL_Line :: []WATL_Node
WATL_ParseMsg :: struct {
next: ^WATL_ParseMsg,
content: string,
line: ^WATL_Line,
tok: ^WATL_Tok,
pos: ^WATL_Pos,
}
WATL_ParseStatus_Flag :: enum u32 {
MemFail_SliceConstraintFail,
}
WATL_ParseStatus :: bit_set[WATL_ParseStatus_Flag; u32]
WATL_ParseInfo :: struct {
lines: []WATL_Line,
msgs: ^WATL_ParseMsg,
signal: WATL_LexStatus,
}
api_watl_parse :: proc(info: ^WATL_ParseInfo, tokens: []WATL_Tok,
ainfo_msgs: AllocatorInfo,
ainfo_nodes: AllocatorInfo,
ainfo_lines: AllocatorInfo,
str_cache: ^Str8Cache,
failon_slice_constraint_fail: b32,
) {
}
watl_parse_stack :: proc(tokens: []WATL_Tok,
ainfo_msgs: AllocatorInfo,
ainfo_nodes: AllocatorInfo,
ainfo_lines: AllocatorInfo,
str_cache: ^Str8Cache,
failon_slice_constraint_fail: b32,
) -> (info: WATL_ParseInfo)
{
return
}
//#endregion("WATL")