mirror of
https://github.com/Ed94/WATL_Exercise.git
synced 2025-11-08 17:49:18 -08:00
1126 lines
49 KiB
C
1126 lines
49 KiB
C
/*
|
|
WATL Exercise
|
|
Version: 0 (From Scratch, 1-Stage Compilation, LLVM & WinAPI Only, Win CRT Multi-threaded Static Linkage)
|
|
Host: Windows 11 (x86-64)
|
|
Toolchain: LLVM (2025-08-30), C-Stanard: 11
|
|
|
|
Following strictly: Neokineogfx - Fixing C
|
|
https://youtu.be/RrL7121MOeA
|
|
|
|
Unlike lottes_hybrid this file will be entirely untyped for any pointer addressing.
|
|
Win CRT imports will also be typeless signatures.
|
|
*/
|
|
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wpre-c11-compat"
|
|
// #pragma clang diagnostic ignored "-Wc++-keyword"
|
|
#pragma clang diagnostic ignored "-Wcast-qual"
|
|
#pragma clang diagnostic ignored "-Wunused-const-variable"
|
|
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
|
|
#pragma clang diagnostic ignored "-Wswitch"
|
|
#pragma clang diagnostic ignored "-Wunused-variable"
|
|
#pragma clang diagnostic ignored "-Wunknown-pragmas"
|
|
#pragma clang diagnostic ignored "-Wvarargs"
|
|
#pragma clang diagnostic ignored "-Wunused-function"
|
|
#pragma clang diagnostic ignored "-Wbraced-scalar-init"
|
|
#pragma clang diagnostic ignored "-W#pragma-messages"
|
|
#pragma clang diagnostic ignored "-Wstatic-in-inline"
|
|
#pragma clang diagnostic ignored "-Wkeyword-macro"
|
|
#pragma clang diagnostic ignored "-Wc23-compat"
|
|
#pragma clang diagnostic ignored "-Wreserved-identifier"
|
|
#pragma clang diagnostic ignored "-Wc23-extensions"
|
|
#pragma clang diagnostic ignored "-Wunused-macros"
|
|
#pragma clang diagnostic ignored "-Wdeclaration-after-statement"
|
|
#pragma clang diagnostic ignored "-Wunsafe-buffer-usage"
|
|
#pragma clang diagnostic ignored "-Wimplicit-function-declaration"
|
|
#pragma clang diagnostic ignored "-Wcast-align"
|
|
#pragma clang diagnostic ignored "-Wunused-parameter"
|
|
#pragma clang diagnostic ignored "-Wswitch-default"
|
|
#pragma clang diagnostic ignored "-Wmissing-field-initializers"
|
|
#pragma clang diagnostic ignored "-Wgnu-zero-variadic-macro-arguments"
|
|
#pragma clang diagnostic ignored "-Wpointer-sign"
|
|
|
|
#pragma region Header
|
|
|
|
#pragma region DSL
|
|
#define local_persist static
|
|
#define global static
|
|
#define internal static
|
|
|
|
#define A_(x) __attribute__((aligned (x)))
|
|
#define E_(x,y) __builtin_expect(x,y)
|
|
#define S_ static
|
|
#define I_ internal inline __attribute__((always_inline))
|
|
#define N_ internal __attribute__((noinline))
|
|
#define R_ __restrict
|
|
#define V_ volatile
|
|
#define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
|
|
|
|
#define reg register
|
|
|
|
#define glue_impl(A, B) A ## B
|
|
#define glue(A, B) glue_impl(A, B)
|
|
#define stringify_impl(S) #S
|
|
#define stringify(S) cast(UTF8*, stringify_impl(S))
|
|
#define tmpl(prefix, type) prefix ## _ ## type
|
|
|
|
#define static_assert _Static_assert
|
|
#define typeof __typeof__
|
|
#define typeof_ptr(ptr) typeof(ptr[0])
|
|
#define typeof_same(a, b) _Generic((a), typeof((b)): 1, default: 0)
|
|
|
|
#define def_R_(type) type*restrict type ## _R
|
|
#define def_V_(type) type*volatile type ## _V
|
|
#define def_ptr_set(type) def_R_(type); typedef def_V_(type)
|
|
#define def_tset(type) type; typedef def_ptr_set(type)
|
|
|
|
/* Deviation from Lottes's Convention: Using byte-width for the with a single letter to indicating underlying type or intent.
|
|
U1: B1
|
|
U2: W1
|
|
U4: I1
|
|
U8: L1
|
|
S1: SB1
|
|
S2: SW1
|
|
S4: SI1
|
|
S8: SL1
|
|
F4: F1
|
|
F8: D1
|
|
F4_4: F4
|
|
*/
|
|
typedef __UINT8_TYPE__ def_tset(U1); typedef __UINT16_TYPE__ def_tset(U2); typedef __UINT32_TYPE__ def_tset(U4); typedef __UINT64_TYPE__ def_tset(U8);
|
|
typedef __INT8_TYPE__ def_tset(S1); typedef __INT16_TYPE__ def_tset(S2); typedef __INT32_TYPE__ def_tset(S4); typedef __INT64_TYPE__ def_tset(S8);
|
|
typedef unsigned char def_tset(B1); typedef __UINT16_TYPE__ def_tset(B2); typedef __UINT32_TYPE__ def_tset(B4); typedef __UINT64_TYPE__ def_tset(B8);
|
|
typedef float def_tset(F4);
|
|
typedef double def_tset(F8);
|
|
typedef float F4_4 __attribute__((vector_size(16))); typedef def_ptr_set(F4_4);
|
|
enum { false = 0, true = 1, true_overflow, };
|
|
|
|
#define u1_r(value) cast(U1_R, value)
|
|
#define u2_r(value) cast(U2_R, value)
|
|
#define u4_r(value) cast(U4_R, value)
|
|
#define u8_r(value) cast(U8_R, value)
|
|
#define u1_v(value) cast(U1_V, value)
|
|
#define u2_v(value) cast(U2_V, value)
|
|
#define u4_v(value) cast(U4_V, value)
|
|
#define u8_v(value) cast(U8_V, value)
|
|
|
|
#define u1_(value) cast(U1, value)
|
|
#define u2_(value) cast(U2, value)
|
|
#define u4_(value) cast(U4, value)
|
|
#define u8_(value) cast(U8, value)
|
|
#define s1_(value) cast(S1, value)
|
|
#define s2_(value) cast(S2, value)
|
|
#define s4_(value) cast(S4, value)
|
|
#define s8_(value) cast(S8, value)
|
|
#define f4_(value) cast(F4, value)
|
|
#define f8_(value) cast(F8, value)
|
|
|
|
#define uvar(Type, sym) B1 sym[sizeof(Type)]
|
|
#define farray_len(array) (U8)sizeof(array) / size_of( typeof((array)[0]))
|
|
#define farray_init(type, ...) (type[]){__VA_ARGS__}
|
|
#define def_farray_sym(_type, _len) A ## _len ## _ ## _type
|
|
#define def_farray_impl(_type, _len) _type def_farray_sym(_type, _len)[_len]; typedef def_ptr_set(def_farray_sym(_type, _len))
|
|
#define def_farray(type, len) def_farray_impl(type, len)
|
|
#define def_enum(underlying_type, symbol) underlying_type def_tset(symbol); enum symbol
|
|
#define def_struct(symbol) struct symbol def_tset(symbol); struct symbol
|
|
#define def_union(symbol) union symbol def_tset(symbol); union symbol
|
|
#define def_proc(symbol) symbol
|
|
#define opt_args(symbol, ...) &(symbol){__VA_ARGS__}
|
|
|
|
#define alignas _Alignas
|
|
#define alignof _Alignof
|
|
#define cast(type, data) ((type)(data))
|
|
#define pcast(type, data) cast(type*, & (data))[0]
|
|
#define nullptr cast(void*, 0)
|
|
#define null cast(U8, 0)
|
|
#define soff(type, member) cast(U8, & (((type*) 0)->member))
|
|
#define size_of(data) cast(U8, sizeof(data))
|
|
|
|
#define r_(ptr) cast(typeof_ptr(ptr)*R_, ptr)
|
|
#define v_(ptr) cast(typeof_ptr(ptr)*V_, ptr)
|
|
#define tr_(type, ptr) cast(type*R_, ptr)
|
|
#define tv_(type, ptr) cast(type*V_, ptr)
|
|
|
|
#define kilo(n) (cast(U8, n) << 10)
|
|
#define mega(n) (cast(U8, n) << 20)
|
|
#define giga(n) (cast(U8, n) << 30)
|
|
#define tera(n) (cast(U8, n) << 40)
|
|
|
|
// Deviation from Lottes's Convention: Using lower snake case for the naming.
|
|
|
|
#define sop_1(op, a, b) cast(U1, s1_(a) op s1_(b))
|
|
#define sop_2(op, a, b) cast(U2, s2_(a) op s2_(b))
|
|
#define sop_4(op, a, b) cast(U4, s4_(a) op s4_(b))
|
|
#define sop_8(op, a, b) cast(U8, s8_(a) op s8_(b))
|
|
|
|
#define def_signed_op(id, op, width) I_ U ## width id ## _s ## width(U ## width a, U ## width b) {return sop_ ## width(op, a, b); }
|
|
#define def_signed_ops(id, op) def_signed_op(id, op, 1) def_signed_op(id, op, 2) def_signed_op(id, op, 4) def_signed_op(id, op, 8)
|
|
def_signed_ops(add, +) def_signed_ops(sub, -)
|
|
def_signed_ops(mut, *) def_signed_ops(div, /)
|
|
def_signed_ops(gt, >) def_signed_ops(lt, <)
|
|
def_signed_ops(ge, >=) def_signed_ops(le, <=)
|
|
|
|
#define def_generic_sop(op, a, ...) _Generic((a), U1: op ## _s1, U2: op ## _s2, U4: op ## _s4, U8: op ## _s8) (a, __VA_ARGS__)
|
|
#define add_s(a,b) def_generic_sop(add,a,b)
|
|
#define sub_s(a,b) def_generic_sop(sub,a,b)
|
|
#define mut_s(a,b) def_generic_sop(mut,a,b)
|
|
#define gt_s(a,b) def_generic_sop(gt, a,b)
|
|
#define lt_s(a,b) def_generic_sop(lt, a,b)
|
|
#define ge_s(a,b) def_generic_sop(ge, a,b)
|
|
#define le_s(a,b) def_generic_sop(le, a,b)
|
|
|
|
I_ U4 atm_add_u4 (U4_R a, U4 v){__asm__ volatile("lock xaddl %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
I_ U8 atm_add_u8 (U8_R a, U8 v){__asm__ volatile("lock xaddq %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
I_ U4 atm_swap_u4(U4_R a, U4 v){__asm__ volatile("lock xchgl %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
I_ U8 atm_swap_u8(U8_R a, U8 v){__asm__ volatile("lock xchgq %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
|
|
I_ void barrier_compiler(void){__asm__ volatile("::""memory");} // Compiler Barrier
|
|
I_ void barrier_memory (void){__builtin_ia32_mfence();} // Memory Barrier
|
|
I_ void barrier_read (void){__builtin_ia32_lfence();} // Read Barrier
|
|
I_ void barrier_write (void){__builtin_ia32_sfence();} // Write Barrier
|
|
|
|
I_ U8 clock(void){U8 aa,dd;__asm__ volatile("rdtsc":"=a"(aa),"=d"(dd));return aa;}
|
|
I_ void pause(void){__asm__ volatile("pause":::"memory");}
|
|
#pragma endregion DSL
|
|
|
|
#pragma region Strings
|
|
typedef unsigned char def_tset(UTF8);
|
|
typedef def_struct(Str8) { U8 ptr; U8 len; }; typedef Str8 def_tset(Slice_UTF8);
|
|
typedef def_struct(Slice_Str8) { U8 ptr; U8 len; };
|
|
#define lit(string_literal) (Str8){ u8_(string_literal), size_of(string_literal) - 1 }
|
|
#pragma endregion Strings
|
|
|
|
#pragma region Debug
|
|
#ifdef BUILD_DEBUG
|
|
#define debug_trap() __debugbreak()
|
|
#define assert_trap(cond) do { if (cond) __debug_trap(); } while(0)
|
|
#define assert(cond) assert_msg(cond, nullptr)
|
|
#define assert_msg(cond, msg, ...) do { \
|
|
if (! (cond)) \
|
|
{ \
|
|
assert_handler( \
|
|
stringify(cond), \
|
|
(UTF8*)__FILE__, \
|
|
(UTF8*)__func__, \
|
|
cast(S4, __LINE__), \
|
|
msg, \
|
|
## __VA_ARGS__); \
|
|
debug_trap(); \
|
|
} \
|
|
} while(0)
|
|
// Deviation from Lottes's Convention: Don't want to mess with passing in typeless strings to the assert handler.
|
|
void assert_handler(UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line, UTF8*R_ msg, ... );
|
|
#else
|
|
#define debug_trap()
|
|
#define assert_trap(cond)
|
|
#define assert(cond)
|
|
#define assert_msg(cond, msg, ...)
|
|
#endif
|
|
#pragma endregion Debug
|
|
|
|
#pragma region Memory
|
|
typedef def_farray(B1, 1);
|
|
typedef def_farray(B1, 2);
|
|
typedef def_farray(B1, 4);
|
|
typedef def_farray(B1, 8);
|
|
|
|
I_ U8 mem_copy (U8 dest, U8 src, U8 len) { return (U8)(__builtin_memcpy ((void*)dest, (void const*)src, len)); }
|
|
I_ U8 mem_copy_overlapping(U8 dest, U8 src, U8 len) { return (U8)(__builtin_memmove((void*)dest, (void const*)src, len)); }
|
|
I_ U8 mem_fill (U8 dest, U8 value, U8 len) { return (U8)(__builtin_memset ((void*)dest, (int) value, len)); }
|
|
I_ B4 mem_zero (U8 dest, U8 len) { if (dest == 0) return false; mem_fill(dest, 0, len); return true; }
|
|
|
|
#define struct_copy(type, dest, src) mem_copy(dest, src, sizeof(type))
|
|
#define struct_zero(type, dest) mem_zero(dest, sizeof(type))
|
|
|
|
#define struct_assign(type, dest, src) cast(type*R_, dest)[0] = cast(type*R_, src)[0]
|
|
|
|
I_ U8 align_pow2(U8 x, U8 b) {
|
|
assert(b != 0);
|
|
assert((b & (b - 1)) == 0); // Check power of 2
|
|
return ((x + b - 1) & (~(b - 1)));
|
|
}
|
|
|
|
#define align_struct(type_width) ((U8)(((type_width) + 7) / 8 * 8))
|
|
|
|
#define assert_bounds(point, start, end) do { \
|
|
assert(start <= point); \
|
|
assert(point <= end); \
|
|
} while(0)
|
|
|
|
#define check_nil(nil, p) ((p) == 0 || (p) == nil)
|
|
#define set_nil(nil, p) ((p) = nil)
|
|
|
|
#define sll_stack_push_n(f, n, next) do { (n)->next = (f); (f) = (n); } while(0)
|
|
|
|
#define sll_queue_push_nz(nil, f, l, n, next) \
|
|
( \
|
|
check_nil(nil, f) ? ( \
|
|
(f) = (l) = (n), \
|
|
set_nil(nil, (n)->next) \
|
|
) \
|
|
: ( \
|
|
(l)->next=(n), \
|
|
(l) = (n), \
|
|
set_nil(nil,(n)->next) \
|
|
) \
|
|
)
|
|
#define sll_queue_push_n(f, l, n, next) sll_queue_push_nz(0, f, l, n, next)
|
|
|
|
#define def_Slice(type) def_struct(tmpl(Slice,type)) { type* ptr; U8 len; }; typedef def_ptr_set(tmpl(Slice,type))
|
|
#define slice_assert(slice) do { assert((slice).ptr != 0); assert((slice).len > 0); } while(0)
|
|
#define slice_end(slice) ((slice).ptr + (slice).len)
|
|
#define size_of_slice_type(slice) size_of( (slice).ptr[0] )
|
|
|
|
typedef def_struct(Slice_Mem) { U8 ptr; U8 len; };
|
|
#define slice_mem(ptr, len) ((Slice_Mem){u8_(ptr), u8_(len)})
|
|
#define slice_mem_s(slice) ((Slice_Mem){u8_((slice).ptr), (slice).len * size_of_slice_type(slice) })
|
|
|
|
typedef def_Slice(void);
|
|
typedef def_Slice(B1);
|
|
#define slice_to_bytes(slice) ((Slice_B1){cast(B1*, (slice).ptr), (slice).len * size_of_slice_type(slice)})
|
|
#define slice_fmem(mem) slice_mem(u8_(mem), size_of(mem))
|
|
|
|
I_ void slice__zero(Slice_B1 mem, U8 typewidth) { slice_assert(mem); mem_zero(u8_(mem.ptr), mem.len); }
|
|
#define slice_zero(slice) slice__zero(slice_mem_s(slice), size_of_slice_type(slice))
|
|
|
|
I_ void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth) {
|
|
assert(dest.len >= src.len);
|
|
slice_assert(dest);
|
|
slice_assert(src);
|
|
mem_copy(u8_(dest.ptr), u8_(src.ptr), src.len);
|
|
}
|
|
#define slice_copy(dest, src) do { \
|
|
static_assert(typeof_same(dest, src)); \
|
|
slice__copy(slice_to_bytes(dest), size_of_slice_type(dest), slice_to_bytes(src), size_of_slice_type(src)); \
|
|
} while (0)
|
|
|
|
#define slice_iter(container, iter) (typeof((container).ptr) iter = (container).ptr; iter != slice_end(container); ++ iter)
|
|
#define slice_arg_from_array(type, ...) & (tmpl(Slice,type)) { .ptr = farray_init(type, __VA_ARGS__), .len = farray_len( farray_init(type, __VA_ARGS__)) }
|
|
|
|
I_ void slice_assign(U8 dest, U8 src) {
|
|
u8_r(dest + soff(Slice_Mem, ptr))[0] = u8_r(src + soff(Slice_Mem, ptr))[0];
|
|
u8_r(dest + soff(Slice_Mem, len))[0] = u8_r(src + soff(Slice_Mem, len))[0];
|
|
}
|
|
I_ void slice_assign_comp(U8 dest, U8 ptr, U8 len) {
|
|
u8_r(dest + soff(Slice_Mem, ptr))[0] = ptr;
|
|
u8_r(dest + soff(Slice_Mem, len))[0] = len;
|
|
}
|
|
I_ void slice_clear(U8 base) {
|
|
u8_r(base + soff(Slice_Mem, ptr))[0] = 0;
|
|
u8_r(base + soff(Slice_Mem, len))[0] = 0;
|
|
}
|
|
|
|
#define span_iter(type, iter, m_begin, op, m_end) \
|
|
( \
|
|
tmpl(Iter_Span,type) iter = { \
|
|
.r = {(m_begin), (m_end)}, \
|
|
.cursor = (m_begin) }; \
|
|
iter.cursor op iter.r.end; \
|
|
++ iter.cursor \
|
|
)
|
|
|
|
#define def_span(type) \
|
|
def_struct(tmpl( Span,type)) { type begin; type end; }; \
|
|
typedef def_struct(tmpl(Iter_Span,type)) { tmpl(Span,type) r; type cursor; }
|
|
|
|
typedef def_span(B1);
|
|
typedef def_span(U4);
|
|
typedef def_span(U8);
|
|
#pragma endregion Memory
|
|
|
|
#pragma region Math
|
|
#define min(A, B) (((A) < (B)) ? (A) : (B))
|
|
#define max(A, B) (((A) > (B)) ? (A) : (B))
|
|
#define clamp_bot(X, B) max(X, B)
|
|
#pragma endregion Math
|
|
|
|
#pragma region Allocator Interface
|
|
typedef def_enum(U4, AllocatorOp) {
|
|
AllocatorOp_Alloc_NoZero = 0, // If Alloc exist, so must No_Zero
|
|
AllocatorOp_Alloc,
|
|
AllocatorOp_Free,
|
|
AllocatorOp_Reset,
|
|
AllocatorOp_Grow_NoZero,
|
|
AllocatorOp_Grow,
|
|
AllocatorOp_Shrink,
|
|
AllocatorOp_Rewind,
|
|
AllocatorOp_SavePoint,
|
|
AllocatorOp_Query, // Must always be implemented
|
|
};
|
|
typedef def_enum(U4, AllocatorQueryFlags) {
|
|
AllocatorQuery_Alloc = (1 << 0),
|
|
AllocatorQuery_Free = (1 << 1),
|
|
// Wipe the allocator's state
|
|
AllocatorQuery_Reset = (1 << 2),
|
|
// Supports both grow and shrink
|
|
AllocatorQuery_Shrink = (1 << 4),
|
|
AllocatorQuery_Grow = (1 << 5),
|
|
AllocatorQuery_Resize = AllocatorQuery_Grow | AllocatorQuery_Shrink,
|
|
// Ability to rewind to a save point (ex: arenas, stack), must also be able to save such a point
|
|
AllocatorQuery_Rewind = (1 << 6),
|
|
};
|
|
typedef struct AllocatorProc_In def_tset(AllocatorProc_In);
|
|
typedef struct AllocatorProc_Out def_tset(AllocatorProc_Out);
|
|
typedef struct AllocatorSP AllocatorSP;
|
|
typedef void def_proc(AllocatorProc) (U8 data, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out);
|
|
struct AllocatorSP {
|
|
AllocatorProc* type_sig;
|
|
U8 slot;
|
|
};
|
|
struct AllocatorProc_In {
|
|
U8 data;
|
|
U8 requested_size;
|
|
U8 alignment;
|
|
union {
|
|
Slice_Mem old_allocation;
|
|
AllocatorSP save_point;
|
|
};
|
|
AllocatorOp op;
|
|
A4_B1 _PAD_;
|
|
};
|
|
struct AllocatorProc_Out {
|
|
union {
|
|
Slice_Mem allocation;
|
|
AllocatorSP save_point;
|
|
};
|
|
AllocatorQueryFlags features;
|
|
A4_B1 _PAD_;
|
|
U8 left; // Contiguous memory left
|
|
U8 max_alloc;
|
|
U8 min_alloc;
|
|
A4_B1 _PAD_2;
|
|
};
|
|
typedef def_struct(AllocatorInfo) {
|
|
AllocatorProc* proc;
|
|
U8 data;
|
|
};
|
|
static_assert(size_of(AllocatorSP) <= size_of(Slice_Mem));
|
|
typedef def_struct(AllocatorQueryInfo) {
|
|
AllocatorSP save_point;
|
|
AllocatorQueryFlags features;
|
|
A4_B1 _PAD_;
|
|
U8 left; // Contiguous memory left
|
|
U8 max_alloc;
|
|
U8 min_alloc;
|
|
A4_B1 _PAD_2;
|
|
};
|
|
static_assert(size_of(AllocatorProc_Out) == size_of(AllocatorQueryInfo));
|
|
|
|
#define MEMORY_ALIGNMENT_DEFAULT (2 * size_of(void*))
|
|
|
|
I_ void allocator_query__u(U8 ainfo_proc, U8 ainfo_data, U8 allocator_query_info);
|
|
|
|
I_ void mem_free__u (U8 proc, U8 data, U8 mem_ptr, U8 mem_len);
|
|
I_ void mem_reset__u (U8 proc, U8 data);
|
|
I_ void mem_rewind__u (U8 proc, U8 data, U8 sp_type_sig, U8 sp_slot);
|
|
I_ void mem_save_point__u(U8 proc, U8 data, U8 sp);
|
|
|
|
I_ AllocatorQueryInfo allocator_query(AllocatorInfo ainfo);
|
|
|
|
I_ void mem_free (AllocatorInfo ainfo, Slice_Mem mem);
|
|
I_ void mem_reset (AllocatorInfo ainfo);
|
|
I_ void mem_rewind (AllocatorInfo ainfo, AllocatorSP save_point);
|
|
I_ AllocatorSP mem_save_point(AllocatorInfo ainfo);
|
|
|
|
I_ void mem__alloc__u (U8 out_mem, U8 proc, U8 data, U8 size, U8 alignemnt, B4 no_zero);
|
|
I_ void mem__grow__u (U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_actual);
|
|
I_ void mem__resize__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_actual);
|
|
I_ void mem__shrink__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment);
|
|
|
|
typedef def_struct(Opts_mem_alloc) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
|
|
typedef def_struct(Opts_mem_grow) { U8 alignment; B4 no_zero; B4 give_actual; };
|
|
typedef def_struct(Opts_mem_resize) { U8 alignment; B4 no_zero; B4 give_actual; };
|
|
typedef def_struct(Opts_mem_shrink) { U8 alignment; };
|
|
|
|
I_ Slice_Mem mem__alloc (AllocatorInfo ainfo, U8 size, Opts_mem_alloc_R opts);
|
|
I_ Slice_Mem mem__grow (AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow_R opts);
|
|
I_ Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resize_R opts);
|
|
I_ Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shrink_R opts);
|
|
|
|
#define mem_alloc(ainfo, size, ...) mem__alloc (ainfo, size, opt_args(Opts_mem_alloc, __VA_ARGS__))
|
|
#define mem_grow(ainfo, mem, size, ...) mem__grow (ainfo, mem, size, opt_args(Opts_mem_grow, __VA_ARGS__))
|
|
#define mem_resize(ainfo, mem, size, ...) mem__resize(ainfo, mem, size, opt_args(Opts_mem_resize, __VA_ARGS__))
|
|
#define mem_shrink(ainfo, mem, size, ...) mem__shrink(ainfo, mem, size, opt_args(Opts_mem_shrink, __VA_ARGS__))
|
|
|
|
#define alloc_type(ainfo, type, ...) (type*) mem__alloc(ainfo, size_of(type), opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr
|
|
#define alloc_slice(ainfo, type, num, ...) (tmpl(Slice,type)){ (type*)mem__alloc(ainfo, size_of(type) * num, opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr, num }
|
|
#pragma endregion Allocator Interface
|
|
|
|
#pragma region FArena (Fixed-Sized Arena)
|
|
typedef def_struct(Opts_farena) {
|
|
U8 alignment;
|
|
};
|
|
typedef def_struct(FArena) {
|
|
U8 start;
|
|
U8 capacity;
|
|
U8 used;
|
|
};
|
|
|
|
I_ void farena_init__u (U8 arena, U8 mem_ptr, U8 mem_len);
|
|
void farena__push__u (U8 arena, U8 amount, U8 type_width, U8 alignment, U8 slice_addr);
|
|
I_ void farena_reset__u (U8 arena);
|
|
I_ void farena_rewind__u(U8 arena, U8 sp_type_sig, U8 sp_slot);
|
|
I_ void farena_save__u (U8 arena, U8 sp);
|
|
|
|
I_ FArena farena_make (Slice_Mem mem);
|
|
I_ void farena_init (FArena_R arena, Slice_Mem byte);
|
|
I_ Slice_Mem farena__push (FArena_R arena, U8 amount, U8 type_width, Opts_farena*R_ opts);
|
|
I_ void farena_reset (FArena_R arena);
|
|
I_ void farena_rewind(FArena_R arena, AllocatorSP save_point);
|
|
I_ AllocatorSP farena_save (FArena arena);
|
|
|
|
void farena_allocator_proc(U8 data, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out);
|
|
#define ainfo_farena(arena) (AllocatorInfo){ .proc = farena_allocator_proc, .data = u8_(& arena) }
|
|
|
|
#define farena_push_mem(arena, amount, ...) farena__push(arena, amount, 1, opt_args(Opts_farena, lit(stringify(B1)), __VA_ARGS__))
|
|
|
|
#define farena_push(arena, type, ...) \
|
|
cast(type*, farena__push(arena, size_of(type), 1, opt_args(Opts_farena, __VA_ARGS__))).ptr
|
|
|
|
#define farena_push_array(arena, type, amount, ...) \
|
|
(Slice ## type){ farena__push(arena, size_of(type), amount, opt_args(Opts_farena, __VA_ARGS__)).ptr, amount }
|
|
#pragma endregion FArena
|
|
|
|
#pragma region OS
|
|
typedef def_struct(OS_SystemInfo) { U8 target_page_size; };
|
|
typedef def_struct(Opts_vmem) { U8 base_addr; B4 no_large_pages; A4_B1 _PAD_; };
|
|
|
|
typedef def_struct(OS_Windows_State) { OS_SystemInfo system_info; };
|
|
global OS_Windows_State os__windows_info;
|
|
|
|
I_ OS_SystemInfo* os_system_info(void);
|
|
I_ void os_init (void);
|
|
|
|
I_ U8 os_vmem_reserve__u( U8 size, B4 no_large_pages, U8 base_addr);
|
|
I_ B4 os_vmem_commit__u (U8 vm, U8 size, B4 no_large_pages);
|
|
I_ void os_vmem_release__u(U8 vm, U8 size);
|
|
|
|
I_ U8 os__vmem_reserve( U8 size, Opts_vmem_R opts);
|
|
I_ B4 os_vmem_commit (U8 vm, U8 size, Opts_vmem_R opts);
|
|
I_ void os_vmem_release (U8 vm, U8 size);
|
|
|
|
#define os_vmem_reserve(size, ...) os__vmem_reserve(size, opt_args(Opts_vmem, __VA_ARGS__))
|
|
#pragma endregion OS
|
|
|
|
#pragma region VArena (Virtual Address Space Arena)
|
|
typedef Opts_farena Opts_varena;
|
|
typedef def_enum(U4, VArenaFlags) {
|
|
VArenaFlag_NoLargePages = (1 << 0),
|
|
};
|
|
typedef def_struct(VArena) {
|
|
U8 reserve_start;
|
|
U8 reserve;
|
|
U8 commit_size;
|
|
U8 committed;
|
|
U8 commit_used;
|
|
VArenaFlags flags;
|
|
};
|
|
typedef def_struct(Opts_varena_make) {
|
|
U8 base_addr;
|
|
U8 reserve_size;
|
|
U8 commit_size;
|
|
VArenaFlags flags;
|
|
};
|
|
|
|
U8 varena__make__u (U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr);
|
|
I_ void varena_release__u(U8 arena);
|
|
I_ void varena_reset__u (U8 arena);
|
|
I_ void varena_rewind__u (U8 arena, U8 sp_type_sig, U8 sp_slot);
|
|
I_ void varena_save__u (U8 arena, U8 sp_addr);
|
|
void varena__push__u (U8 arena, U8 amount, U8 type_width, U8 alignment, U8 slice_addr);
|
|
void varena__grow__u (U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero);
|
|
void varena__shrink__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment);
|
|
|
|
I_ VArena* varena__make (Opts_varena_make*R_ opts);
|
|
I_ Slice_Mem varena__push (VArena_R arena, U8 amount, U8 type_width, Opts_varena*R_ opts);
|
|
I_ void varena_release(VArena_R arena);
|
|
I_ void varena_reset (VArena_R arena);
|
|
I_ void varena_rewind (VArena_R arena, AllocatorSP save_point);
|
|
I_ Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size, Opts_varena*R_ opts);
|
|
I_ AllocatorSP varena_save (VArena_R arena);
|
|
|
|
#define varena_make(...) varena__make(opt_args(Opts_varena_make, __VA_ARGS__))
|
|
|
|
void varena_allocator_proc(U8 data, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out);
|
|
|
|
#define ainfo_varena(arena) (AllocatorInfo){ .proc = varena_allocator_proc, .data = u8_(arena) }
|
|
|
|
#define varena_push_mem(arena, amount, ...) varena__push(arena, amount, 1, opt_args(Opts_varena, __VA_ARGS__))
|
|
|
|
#define varena_push(arena, type, ...) \
|
|
cast(type*, varena__push(arena, size_of(type), 1, opt_args(Opts_varena, __VA_ARGS__)).ptr)
|
|
|
|
#define varena_push_array(arena, type, amount, ...) \
|
|
(tmpl(Slice,type)){ varena__push(arena, size_of(type), amount, opt_args(Opts_varena, __VA_ARGS__)).ptr, amount }
|
|
#pragma endregion VArena
|
|
|
|
#pragma region Arena
|
|
|
|
#pragma endregion Arena
|
|
|
|
#pragma region Hashing
|
|
I_ void hash64_fnv1a__u(U8 hash, U8 data_ptr, U8 data_len, U8 seed) {
|
|
local_persist U8 const default_seed = 0xcbf29ce484222325;
|
|
if (seed != 0) { u8_r(hash)[0] = seed; }
|
|
else { u8_r(hash)[0] = default_seed; }
|
|
U8 elem = data_ptr;
|
|
loop:
|
|
if (elem == data_ptr + data_len) goto end;
|
|
u8_r(hash)[0] ^= u1_r(elem)[0];
|
|
u8_r(hash)[0] *= 0x100000001b3;
|
|
elem += 1;
|
|
goto loop;
|
|
end:
|
|
return;
|
|
}
|
|
typedef def_struct(Opts_hash64_fnv1a) { U8 seed; };
|
|
I_ void hash64__fnv1a(U8_R hash, Slice_Mem data, Opts_hash64_fnv1a*R_ opts) {
|
|
assert(opts != nullptr);
|
|
hash64_fnv1a__u(u8_(hash), data.ptr, data.len, opts->seed);
|
|
}
|
|
#define hash64_fnv1a(hash, data, ...) hash64__fnv1a(hash, data, opt_args(Opts_hash64_fnv1a, __VA_ARGS__))
|
|
#pragma endregion Hashing
|
|
|
|
#pragma endregion Header
|
|
|
|
#pragma region Implementation
|
|
|
|
#pragma region Allocator Interface
|
|
I_ void allocator_query__u(U8 ainfo_proc, U8 ainfo_data, U8 allocator_query_info) {
|
|
assert(ainfo_proc != null);
|
|
cast(AllocatorProc*, ainfo_proc)(ainfo_data, 0, 0, 0, 0, AllocatorOp_Query, allocator_query_info);
|
|
}
|
|
I_ void mem_free__u(U8 proc, U8 data, U8 mem_ptr, U8 mem_len) {
|
|
assert(proc != null);
|
|
cast(AllocatorProc*, proc)(data, 0, 0, mem_ptr, mem_len, AllocatorOp_Free, 0);
|
|
}
|
|
I_ void mem_reset__u(U8 proc, U8 data) {
|
|
assert(proc != null);
|
|
cast(AllocatorProc*, proc)(data, 0, 0, 0, 0, AllocatorOp_Reset, 0);
|
|
}
|
|
I_ void mem_rewind__u(U8 proc, U8 data, U8 sp_type_sig, U8 sp_slot) {
|
|
assert(proc != null);
|
|
cast(AllocatorProc*, proc)(data, 0, 0, sp_type_sig, sp_slot, AllocatorOp_Rewind, 0);
|
|
}
|
|
I_ void mem_save_point__u(U8 proc, U8 data, U8 sp) {
|
|
assert(proc != null);
|
|
uvar(AllocatorProc_Out, out) = {0};
|
|
cast(AllocatorProc*, proc)(data, 0, 0, 0, 0, AllocatorOp_SavePoint, u8_(out));
|
|
struct_assign(AllocatorSP, sp, (U8) out + soff(AllocatorProc_Out, save_point));
|
|
}
|
|
I_ void mem__alloc__u(U8 out_mem, U8 proc, U8 data, U8 size, U8 alignment, B4 no_zero) {
|
|
assert(proc != null);
|
|
uvar(AllocatorProc_Out, out) = {0};
|
|
cast(AllocatorProc*, proc)(data, size, alignment, 0, 0, no_zero ? AllocatorOp_Alloc_NoZero : AllocatorOp_Alloc, u8_(out));
|
|
slice_assign(out_mem, (U8) out + soff(AllocatorProc_Out, allocation));
|
|
}
|
|
I_ void mem__grow__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_actual) {
|
|
assert(proc != null);
|
|
uvar(AllocatorProc_Out, out) = {0};
|
|
cast(AllocatorProc*, proc)(data, size, alignment, old_ptr, old_len, no_zero ? AllocatorOp_Grow_NoZero : AllocatorOp_Grow, u8_(out));
|
|
if (give_actual == false) { u8_r(out + soff(AllocatorProc_Out, allocation) + soff(Slice_Mem, len))[0] = size; }
|
|
slice_assign(out_mem, (U8) out + soff(AllocatorProc_Out, allocation));
|
|
}
|
|
I_ void mem__shrink__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment) {
|
|
assert(proc != null);
|
|
uvar(AllocatorProc_Out, out) = {0};
|
|
cast(AllocatorProc*, proc)(data, size, alignment, old_ptr, old_len, AllocatorOp_Shrink, u8_(out));
|
|
slice_assign(out_mem, (U8) out + soff(AllocatorProc_Out, allocation));
|
|
}
|
|
I_ void mem__resize__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_acutal) {
|
|
if (old_len == size) { slice_assign_comp(out_mem, old_ptr, old_len); }
|
|
if (old_len < size) { mem__grow__u (out_mem, proc, data, old_ptr, old_len, size, alignment, no_zero, give_acutal); }
|
|
else { mem__shrink__u(out_mem, proc, data, old_ptr, old_len, size, alignment); }
|
|
}
|
|
|
|
I_ AllocatorQueryInfo allocator_query(AllocatorInfo ainfo) { AllocatorQueryInfo out; allocator_query__u(u8_(ainfo.proc), ainfo.data, u8_(& out)); return out; }
|
|
|
|
I_ void mem_free (AllocatorInfo ainfo, Slice_Mem mem) { mem_free__u (u8_(ainfo.proc), ainfo.data, mem.ptr, mem.len); }
|
|
I_ void mem_reset (AllocatorInfo ainfo) { mem_reset__u (u8_(ainfo.proc), ainfo.data); }
|
|
I_ void mem_rewind(AllocatorInfo ainfo, AllocatorSP save_point) { mem_rewind__u(u8_(ainfo.proc), ainfo.data, u8_(save_point.type_sig), save_point.slot); }
|
|
|
|
I_ AllocatorSP mem_save_point(AllocatorInfo ainfo) { AllocatorSP sp; mem_save_point__u(u8_(ainfo.proc), ainfo.data, u8_(& sp)); return sp; }
|
|
|
|
I_ Slice_Mem mem__alloc(AllocatorInfo ainfo, U8 size, Opts_mem_alloc_R opts) {
|
|
assert(opts != nullptr); Slice_Mem result;
|
|
mem__alloc__u(u8_(& result), u8_(ainfo.proc), ainfo.data, size, opts->alignment, opts->no_zero);
|
|
return result;
|
|
}
|
|
I_ Slice_Mem mem__grow(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow_R opts) {
|
|
assert(opts != nullptr);
|
|
Slice_Mem out; mem__grow__u(u8_(& out), u8_(ainfo.proc), ainfo.data, mem.ptr, mem.len, size, opts->alignment, opts->no_zero, opts->give_actual);
|
|
if (!opts->give_actual) { out.len = size; }
|
|
return out;
|
|
}
|
|
I_ Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resize_R opts) {
|
|
assert(opts != nullptr);
|
|
Slice_Mem out; mem__resize__u(u8_(& out), u8_(ainfo.proc), ainfo.data, mem.ptr, mem.len, size, opts->alignment, opts->no_zero, opts->give_actual);
|
|
return out;
|
|
}
|
|
I_ Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shrink_R opts) {
|
|
assert(opts != nullptr);
|
|
Slice_Mem out; mem__shrink__u(u8_(& out), u8_(ainfo.proc), ainfo.data, mem.ptr, mem.len, size, opts->alignment);
|
|
return out;
|
|
}
|
|
#pragma endregion Allocator Interface
|
|
|
|
#pragma region FArena (Fixed-Sized Arena)
|
|
I_ void farena_init__u(U8 arena, U8 mem_ptr, U8 mem_len) {
|
|
assert(arena != null);
|
|
u8_r(arena + soff(FArena, start) )[0] = mem_ptr;
|
|
u8_r(arena + soff(FArena, capacity))[0] = mem_len;
|
|
u8_r(arena + soff(FArena, used) )[0] = 0;
|
|
}
|
|
inline void farena__push__u(U8 arena, U8 amount, U8 type_width, U8 alignment, U8 result) {
|
|
if (amount == 0) { struct_zero(Slice_Mem, result); }
|
|
U8 reg desired = type_width * amount;
|
|
U8 reg to_commit = align_pow2(desired, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
|
|
U8_R reg used = u8_r(arena + soff(FArena, used));
|
|
U8 reg unused = u8_r(arena + soff(FArena, capacity))[0] - used[0]; assert(to_commit <= unused);
|
|
U8 reg ptr = u8_r(arena + soff(FArena, start) )[0] + used[0];
|
|
used[0] += to_commit;
|
|
slice_assign_comp(result, ptr, desired);
|
|
}
|
|
inline void farena__grow__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero) {
|
|
assert(result != null);
|
|
assert(arena != null);
|
|
U8_R reg used = u8_r(arena + soff(FArena, used));
|
|
/*Check if the allocation is at the end of the arena*/{
|
|
U8 reg alloc_end = old_ptr + old_len;
|
|
U8 reg arena_end = u8_r(arena + soff(FArena, start))[0] + used[0];
|
|
if (alloc_end != arena_end) {
|
|
// Not at the end, can't grow in place
|
|
slice_clear(result);
|
|
return;
|
|
}
|
|
}
|
|
// Calculate growth
|
|
U8 reg grow_amount = requested_size - old_len;
|
|
U8 reg aligned_grow = align_pow2(grow_amount, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
|
|
U8 reg unused = u8_r(arena + soff(FArena, capacity))[0] - used[0];
|
|
if (aligned_grow > unused) {
|
|
// Not enough space
|
|
slice_clear(result);
|
|
return;
|
|
}
|
|
used[0] += aligned_grow;
|
|
slice_assign_comp(result, old_ptr, aligned_grow + requested_size);
|
|
mem_zero(old_ptr + old_len, grow_amount * cast(U8, should_zero));
|
|
}
|
|
inline void farena__shrink__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment) {
|
|
assert(result != null);
|
|
assert(arena != null);
|
|
U8_R reg used = u8_r(arena + soff(FArena, used));
|
|
/*Check if the allocation is at the end of the arena*/ {
|
|
U8 reg alloc_end = old_ptr + old_len;
|
|
U8 reg arena_end = u8_r(arena + soff(FArena, start))[0] + used[0];
|
|
if (alloc_end != arena_end) {
|
|
// Not at the end, can't shrink but return adjusted size
|
|
slice_assign_comp(result, old_ptr, requested_size);
|
|
return;
|
|
}
|
|
}
|
|
U8 reg aligned_original = align_pow2(old_len, MEMORY_ALIGNMENT_DEFAULT);
|
|
U8 reg aligned_new = align_pow2(requested_size, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
|
|
used[0] -= (aligned_original - aligned_new);
|
|
slice_assign_comp(result, old_ptr, requested_size);
|
|
}
|
|
I_ void farena_reset__u(U8 arena) { u8_r(arena + soff(FArena, used))[0] = 0; }
|
|
I_ void farena_rewind__u(U8 arena, U8 sp_type_sig, U8 sp_slot) {
|
|
assert(sp_type_sig == (U8)& farena_allocator_proc);
|
|
U8 reg start = u8_r(arena + soff(FArena, start))[0];
|
|
U8_R reg used = u8_r(arena + soff(FArena, used));
|
|
U8 reg end = start + used[0]; assert_bounds(sp_slot, start, end);
|
|
used[0] -= sp_slot - start;
|
|
}
|
|
I_ void farena_save__u(U8 arena, U8 sp) {
|
|
u8_r(sp + soff(AllocatorSP, type_sig))[0] = (U8)& farena_allocator_proc;
|
|
u8_r(sp + soff(AllocatorSP, slot ))[0] = u8_r(arena + soff(FArena, used))[0];
|
|
}
|
|
void farena_allocator_proc(U8 arena, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out)
|
|
{
|
|
assert(out != null);
|
|
assert(arena != null);
|
|
U8 reg allocation = arena + soff(AllocatorProc_Out, allocation);
|
|
switch (op)
|
|
{
|
|
case AllocatorOp_Alloc:
|
|
case AllocatorOp_Alloc_NoZero:
|
|
farena__push__u(arena, requested_size, 1, alignment, allocation);
|
|
mem_zero(u8_r(allocation + soff(Slice_Mem, ptr))[0], u8_r(allocation + soff(Slice_Mem, len))[0] * op);
|
|
break;
|
|
case AllocatorOp_Free: break;
|
|
case AllocatorOp_Reset: farena_reset__u(arena); break;
|
|
|
|
case AllocatorOp_Grow:
|
|
case AllocatorOp_Grow_NoZero:
|
|
farena__grow__u(allocation, arena, old_ptr, old_len, requested_size, alignment, op - AllocatorOp_Grow_NoZero);
|
|
break;
|
|
case AllocatorOp_Shrink:
|
|
farena__shrink__u(allocation, arena, old_ptr, old_len, requested_size, alignment);
|
|
break;
|
|
|
|
case AllocatorOp_Rewind: farena_rewind__u(arena, old_ptr, old_len); break;
|
|
case AllocatorOp_SavePoint: farena_save__u(arena, allocation); break;
|
|
|
|
case AllocatorOp_Query:
|
|
u4_r(out + soff(AllocatorQueryInfo, features))[0] =
|
|
AllocatorQuery_Alloc
|
|
| AllocatorQuery_Reset
|
|
| AllocatorQuery_Resize
|
|
| AllocatorQuery_Rewind
|
|
;
|
|
U8 reg max_alloc = u8_r(arena + soff(FArena, capacity))[0] - u8_r(arena + soff(FArena, used))[0];
|
|
u8_r(out + soff(AllocatorQueryInfo, max_alloc))[0] = max_alloc;
|
|
u8_r(out + soff(AllocatorQueryInfo, min_alloc))[0] = 0;
|
|
u8_r(out + soff(AllocatorQueryInfo, left ))[0] = max_alloc;
|
|
farena_save__u(arena, out + soff(AllocatorQueryInfo, save_point));
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
#pragma endregion FArena
|
|
|
|
#pragma region OS
|
|
#pragma warning(push)
|
|
#pragma warning(disable: 4820)
|
|
#pragma comment(lib, "Kernel32.lib")
|
|
#pragma comment(lib, "Advapi32.lib")
|
|
#define MS_INVALID_HANDLE_VALUE ((MS_HANDLE)(S8)-1)
|
|
#define MS_ANYSIZE_ARRAY 1
|
|
#define MS_MEM_COMMIT 0x00001000
|
|
#define MS_MEM_RESERVE 0x00002000
|
|
#define MS_MEM_LARGE_PAGES 0x20000000
|
|
#define MS_PAGE_READWRITE 0x04
|
|
#define MS_TOKEN_ADJUST_PRIVILEGES (0x0020)
|
|
#define MS_SE_PRIVILEGE_ENABLED (0x00000002L)
|
|
#define MS_TOKEN_QUERY (0x0008)
|
|
#define MS__TEXT(quote) L ## quote
|
|
#define MS_TEXT(quote) MS__TEXT(quote)
|
|
#define MS_SE_LOCK_MEMORY_NAME MS_TEXT("SeLockMemoryPrivilege")
|
|
|
|
typedef U4 MS_BOOL;
|
|
typedef U4 MS_DWORD;
|
|
typedef U8 MS_PDWORD;
|
|
typedef U8 MS_HANDLE;
|
|
typedef U8 MS_PHANDLE;
|
|
typedef U4 MS_LONG;
|
|
typedef U8 MS_LONGLONG;
|
|
typedef U8 MS_LPCSTR;
|
|
typedef U8 MS_LPWSTR, MS_PWSTR;
|
|
typedef U8 MS_LPVOID;
|
|
typedef U8 MS_LPDWORD;
|
|
typedef U8 MS_ULONG_PTR, MS_PULONG_PTR;
|
|
typedef U8 MS_LPCVOID;
|
|
typedef struct MS_SECURITY_ATTRIBUTES MS_SECURITY_ATTRIBUTES; typedef U8 MS_PSECURITY_ATTRIBUTES, MS_LPSECURITY_ATTRIBUTES;
|
|
typedef struct MS_OVERLAPPED MS_OVERLAPPED; typedef U8 MS_LPOVERLAPPED;
|
|
typedef def_union(MS_LARGE_INTEGER) { struct { MS_DWORD LowPart; MS_LONG HighPart; } _; struct { MS_DWORD LowPart; MS_LONG HighPart; } u; MS_LONGLONG QuadPart; };
|
|
typedef def_struct(MS_FILE) { U8 _Placeholder; };
|
|
typedef def_struct(MS_SECURITY_ATTRIBUTES) { MS_DWORD nLength; A4_B1 _PAD_; MS_LPVOID lpSecurityDescriptor; MS_BOOL bInheritHandle; };
|
|
typedef def_struct(MS_OVERLAPPED) { MS_ULONG_PTR Internal; MS_ULONG_PTR InternalHigh; union { struct { MS_DWORD Offset; MS_DWORD OffsetHigh; } _; U8 Pointer; } _; MS_HANDLE hEvent; };
|
|
typedef struct MS_LUID MS_LUID; typedef U8 MS_PLUID;
|
|
typedef struct MS_LUID_AND_ATTRIBUTES MS_LUID_AND_ATTRIBUTES; typedef U8 MS_PLUID_AND_ATTRIBUTES;
|
|
typedef struct MS_TOKEN_PRIVILEGES MS_TOKEN_PRIVILEGES; typedef U8 MS_PTOKEN_PRIVILEGES;
|
|
typedef def_struct(MS_LUID) { MS_DWORD LowPart; MS_LONG HighPart; };
|
|
typedef def_struct(MS_LUID_AND_ATTRIBUTES) { MS_LUID Luid; MS_DWORD Attributes; };
|
|
typedef def_struct(MS_TOKEN_PRIVILEGES) { MS_DWORD PrivilegeCount; MS_LUID_AND_ATTRIBUTES Privileges[MS_ANYSIZE_ARRAY]; };
|
|
|
|
W_ MS_BOOL ms_close_handle(MS_HANDLE hObject) __asm__("CloseHandle");
|
|
W_ MS_BOOL ms_adjust_token_privleges(MS_HANDLE TokenHandle, MS_BOOL DisableAllPrivileges, MS_PTOKEN_PRIVILEGES NewState, MS_DWORD BufferLength, MS_PTOKEN_PRIVILEGES PreviousState, MS_PDWORD ReturnLength) __asm__("AdjustTokenPrivileges");
|
|
W_ MS_HANDLE ms_get_current_process(void) __asm__("GetCurrentProcess");
|
|
W_ U8 ms_get_larg_page_minimum(void) __asm__("GetCurrentProcess");
|
|
W_ MS_BOOL ms_lookup_priviledge_value_w(MS_LPWSTR lpSystemName, MS_LPWSTR lpName, MS_PLUID lpLuid) __asm__("LookupPrivilegeValueW");
|
|
W_ MS_BOOL ms_open_process_token(MS_HANDLE ProcessHandle, MS_DWORD DesiredAccess, MS_PHANDLE TokenHandle) __asm__("OpenProcessToken");
|
|
W_ MS_LPVOID ms_virtual_alloc(MS_LPVOID lpAddress, U8 dwSize, MS_DWORD flAllocationType, MS_DWORD flProtect) __asm__("VirtualAlloc");
|
|
W_ MS_BOOL ms_virtual_free(MS_LPVOID lpAddress, U8 dwSize, MS_DWORD dwFreeType) __asm__("VirtualFree");
|
|
#pragma warning(pop)
|
|
|
|
I_ OS_SystemInfo* os_system_info(void) {
|
|
return & os__windows_info.system_info;
|
|
}
|
|
I_ void os__enable_large_pages(void) {
|
|
MS_HANDLE token;
|
|
if (ms_open_process_token(ms_get_current_process(), MS_TOKEN_ADJUST_PRIVILEGES | MS_TOKEN_QUERY, u8_(& token))) {
|
|
MS_LUID luid;
|
|
if (ms_lookup_priviledge_value_w(0, u8_(MS_SE_LOCK_MEMORY_NAME), u8_(& luid))) {
|
|
MS_TOKEN_PRIVILEGES priv;
|
|
priv.PrivilegeCount = 1;
|
|
priv.Privileges[0].Luid = luid;
|
|
priv.Privileges[0].Attributes = MS_SE_PRIVILEGE_ENABLED;
|
|
ms_adjust_token_privleges(token, 0, u8_(& priv), size_of(priv), 0, 0);
|
|
}
|
|
ms_close_handle(token);
|
|
}
|
|
}
|
|
I_ void os_init(void) {
|
|
os__enable_large_pages();
|
|
os_system_info()->target_page_size = ms_get_larg_page_minimum();
|
|
}
|
|
I_ U8 os_vmem_reserve__u(U8 size, B4 no_large_pages, U8 base_addr) {
|
|
return cast(U8, VirtualAlloc(cast(MS_LPVOID, base_addr), size, MS_MEM_RESERVE,
|
|
MS_PAGE_READWRITE /* | (opts->no_large_pages ? 0 : MS_MEM_LARGE_PAGES) */)
|
|
);
|
|
}
|
|
I_ B4 os_vmem_commit__u (U8 vm, U8 size, B4 no_large_pages) {
|
|
// if (no_large_pages == false ) { return 1; }
|
|
return ms_virtual_alloc(cast(MS_LPVOID, vm), size, MS_MEM_COMMIT, MS_PAGE_READWRITE) != null;
|
|
}
|
|
I_ void os_vmem_release__u(U8 vm, U8 size) { ms_virtual_free(cast(MS_LPVOID, vm), 0, MS_MEM_RESERVE); }
|
|
|
|
I_ U8 os__vmem_reserve( U8 size, Opts_vmem_R opts) {
|
|
assert(opts != nullptr);
|
|
return os_vmem_reserve__u(size, opts->no_large_pages, opts->base_addr);
|
|
}
|
|
I_ B4 os_vmem_commit (U8 vm, U8 size, Opts_vmem_R opts) {
|
|
assert(opts != nullptr);
|
|
return os_vmem_commit__u(vm, size, opts->no_large_pages);
|
|
}
|
|
I_ void os_vmem_release(U8 vm, U8 size) { os_vmem_release__u(vm, size); }
|
|
#pragma endregion OS
|
|
|
|
#pragma region VArena (Virtual Address Space Arena)
|
|
I_ U8 varena_header_size(void) { return align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); }
|
|
|
|
inline U8 varena__make__u(U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr) {
|
|
if (reserve_size == 0) { reserve_size = mega(64); }
|
|
if (commit_size == 0) { commit_size = mega(64); }
|
|
U8 reg page = os_system_info()->target_page_size;
|
|
U8 reg reserve_sz = align_pow2(reserve_size, page);
|
|
U8 reg commit_sz = align_pow2(commit_size, page);
|
|
B4 reg no_large = (flags & VArenaFlag_NoLargePages) != 0;
|
|
U8 base = os_vmem_reserve__u(reserve_sz, no_large, base_addr); assert(base != 0);
|
|
B4 ok = os_vmem_commit__u(base, commit_sz, no_large); assert(ok != 0);
|
|
U8 header = varena_header_size();
|
|
U8 data_start = base + header;
|
|
u8_r(base + soff(VArena, reserve_start))[0] = data_start;
|
|
u8_r(base + soff(VArena, reserve ))[0] = reserve_sz;
|
|
u8_r(base + soff(VArena, commit_size ))[0] = commit_sz;
|
|
u8_r(base + soff(VArena, committed ))[0] = commit_sz;
|
|
u8_r(base + soff(VArena, commit_used ))[0] = header;
|
|
u4_r(base + soff(VArena, flags ))[0] = flags;
|
|
return base;
|
|
}
|
|
inline
|
|
void varena__push__u(U8 vm, U8 amount, U8 type_width, U8 alignment, U8 result) {
|
|
assert(result != null);
|
|
assert(vm != null);
|
|
if (amount == 0) { slice_clear(result); return; }
|
|
alignment = alignment == 0 ? alignment : MEMORY_ALIGNMENT_DEFAULT;
|
|
U8 requested_size = amount * type_width;
|
|
U8 reg aligned_size = align_pow2(requested_size, alignment);
|
|
U8_R reg commit_used = u8_r(vm + soff(VArena, commit_used ));
|
|
U8 to_be_used = commit_used[0] + aligned_size;
|
|
U8 reg reserve_left = u8_r(vm + soff(VArena, reserve ))[0] - commit_used[0];
|
|
U8 reg committed = u8_r(vm + soff(VArena, committed ))[0];
|
|
U8 commit_left = committed - commit_used[0];
|
|
assert(to_be_used< reserve_left);
|
|
if (/*exhausted?*/commit_left < aligned_size) {
|
|
U8 reg commit_size = u8_r(vm + soff(VArena, commit_size))[0];
|
|
U8 reg next_commit_size = reserve_left > aligned_size ? max(commit_size, aligned_size) : reserve_left;
|
|
if (next_commit_size != 0) {
|
|
B4 no_large_pages = (u4_r(vm + soff(VArena, flags))[0] & VArenaFlag_NoLargePages) != 0;
|
|
U8 reg next_commit_start = vm + committed;
|
|
if (os_vmem_commit__u(next_commit_start, next_commit_size, no_large_pages) == false) {
|
|
struct_zero(Slice_Mem, result);
|
|
return;
|
|
}
|
|
committed += next_commit_size;
|
|
u8_r(vm + soff(VArena, committed))[0] = committed;
|
|
}
|
|
}
|
|
commit_used[0] += aligned_size;
|
|
U8 reg current_offset = u8_r(vm + soff(VArena, reserve_start))[0] + commit_used[0];
|
|
slice_assign(result, (U8)& slice_mem(current_offset, requested_size));
|
|
}
|
|
inline
|
|
void varena__grow__u(U8 result, U8 vm, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero) {
|
|
assert(vm != null);
|
|
assert(result != null);
|
|
U8 reg grow_amount = requested_size - old_len;
|
|
if (grow_amount == 0) { slice_assign(result, (U8)& slice_mem(old_ptr, old_len)); return; }
|
|
U8 reg current_offset = u8_r(vm + soff(VArena, reserve_start))[0] + u8_r(vm + soff(VArena, commit_used))[0];
|
|
// Growing when not the last allocation not allowed
|
|
assert(old_ptr == current_offset);
|
|
uvar(Slice_Mem, allocation); varena__push__u(vm, grow_amount, 1, alignment, u8_(allocation));
|
|
U8 reg a_ptr = u8_r(allocation + soff(Slice_Mem, ptr))[0];
|
|
U8 reg a_len = u8_r(allocation + soff(Slice_Mem, len))[0];
|
|
assert(a_ptr != 0);
|
|
mem_zero(a_ptr, a_len * should_zero);
|
|
slice_assign(result, (U8)& slice_mem(old_ptr, old_len + a_len));
|
|
}
|
|
inline
|
|
void varena__shrink__u(U8 result, U8 vm, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment) {
|
|
assert(vm != null);
|
|
assert(result != null);
|
|
U8 reg shrink_amount = old_len - requested_size;
|
|
if (lt_s(shrink_amount, 0)) { slice_assign(result, (U8)& slice_mem(old_ptr, old_len)); return; }
|
|
U8_R reg commit_used = u8_r(vm + soff(VArena, commit_used));
|
|
U8 reg current_offset = u8_r(vm + soff(VArena, reserve_start))[0] + commit_used[0]; assert(old_ptr == current_offset);
|
|
commit_used[0] -= shrink_amount;
|
|
slice_assign(result, (U8)& slice_mem(old_ptr, requested_size));
|
|
}
|
|
I_ void varena_release__u(U8 vm) {
|
|
assert(vm != null);
|
|
os_vmem_release__u(vm, u8_r(vm + soff(VArena, reserve))[0]);
|
|
}
|
|
I_ void varena_reset__u(U8 vm) {
|
|
assert(vm != null);
|
|
u8_r(vm + soff(VArena, commit_used))[0] = 0;
|
|
}
|
|
I_ void varena_rewind__u(U8 vm, U8 sp_type_sig, U8 sp_slot) {
|
|
assert(vm != null);
|
|
assert(sp_type_sig == (U8) varena_allocator_proc);
|
|
U8 reg header = varena_header_size();
|
|
if (sp_slot < header) { sp_slot = header; }
|
|
u8_r(vm + soff(VArena, commit_used))[0] = sp_slot;
|
|
}
|
|
I_ void varena_save__u(U8 vm, U8 sp_addr) {
|
|
assert(vm != null);
|
|
assert(sp_addr != null);
|
|
u8_r(sp_addr + soff(AllocatorSP, type_sig))[0] = (U8) varena_allocator_proc;
|
|
u8_r(sp_addr + soff(AllocatorSP, slot ))[0] = u8_r(vm + soff(VArena, commit_used))[0];
|
|
}
|
|
|
|
I_ VArena* varena__make(Opts_varena_make*R_ opts) {
|
|
assert(opts != nullptr);
|
|
return cast(VArena*, varena__make__u(opts->reserve_size, opts->commit_size, opts->flags, opts->base_addr));
|
|
}
|
|
I_ Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena* opts) {
|
|
Slice_Mem result;
|
|
varena__push__u(u8_(vm), amount, type_width, opts ? opts->alignment : 0, u8_(& result));
|
|
return result;
|
|
}
|
|
I_ Slice_Mem varena__shrink(VArena_R vm, Slice_Mem old_allocation, U8 requested_size, Opts_varena* opts) {
|
|
Slice_Mem result;
|
|
varena__shrink__u(u8_(& result), u8_(vm), old_allocation.ptr, old_allocation.len, requested_size, opts ? opts->alignment : 0);
|
|
return result;
|
|
}
|
|
|
|
I_ void varena_release(VArena_R vm) { varena_release__u(u8_(vm)); }
|
|
I_ void varena_reset (VArena_R vm) { varena_reset__u (u8_(vm)); }
|
|
|
|
I_ void varena_rewind (VArena_R vm, AllocatorSP save_point) {
|
|
varena_rewind__u(u8_(vm), u8_(save_point.type_sig), save_point.slot);
|
|
}
|
|
I_ AllocatorSP varena_save(VArena_R vm) { AllocatorSP sp; varena_save__u(u8_(vm), u8_(& sp)); return sp; }
|
|
|
|
void varena_allocator_proc(U8 vm, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, U8 out_addr)
|
|
{
|
|
assert(vm != null);
|
|
assert(out_addr != null);
|
|
U8 out_allocation = out_addr ? out_addr + soff(AllocatorProc_Out, allocation) : 0;
|
|
switch (op)
|
|
{
|
|
case AllocatorOp_Alloc:
|
|
case AllocatorOp_Alloc_NoZero:
|
|
varena__push__u(vm, requested_size, 1, alignment, out_allocation);
|
|
if (op == AllocatorOp_Alloc) {
|
|
U8 ptr = u8_r(out_allocation + soff(Slice_Mem, ptr))[0];
|
|
U8 len = u8_r(out_allocation + soff(Slice_Mem, len))[0];
|
|
if (ptr && len) { mem_zero(ptr, len); }
|
|
}
|
|
break;
|
|
|
|
case AllocatorOp_Free: break;
|
|
case AllocatorOp_Reset: varena_reset__u(vm); break;
|
|
|
|
case AllocatorOp_Grow:
|
|
case AllocatorOp_Grow_NoZero:
|
|
varena__grow__u(out_allocation, vm, old_ptr, old_len, requested_size, alignment, op - AllocatorOp_Grow_NoZero);
|
|
break;
|
|
case AllocatorOp_Shrink:
|
|
varena__shrink__u(out_allocation, vm, old_ptr, old_len, requested_size, alignment);
|
|
break;
|
|
|
|
case AllocatorOp_Rewind: varena_rewind__u(vm, old_ptr, old_len); break;
|
|
case AllocatorOp_SavePoint: varena_save__u (vm, out_addr + soff(AllocatorProc_Out, save_point)); break;
|
|
|
|
case AllocatorOp_Query:
|
|
u4_r(out_addr + soff(AllocatorQueryInfo, features))[0] =
|
|
AllocatorQuery_Alloc
|
|
| AllocatorQuery_Reset
|
|
| AllocatorQuery_Resize
|
|
| AllocatorQuery_Rewind;
|
|
U8 reserve = u8_r(vm + soff(VArena, reserve ))[0];
|
|
U8 committed = u8_r(vm + soff(VArena, committed))[0];
|
|
U8 max_alloc = (reserve > committed) ? (reserve - committed) : 0;
|
|
u8_r(out_addr + soff(AllocatorQueryInfo, max_alloc))[0] = max_alloc;
|
|
u8_r(out_addr + soff(AllocatorQueryInfo, min_alloc))[0] = kilo(4);
|
|
u8_r(out_addr + soff(AllocatorQueryInfo, left ))[0] = max_alloc;
|
|
AllocatorSP sp = { .type_sig = varena_allocator_proc, .slot = u8_r(vm + soff(VArena, commit_used))[0] };
|
|
struct_assign(AllocatorSP, out_addr + soff(AllocatorQueryInfo, save_point), (U8)& sp);
|
|
break;
|
|
}
|
|
}
|
|
#pragma endregion VArena
|
|
|
|
#pragma region Arena
|
|
#pragma endregion Arena
|
|
|
|
#pragma region Debug
|
|
#if defined(BUILD_DEBUG)
|
|
// #include <stdio.h>
|
|
#define MS_CRT_INTERNAL_LOCAL_PRINTF_OPTIONS (*__local_stdio_printf_options())
|
|
#define MS_stderr (__acrt_iob_func(2))
|
|
#define MS__crt_va_start_a(ap, x) ((void)(__va_start(&ap, x)))
|
|
#define MS__crt_va_arg(ap, t) \
|
|
((sizeof(t) > sizeof(__int64) || (sizeof(t) & (sizeof(t) - 1)) != 0) \
|
|
? **(t**)((ap += sizeof(__int64)) - sizeof(__int64)) \
|
|
: *(t* )((ap += sizeof(__int64)) - sizeof(__int64)))
|
|
#define MS__crt_va_end(ap) ((void)(ap = (va_list)0))
|
|
#define va_start(ap, x) MS__crt_va_start_a(ap, x)
|
|
#define va_arg MS__crt_va_arg
|
|
#define va_end MS__crt_va_end
|
|
#define va_copy(destination, source) ((destination) = (source))
|
|
typedef def_struct(__crt_locale_pointers) { struct __crt_locale_data* locinfo; struct __crt_multibyte_data* mbcinfo; };
|
|
typedef __crt_locale_pointers* _locale_t;
|
|
typedef char* va_list;
|
|
MS_FILE* __cdecl __acrt_iob_func(unsigned _Ix);
|
|
N_
|
|
U8* __cdecl __local_stdio_printf_options(void) {
|
|
// NOTE(CRT): This function must not be inlined into callers to avoid ODR violations. The
|
|
// static local variable has different names in C and in C++ translation units.
|
|
local_persist U8 _OptionsStorage; return &_OptionsStorage;
|
|
}
|
|
int __cdecl __stdio_common_vfprintf_s(
|
|
U8 _Options,
|
|
MS_FILE* _Stream,
|
|
char const* _Format,
|
|
_locale_t _Locale,
|
|
va_list _ArgList
|
|
);
|
|
void __cdecl __va_start(va_list* , ...);
|
|
I_ int printf_err(char const* fmt, ...) {
|
|
int result;
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
result = __stdio_common_vfprintf_s(MS_CRT_INTERNAL_LOCAL_PRINTF_OPTIONS, MS_stderr, fmt, nullptr, args);
|
|
va_end(args);
|
|
return result;
|
|
}
|
|
void assert_handler( UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line, UTF8*R_ msg, ... ) {
|
|
printf_err( "%s - %s:(%d): Assert Failure: ", file, function, line );
|
|
if ( condition )
|
|
printf_err( "`%s` \n", condition );
|
|
if ( msg ) {
|
|
va_list va = {0};
|
|
va_start( va, msg );
|
|
__stdio_common_vfprintf_s(MS_CRT_INTERNAL_LOCAL_PRINTF_OPTIONS, MS_stderr, msg, nullptr, va);
|
|
va_end( va );
|
|
}
|
|
printf_err( "%s", "\n" );
|
|
}
|
|
#endif
|
|
#pragma endregion Debug
|
|
|
|
#pragma endregion Implementation
|
|
|
|
int main(void)
|
|
{
|
|
os_init();
|
|
VArena_R vm_file = varena_make(.reserve_size = giga(4), .flags = VArenaFlag_NoLargePages);
|
|
return 0;
|
|
}
|
|
|
|
#pragma clang diagnostic pop
|