mirror of
https://github.com/Ed94/WATL_Exercise.git
synced 2025-10-08 17:50:55 -07:00
814 lines
30 KiB
C
814 lines
30 KiB
C
/*
|
|
WATL Exercise
|
|
Version: 0 (From Scratch, 1-Stage Compilation, LLVM & WinAPI Only, Win CRT Multi-threaded Static Linkage)
|
|
Host: Windows 11 (x86-64)
|
|
Toolchain: LLVM (2025-08-30), C-Stanard: 11
|
|
|
|
Based on: Neokineogfx - Fixing C
|
|
https://youtu.be/RrL7121MOeA
|
|
*/
|
|
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wunused-const-variable"
|
|
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
|
|
#pragma clang diagnostic ignored "-Wswitch"
|
|
#pragma clang diagnostic ignored "-Wunused-variable"
|
|
#pragma clang diagnostic ignored "-Wunknown-pragmas"
|
|
#pragma clang diagnostic ignored "-Wvarargs"
|
|
#pragma clang diagnostic ignored "-Wunused-function"
|
|
#pragma clang diagnostic ignored "-Wbraced-scalar-init"
|
|
#pragma clang diagnostic ignored "-W#pragma-messages"
|
|
#pragma clang diagnostic ignored "-Wstatic-in-inline"
|
|
#pragma clang diagnostic ignored "-Wkeyword-macro"
|
|
#pragma clang diagnostic ignored "-Wc23-compat"
|
|
#pragma clang diagnostic ignored "-Wreserved-identifier"
|
|
#pragma clang diagnostic ignored "-Wpre-c11-compat"
|
|
#pragma clang diagnostic ignored "-Wc23-extensions"
|
|
#pragma clang diagnostic ignored "-Wunused-macros"
|
|
#pragma clang diagnostic ignored "-Wdeclaration-after-statement"
|
|
#pragma clang diagnostic ignored "-Wunsafe-buffer-usage"
|
|
#pragma clang diagnostic ignored "-Wc++-keyword"
|
|
#pragma clang diagnostic ignored "-Wimplicit-function-declaration"
|
|
#pragma clang diagnostic ignored "-Wcast-align"
|
|
#pragma clang diagnostic ignored "-Wunused-parameter"
|
|
|
|
#pragma region Header
|
|
|
|
#pragma region DSL
|
|
#if 0
|
|
// Original macros
|
|
|
|
#define A_(x) __attribute__((aligned (x)))
|
|
#define E_(x,y) __builtin_expect(x,y)
|
|
#define S_ static
|
|
#define I_ static inline __attribute__((always_inline))
|
|
#define N_ static __attribute__((noinline))
|
|
#define R_ __restrict
|
|
#define V_ volatile
|
|
// #define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
|
|
#endif
|
|
|
|
// Ones I'm deciding to use..
|
|
|
|
#define align_(value) __attribute__((aligned (value))) // for easy alignment
|
|
#define expect_(x, y) __builtin_expect(x, y) // so compiler knows the common path
|
|
#define finline static inline __attribute__((always_inline)) // force inline
|
|
#define noinline static __attribute__((noinline)) // force no inline [used in thread api]
|
|
#define R_ __restrict // pointers are either restricted or volatile and nothing else
|
|
#define V_ volatile // pointers are either restricted or volatile and nothing else
|
|
// #define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
|
|
|
|
#define glue_impl(A, B) A ## B
|
|
#define glue(A, B) glue_impl(A, B)
|
|
#define stringify_impl(S) #S
|
|
#define stringify(S) stringify_impl(S)
|
|
#define tmpl(prefix, type) prefix ## _ ## type
|
|
|
|
#define local_persist static
|
|
#define global static
|
|
|
|
#define static_assert _Static_assert
|
|
#define typeof __typeof__
|
|
#define typeof_ptr(ptr) typeof(ptr[0])
|
|
#define typeof_same(a, b) _Generic((a), typeof((b)): 1, default: 0)
|
|
|
|
#define def_R_(type) type* restrict type ## _R
|
|
#define def_V_(type) type* volatile type ## _V
|
|
#define def_ptr_set(type) def_R_(type); typedef def_V_(type)
|
|
#define def_tset(type) type; typedef def_ptr_set(type)
|
|
|
|
typedef __UINT8_TYPE__ def_tset(U1); typedef __UINT16_TYPE__ def_tset(U2); typedef __UINT32_TYPE__ def_tset(U4); typedef __UINT64_TYPE__ def_tset(U8);
|
|
typedef __INT8_TYPE__ def_tset(S1); typedef __INT16_TYPE__ def_tset(S2); typedef __INT32_TYPE__ def_tset(S4); typedef __INT64_TYPE__ def_tset(S8);
|
|
typedef unsigned char def_tset(B1); typedef __UINT16_TYPE__ def_tset(B2); typedef __UINT32_TYPE__ def_tset(B4);
|
|
typedef float def_tset(F4);
|
|
typedef double def_tset(F8);
|
|
typedef float V4_F4 __attribute__((vector_size(16))); typedef def_ptr_set(V4_F4);
|
|
enum { false = 0, true = 1, true_overflow, };
|
|
|
|
#define u1_r(value) cast(U1_R, value)
|
|
#define u2_r(value) cast(U2_R, value)
|
|
#define u4_r(value) cast(U4_R, value)
|
|
#define u8_r(value) cast(U8_R, value)
|
|
#define u1_v(value) cast(U1_V, value)
|
|
#define u2_v(value) cast(U2_V, value)
|
|
#define u4_v(value) cast(U4_V, value)
|
|
#define u8_v(value) cast(U8_V, value)
|
|
|
|
#define u1_(value) cast(U1, value)
|
|
#define u2_(value) cast(U2, value)
|
|
#define u4_(value) cast(U4, value)
|
|
#define u8_(value) cast(U8, value)
|
|
#define s1_(value) cast(S1, value)
|
|
#define s2_(value) cast(S2, value)
|
|
#define s4_(value) cast(S4, value)
|
|
#define s8_(value) cast(S8, value)
|
|
#define f4_(value) cast(F4, value)
|
|
#define f8_(value) cast(F8, value)
|
|
|
|
#define farray_len(array) (SSIZE)sizeof(array) / size_of( typeof((array)[0]))
|
|
#define farray_init(type, ...) (type[]){__VA_ARGS__}
|
|
#define def_farray_sym(_type, _len) A ## _len ## _ ## _type
|
|
#define def_farray_impl(_type, _len) _type def_farray_sym(_type, _len)[_len]; typedef def_ptr_set(def_farray_sym(_type, _len))
|
|
#define def_farray(type, len) def_farray_impl(type, len)
|
|
#define def_enum(underlying_type, symbol) underlying_type def_tset(symbol); enum symbol
|
|
#define def_struct(symbol) struct symbol def_tset(symbol); struct symbol
|
|
#define def_union(symbol) union symbol def_tset(symbol); union symbol
|
|
#define def_proc(symbol) symbol
|
|
#define opt_args(symbol, ...) &(symbol){__VA_ARGS__}
|
|
|
|
#define alignas _Alignas
|
|
#define alignof _Alignof
|
|
#define cast(type, data) ((type)(data))
|
|
#define pcast(type, data) * cast(type*, & (data))
|
|
#define nullptr cast(void*, 0)
|
|
#define offset_of(type, member) cast(U8, & (((type*) 0)->member))
|
|
#define size_of(data) cast(U8, sizeof(data))
|
|
|
|
#define kilo(n) (cast(U8, n) << 10)
|
|
#define mega(n) (cast(U8, n) << 20)
|
|
#define giga(n) (cast(U8, n) << 30)
|
|
#define tera(n) (cast(U8, n) << 40)
|
|
|
|
// Signed stuff (still diff flavor from Lottes)
|
|
|
|
#define sop_1(op, a, b) cast(U1, s1_(a) op s1_(b))
|
|
#define sop_2(op, a, b) cast(U2, s2_(a) op s2_(b))
|
|
#define sop_4(op, a, b) cast(U4, s4_(a) op s4_(b))
|
|
#define sop_8(op, a, b) cast(U8, s8_(a) op s8_(b))
|
|
|
|
#define def_signed_op(id, op, width) finline U ## width id ## _s ## width(U ## width a, U ## width b) {return sop_ ## width(op, a, b); }
|
|
#define def_signed_ops(id, op) def_signed_op(id, op, 1) def_signed_op(id, op, 2) def_signed_op(id, op, 4) def_signed_op(id, op, 8)
|
|
def_signed_ops(add, +) def_signed_ops(sub, -) def_signed_ops(mut, *) def_signed_ops(div, /)
|
|
def_signed_ops(gt, >) def_signed_ops(lt, <) def_signed_ops(ge, >=) def_signed_ops(le, <=)
|
|
|
|
#define def_generic_sop(op, a, ...) _Generic((a), U1: op ## _s1, U2: op ## _s2, U4: op ## _s4, U8: op ## _s8) (a, __VA_ARGS__)
|
|
#define add_s(a,b) def_generic_sop(add,a,b)
|
|
#define sub_s(a,b) def_generic_sop(sub,a,b)
|
|
#define mut_s(a,b) def_generic_sop(mut,a,b)
|
|
#define gt_s(a,b) def_generic_sop(gt, a,b)
|
|
#define lt_s(a,b) def_generic_sop(lt, a,b)
|
|
#define ge_s(a,b) def_generic_sop(ge, a,b)
|
|
#define le_s(a,b) def_generic_sop(le, a,b)
|
|
|
|
finline U4 AtmAdd_u4 (U4_R a, U4 v){__asm__ volatile("lock xaddl %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
finline U8 AtmAdd_u8 (U8_R a, U8 v){__asm__ volatile("lock xaddq %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
finline U4 AtmSwap_u4(U4_R a, U4 v){__asm__ volatile("lock xchgl %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
finline U8 AtmSwap_u8(U8_R a, U8 v){__asm__ volatile("lock xchgq %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
#pragma endregion DSL
|
|
|
|
#pragma region Strings
|
|
typedef unsigned char def_tset(UTF8);
|
|
typedef def_struct(Str8) { UTF8*R_ ptr; U8 len; };
|
|
typedef Str8 def_tset(Slice_UTF8);
|
|
typedef def_struct(Slice_Str8) { Str8*R_ ptr; U8 len; };
|
|
#define lit(string_literal) (Str8){ (UTF8*R_) string_literal, size_of(string_literal) - 1 }
|
|
#pragma endregion Strings
|
|
|
|
#pragma region Debug
|
|
#define debug_trap() __debugbreak()
|
|
#define assert_trap(cond) do { if (cond) __debug_trap(); } while(0)
|
|
#define assert_msg(cond, msg, ...) do { \
|
|
if (! (cond)) \
|
|
{ \
|
|
assert_handler( \
|
|
stringify(cond), \
|
|
__FILE__, \
|
|
__func__, \
|
|
cast(S4, __LINE__), \
|
|
msg, \
|
|
## __VA_ARGS__); \
|
|
debug_trap(); \
|
|
} \
|
|
} while(0)
|
|
void assert_handler(UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line, UTF8*R_ msg, ... );
|
|
#pragma endregion Debug
|
|
|
|
#pragma region Memory
|
|
typedef def_farray(B1, 1);
|
|
typedef def_farray(B1, 2);
|
|
typedef def_farray(B1, 4);
|
|
typedef def_farray(B1, 8);
|
|
|
|
inline U8 align_pow2(U8 x, U8 b);
|
|
|
|
#define align_struct(type_width) ((U8)(((type_width) + 7) / 8 * 8))
|
|
|
|
#define assert_bounds(point, start, end) do { \
|
|
assert(pos_start <= pos_point); \
|
|
assert(pos_point <= pos_end); \
|
|
} while(0)
|
|
|
|
U8 mem_copy (U8 dest, U8 src, U8 length);
|
|
U8 mem_copy_overlapping(U8 dest, U8 src, U8 length);
|
|
B4 mem_zero (U8 dest, U8 length);
|
|
|
|
finline void BarC(void){__asm__ volatile("::""memory");} // Compiler Barrier
|
|
finline void BarM(void){__builtin_ia32_mfence();} // Memory Barrier
|
|
finline void BarR(void){__builtin_ia32_lfence();} // Read Barrier
|
|
finline void BarW(void){__builtin_ia32_sfence();} // Write Barrier
|
|
|
|
#define check_nil(nil, p) ((p) == 0 || (p) == nil)
|
|
#define set_nil(nil, p) ((p) = nil)
|
|
|
|
#define sll_stack_push_n(f, n, next) do { (n)->next = (f); (f) = (n); } while(0)
|
|
|
|
#define sll_queue_push_nz(nil, f, l, n, next) \
|
|
( \
|
|
check_nil(nil, f) ? ( \
|
|
(f) = (l) = (n), \
|
|
set_nil(nil, (n)->next) \
|
|
) \
|
|
: ( \
|
|
(l)->next=(n), \
|
|
(l) = (n), \
|
|
set_nil(nil,(n)->next) \
|
|
) \
|
|
)
|
|
#define sll_queue_push_n(f, l, n, next) sll_queue_push_nz(0, f, l, n, next)
|
|
|
|
typedef def_struct(Slice_Mem) { U8 ptr; U8 len; };
|
|
|
|
#define def_Slice(type) def_struct(tmpl(Slice,type)) { type*R_ ptr; U8 len; }; typedef def_ptr_set(tmpl(Slice,type))
|
|
#define slice_assert(slice) do { assert((slice).ptr != nullptr); assert((slice).len > 0); } while(0)
|
|
#define slice_end(slice) ((slice).ptr + (slice).len)
|
|
#define size_of_slice_type(slice) size_of( * (slice).ptr )
|
|
|
|
typedef def_Slice(void);
|
|
typedef def_Slice(B1);
|
|
#define slice_byte(slice) ((Slice_B1){cast(B1, (slice).ptr), (slice).len * size_of_slice_type(slice)})
|
|
#define slice_fmem(mem) ((Slice_B1){ mem, size_of(mem) })
|
|
|
|
void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth);
|
|
void slice__zero(Slice_B1 mem, U8 typewidth);
|
|
#define slice_copy(dest, src) do { \
|
|
static_assert(typeof_same(dest, src)); \
|
|
slice__copy(slice_byte(dest), size_of_slice_type(dest), slice_byte(src), size_of_slice_type(src)); \
|
|
} while (0)
|
|
#define slice_zero(slice) slice__zero(slice_byte(slice), size_of_slice_type(slice))
|
|
|
|
#define slice_iter(container, iter) typeof((container).ptr) iter = (container).ptr; iter != slice_end(container); ++ iter
|
|
#define slice_arg_from_array(type, ...) & (tmpl(Slice,type)) { .ptr = farray_init(type, __VA_ARGS__), .len = farray_len( farray_init(type, __VA_ARGS__)) }
|
|
#pragma endregion Memory
|
|
|
|
#pragma region Math
|
|
#define min(A, B) (((A) < (B)) ? (A) : (B))
|
|
#define max(A, B) (((A) > (B)) ? (A) : (B))
|
|
#define clamp_bot(X, B) max(X, B)
|
|
#pragma endregion Math
|
|
|
|
#pragma region Allocator Interface
|
|
typedef def_enum(U4, AllocatorOp) {
|
|
AllocatorOp_Alloc_NoZero = 0, // If Alloc exist, so must No_Zero
|
|
AllocatorOp_Alloc,
|
|
AllocatorOp_Free,
|
|
AllocatorOp_Reset,
|
|
AllocatorOp_Grow_NoZero,
|
|
AllocatorOp_Grow,
|
|
AllocatorOp_Shrink,
|
|
AllocatorOp_Rewind,
|
|
AllocatorOp_SavePoint,
|
|
AllocatorOp_Query, // Must always be implemented
|
|
};
|
|
typedef def_enum(U4, AllocatorQueryFlags) {
|
|
AllocatorQuery_Alloc = (1 << 0),
|
|
AllocatorQuery_Free = (1 << 1),
|
|
// Wipe the allocator's state
|
|
AllocatorQuery_Reset = (1 << 2),
|
|
// Supports both grow and shrink
|
|
AllocatorQuery_Shrink = (1 << 4),
|
|
AllocatorQuery_Grow = (1 << 5),
|
|
AllocatorQuery_Resize = AllocatorQuery_Grow | AllocatorQuery_Shrink,
|
|
// Ability to rewind to a save point (ex: arenas, stack), must also be able to save such a point
|
|
AllocatorQuery_Rewind = (1 << 6),
|
|
};
|
|
typedef struct AllocatorProc_In def_tset(AllocatorProc_In);
|
|
typedef struct AllocatorProc_Out def_tset(AllocatorProc_Out);
|
|
typedef struct AllocatorSP AllocatorSP;
|
|
typedef void def_proc(AllocatorProc) (AllocatorProc_In In, AllocatorProc_Out_R Out);
|
|
struct AllocatorSP {
|
|
AllocatorProc* type_sig;
|
|
S8 slot;
|
|
};
|
|
struct AllocatorProc_In {
|
|
U8 data;
|
|
U8 requested_size;
|
|
U8 alignment;
|
|
union {
|
|
Slice_Mem old_allocation;
|
|
AllocatorSP save_point;
|
|
};
|
|
AllocatorOp op;
|
|
A4_B1 _PAD_;
|
|
};
|
|
struct AllocatorProc_Out {
|
|
union {
|
|
Slice_Mem allocation;
|
|
AllocatorSP save_point;
|
|
};
|
|
AllocatorQueryFlags features;
|
|
A4_B1 _PAD_;
|
|
U8 left; // Contiguous memory left
|
|
U8 max_alloc;
|
|
U8 min_alloc;
|
|
B4 continuity_break; // Whether this allocation broke continuity with the previous (address space wise)
|
|
A4_B1 _PAD_2;
|
|
};
|
|
typedef def_struct(AllocatorInfo) {
|
|
U8 proc;
|
|
U8 data;
|
|
};
|
|
static_assert(size_of(AllocatorSP) <= size_of(Slice_Mem));
|
|
typedef def_struct(AllocatorQueryInfo) {
|
|
AllocatorSP save_point;
|
|
AllocatorQueryFlags features;
|
|
A4_B1 _PAD_;
|
|
U8 left; // Contiguous memory left
|
|
U8 max_alloc;
|
|
U8 min_alloc;
|
|
B4 continuity_break; // Whether this allocation broke continuity with the previous (address space wise)
|
|
A4_B1 _PAD_2;
|
|
};
|
|
static_assert(size_of(AllocatorProc_Out) == size_of(AllocatorQueryInfo));
|
|
|
|
#define MEMORY_ALIGNMENT_DEFAULT (2 * size_of(void*))
|
|
|
|
AllocatorQueryInfo allocator_query(AllocatorInfo ainfo);
|
|
|
|
void mem_free (AllocatorInfo ainfo, Slice_Mem mem);
|
|
void mem_reset (AllocatorInfo ainfo);
|
|
void mem_rewind (AllocatorInfo ainfo, AllocatorSP save_point);
|
|
AllocatorSP mem_save_point(AllocatorInfo ainfo);
|
|
|
|
typedef def_struct(Opts_mem_alloc) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
|
|
typedef def_struct(Opts_mem_grow) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
|
|
typedef def_struct(Opts_mem_shrink) { U8 alignment; };
|
|
typedef def_struct(Opts_mem_resize) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
|
|
|
|
Slice_Mem mem__alloc (AllocatorInfo ainfo, U8 size, Opts_mem_alloc_R opts);
|
|
Slice_Mem mem__grow (AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow_R opts);
|
|
Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resize_R opts);
|
|
Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shrink_R opts);
|
|
|
|
#define mem_alloc(ainfo, size, ...) mem__alloc (ainfo, size, opt_args(Opts_mem_alloc, __VA_ARGS__))
|
|
#define mem_grow(ainfo, mem, size, ...) mem__grow (ainfo, mem, size, opt_args(Opts_mem_grow, __VA_ARGS__))
|
|
#define mem_resize(ainfo, mem, size, ...) mem__resize(ainfo, mem, size, opt_args(Opts_mem_resize, __VA_ARGS__))
|
|
#define mem_shrink(ainfo, mem, size, ...) mem__shrink(ainfo, mem, size, opt_args(Opts_mem_shrink, __VA_ARGS__))
|
|
|
|
#define alloc_type(ainfo, type, ...) (type*R_) mem__alloc(ainfo, size_of(type), opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr
|
|
#define alloc_slice(ainfo, type, num, ...) (tmpl(Slice,type)){ mem__alloc(ainfo, size_of(type) * num, opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr, num }
|
|
#pragma endregion Allocator Interface
|
|
|
|
#pragma region FArena (Fixed-Sized Arena)
|
|
typedef def_struct(Opts_farena) {
|
|
Str8 type_name;
|
|
U8 alignment;
|
|
};
|
|
typedef def_struct(FArena) {
|
|
U8 start;
|
|
U8 capacity;
|
|
U8 used;
|
|
};
|
|
typedef def_ptr_set(FArena);
|
|
FArena farena_make (Slice_Mem mem);
|
|
void farena_init (FArena_R arena, Slice_Mem byte);
|
|
Slice_Mem farena__push (FArena_R arena, U8 amount, U8 type_width, Opts_farena* opts);
|
|
void farena_reset (FArena_R arena);
|
|
void farena_rewind(FArena_R arena, AllocatorSP save_point);
|
|
AllocatorSP farena_save (FArena arena);
|
|
|
|
void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out);
|
|
#define ainfo_farena(arena) (AllocatorInfo){ .proc = farena_allocator_proc, .data = & arena }
|
|
|
|
#define farena_push(arena, type, ...) \
|
|
cast(type*, farena__push(arena, size_of(type), 1, opt_args(Opts_farena_push, lit(stringify(type)), __VA_ARGS__))).ptr
|
|
|
|
#define farena_push_array(arena, type, amount, ...) \
|
|
(Slice ## type){ farena__push(arena, size_of(type), amount, opt_args(Opts_farena_push, lit(stringify(type)), __VA_ARGS__)).ptr, amount }
|
|
#pragma endregion FArena
|
|
|
|
#pragma region OS
|
|
finline U8 Clk (void){U8 aa,dd;__asm__ volatile("rdtsc":"=a"(aa),"=d"(dd));return aa;}
|
|
finline void Pause(void){__asm__ volatile("pause":::"memory");}
|
|
|
|
typedef def_struct(OS_SystemInfo) {
|
|
U8 target_page_size;
|
|
};
|
|
typedef def_struct(Opts_vmem) {
|
|
U8 base_addr;
|
|
B4 no_large_pages;
|
|
A4_B1 _PAD_;
|
|
};
|
|
void os_init(void);
|
|
OS_SystemInfo_R os_system_info(void);
|
|
|
|
inline B4 os__vmem_commit (U8 vm, U8 size, Opts_vmem*R_ opts);
|
|
inline U8 os__vmem_reserve( U8 size, Opts_vmem*R_ opts);
|
|
inline void os_vmem_release (U8 vm, U8 size);
|
|
|
|
#define os_vmem_reserve(size, ...) os__vmem_reserve( size, opt_args(Opts_vmem, __VA_ARGS__))
|
|
#define os_vmem_commit(vm, size, ...) os__vmem_commit (vm, size, opt_args(Opts_vmem, __VA_ARGS__))
|
|
#pragma endregion OS
|
|
|
|
#pragma region VArena (Virutal Address Space Arena)
|
|
typedef Opts_farena Opts_varena;
|
|
typedef def_enum(U4, VArenaFlags) {
|
|
VArenaFlag_NoLargePages = (1 << 0),
|
|
};
|
|
typedef def_struct(VArena) {
|
|
U8 reserve_start;
|
|
U8 reserve;
|
|
U8 commit_size;
|
|
U8 committed;
|
|
U8 commit_used;
|
|
VArenaFlags flags;
|
|
A4_B1 _PAD;
|
|
};
|
|
typedef def_struct(Opts_varena_make) {
|
|
U8 base_addr;
|
|
U8 reserve_size;
|
|
U8 commit_size;
|
|
VArenaFlags flags;
|
|
A4_B1 _PAD_;
|
|
};
|
|
VArena* varena__make(Opts_varena_make* opts);
|
|
#define varena_make(...) varena__make(opt_args(Opts_varena_make, __VA_ARGS__))
|
|
|
|
Slice_Mem varena__push (VArena_R arena, U8 amount, U8 type_width, Opts_varena*R_ opts);
|
|
void varena_release(VArena_R arena);
|
|
void varena_rewind (VArena_R arena, AllocatorSP save_point);
|
|
void varena_reset (VArena_R arena);
|
|
Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size, Opts_varena*R_ opts);
|
|
AllocatorSP varena_save (VArena_R arena);
|
|
|
|
void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out);
|
|
#define ainfo_varena(varena) (AllocatorInfo) { .proc = & varena_allocator_proc, .data = varena }
|
|
|
|
#define varena_push(arena, type, ...) \
|
|
cast(type*R_, varena__push(arena, 1, size_of(type), opt_args(Opts_varena, lit(stringify(type)), __VA_ARGS__) ).ptr)
|
|
|
|
#define varena_push_array(arena, type, amount, ...) \
|
|
(tmpl(Slice,type)){ varena__push(arena, size_of(type), amount, opt_args(Opts_varena, lit(stringify(type)), __VA_ARGS__)).ptr, amount }
|
|
#pragma endregion VArena
|
|
|
|
#pragma region Arena (Casey-Ryan Composite Arenas)
|
|
typedef Opts_varena Opts_arena;
|
|
typedef def_enum(U4, ArenaFlags) {
|
|
ArenaFlag_NoLargePages = (1 << 0),
|
|
ArenaFlag_NoChain = (1 << 1),
|
|
};
|
|
typedef def_struct(Arena) {
|
|
VArena_R backing;
|
|
Arena_R prev;
|
|
U8 current;
|
|
U8 base_pos;
|
|
U8 pos;
|
|
ArenaFlags flags;
|
|
A4_B1 _PAD_;
|
|
};
|
|
typedef Opts_varena_make Opts_arena_make;
|
|
U8 arena__make (Opts_arena_make*R_ opts);
|
|
Slice_Mem arena__push (Arena_R arena, U8 amount, U8 type_width, Opts_arena* opts);
|
|
void arena_release(Arena_R arena);
|
|
void arena_reset (Arena_R arena);
|
|
void arena_rewind (Arena_R arena, AllocatorSP save_point);
|
|
AllocatorSP arena_save (Arena_R arena);
|
|
|
|
void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out);
|
|
#define ainfo_arena(arena) (AllocatorInfo){ .proc = & arena_allocator_proc, .data = arena }
|
|
|
|
#define arena_make(...) arena__make(opt_args(Opts_arena_make, __VA_ARGS__))
|
|
|
|
#define arena_push(arena, type, ...) \
|
|
cast(type*R_, arena__push(arena, 1, size_of(type), opt_args(Opts_arena, lit(stringify(type)), __VA_ARGS__) ).ptr)
|
|
|
|
#define arena_push_array(arena, type, amount, ...) \
|
|
(tmpl(Slice,type)){ arena__push(arena, size_of(type), amount, opt_args(Opts_arena, lit(stringify(type)), __VA_ARGS__)).ptr, amount }
|
|
#pragma endregion Arena
|
|
|
|
#pragma region Hashing
|
|
finline
|
|
void hash64_djb8(U8_R hash, Slice_Mem bytes) {
|
|
U8 elem = bytes.ptr;
|
|
U8 curr = hash[0];
|
|
loop:
|
|
hash[0] <<= 8;
|
|
hash[0] += hash[0];
|
|
curr += elem;
|
|
hash[0] = curr;
|
|
if (elem != bytes.ptr + bytes.len)
|
|
goto end;
|
|
++ elem;
|
|
goto loop;
|
|
end:
|
|
return;
|
|
}
|
|
#pragma endregion Hashing
|
|
|
|
#pragma region Key Table 1-Layer Linear (KT1L)
|
|
#define def_KT1L_Slot(type) \
|
|
def_struct(tmpl(KT1L_Slot,type)) { \
|
|
U8 key; \
|
|
type value; \
|
|
}
|
|
#define def_KT1L(type) \
|
|
def_Slice(tmpl(KT1L_Slot,type)); \
|
|
typedef tmpl(Slice_KT1L_Slot,type) tmpl(KT1L,type)
|
|
|
|
typedef Slice_Mem KT1L_Byte;
|
|
typedef def_struct(KT1L_Meta) {
|
|
U8 slot_size;
|
|
U8 kt_value_offset;
|
|
U8 type_width;
|
|
Str8 type_name;
|
|
};
|
|
void kt1l__populate_slice_a2(KT1L_Byte*R_ kt, AllocatorInfo backing, KT1L_Meta m, Slice_Mem values, U8 num_values );
|
|
#define kt1l_populate_slice_a2(type, kt, ainfo, values) kt1l__populate_slice_a2( \
|
|
cast(KT1L_Byte*R_, kt), \
|
|
ainfo, \
|
|
(KT1L_Meta){ \
|
|
.slot_size = size_of(tmpl(KT1L_Slot,type)), \
|
|
.kt_value_offset = offset_of(tmpl(KT1L_Slot,type), value), \
|
|
.type_width = size_of(type), \
|
|
.type_name = lit(stringify(type)) \
|
|
}, \
|
|
slice_byte(values), (values).len \
|
|
)
|
|
#pragma endregion KT1L
|
|
|
|
#pragma region Key Table 1-Layer Chained-Chunked-Cells (KT1CX)
|
|
#define def_KT1CX_Slot(type) \
|
|
def_struct(tmpl(KT1CX_Slot,type)) { \
|
|
type value; \
|
|
U8 key; \
|
|
B4 occupied; \
|
|
A4_B1 _PAD_; \
|
|
}
|
|
#define def_KT1CX_Cell(type, depth) \
|
|
def_struct(tmpl(KT1CX_Cell,type)) { \
|
|
tmpl(KT1CX_Slot,type) slots[depth]; \
|
|
tmpl(KT1CX_Slot,type)*R_ next; \
|
|
}
|
|
#define def_KT1CX(type) \
|
|
def_struct(tmpl(KT1CX,type)) { \
|
|
tmpl(Slice_KT1CX_Cell,type) cell_pool; \
|
|
tmpl(Slice_KT1CX_Cell,type) table; \
|
|
}
|
|
typedef def_struct(KT1CX_Byte_Slot) {
|
|
U8 key;
|
|
B4 occupied;
|
|
A4_B1 _PAD_;
|
|
};
|
|
typedef def_struct(KT1CX_Byte_Cell) {
|
|
U8 next;
|
|
};
|
|
typedef def_struct(KT1CX_Byte) {
|
|
Slice_Mem cell_pool;
|
|
Slice_Mem table;
|
|
};
|
|
typedef def_struct(KT1CX_ByteMeta) {
|
|
U8 slot_size;
|
|
U8 slot_key_offset;
|
|
U8 cell_next_offset;
|
|
U8 cell_depth;
|
|
U8 cell_size;
|
|
U8 type_width;
|
|
Str8 type_name;
|
|
};
|
|
typedef def_struct(KT1CX_InfoMeta) {
|
|
U8 cell_pool_size;
|
|
U8 table_size;
|
|
U8 slot_size;
|
|
U8 slot_key_offset;
|
|
U8 cell_next_offset;
|
|
U8 cell_depth;
|
|
U8 cell_size;
|
|
U8 type_width;
|
|
Str8 type_name;
|
|
};
|
|
typedef def_struct(KT1CX_Info) {
|
|
AllocatorInfo backing_table;
|
|
AllocatorInfo backing_cells;
|
|
};
|
|
void kt1cx_init (KT1CX_Info info, KT1CX_InfoMeta m, KT1CX_Byte* result);
|
|
void kt1cx_clear (KT1CX_Byte kt, KT1CX_ByteMeta meta);
|
|
U8 kt1cx_slot_id(KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta);
|
|
U8 kt1cx_get (KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta);
|
|
U8 kt1cx_set (KT1CX_Byte kt, U8 key, Slice_Mem value, AllocatorInfo backing_cells, KT1CX_ByteMeta meta);
|
|
|
|
#define kt1cx_assert(kt) do { \
|
|
slice_assert(kt.cell_pool); \
|
|
slice_assert(kt.table); \
|
|
} while(0)
|
|
#define kt1cx_byte(kt) (KT1CX_Byte){slice_byte(kt.cell_pool), { cast(U8, kt.table.ptr), kt.table.len } }
|
|
#pragma endregion KT1CX
|
|
|
|
#pragma region String Operations
|
|
finline B4 char_is_upper(U8 c) { return('A' <= c && c <= 'Z'); }
|
|
finline U8 char_to_lower(U8 c) { if (char_is_upper(c)) { c += ('a' - 'A'); } return(c); }
|
|
inline U8 integer_symbols(U8 value) {
|
|
local_persist U1 lookup_table[16] = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F', }; return lookup_table[cast(U1, value)];
|
|
}
|
|
|
|
char* str8_to_cstr_capped(Str8 content, Slice_Mem mem);
|
|
Str8 str8_from_u32(AllocatorInfo ainfo, U4 num, U4 radix, U8 min_digits, U8 digit_group_separator);
|
|
|
|
typedef def_farray(Str8, 2);
|
|
typedef def_Slice(A2_Str8);
|
|
typedef def_KT1L_Slot(Str8);
|
|
typedef def_KT1L(Str8);
|
|
|
|
Str8 str8__fmt_backed(AllocatorInfo tbl_backing, AllocatorInfo buf_backing, Str8 fmt_template, Slice_A2_Str8* entries);
|
|
#define str8_fmt_backed(tbl_backing, buf_backing, fmt_template, ...) \
|
|
str8__fmt_backed(tbl_backing, buf_backing, lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__))
|
|
|
|
Str8 str8__fmt(Str8 fmt_template, Slice_A2_Str8*R_ entries);
|
|
#define str8_fmt(fmt_template, ...) str8__fmt(lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__))
|
|
|
|
#define Str8Cache_CELL_DEPTH 4
|
|
|
|
typedef def_KT1CX_Slot(Str8);
|
|
typedef def_KT1CX_Cell(Str8, Str8Cache_CELL_DEPTH);
|
|
typedef def_Slice(KT1CX_Cell_Str8);
|
|
typedef def_KT1CX(Str8);
|
|
typedef def_struct(Str8Cache) {
|
|
AllocatorInfo str_reserve;
|
|
AllocatorInfo cell_reserve;
|
|
AllocatorInfo tbl_backing;
|
|
KT1CX_Str8 kt;
|
|
};
|
|
|
|
typedef def_struct(Opts_str8cache_init) {
|
|
AllocatorInfo str_reserve;
|
|
AllocatorInfo cell_reserve;
|
|
AllocatorInfo tbl_backing;
|
|
U8 cell_pool_size;
|
|
U8 table_size;
|
|
};
|
|
void str8cache__init(Str8Cache_R cache, Opts_str8cache_init*R_ opts);
|
|
Str8Cache str8cache__make( Opts_str8cache_init*R_ opts);
|
|
|
|
#define str8cache_init(cache, ...) str8cache__init(cache, opt_args(Opts_str8cache_init, __VA_ARGS__))
|
|
#define str8cache_make(...) str8cache__make( opt_args(Opts_str8cache_init, __VA_ARGS__))
|
|
|
|
void str8cache_clear(KT1CX_Str8 kt);
|
|
U8 str8cache_get(KT1CX_Str8 kt, U8 key);
|
|
U8 str8cache_set(KT1CX_Str8 kt, U8 key, Str8 value, AllocatorInfo str_reserve, AllocatorInfo backing_cells);
|
|
|
|
Str8 cache_str8(Str8Cache* cache, Str8 str);
|
|
|
|
typedef def_struct(Str8Gen) {
|
|
AllocatorInfo backing;
|
|
U8 ptr;
|
|
U8 len;
|
|
U8 cap;
|
|
};
|
|
void str8gen_init(Str8Gen_R gen, AllocatorInfo backing);
|
|
Str8Gen str8gen_make( AllocatorInfo backing);
|
|
|
|
#define str8gen_slice_mem(gen) (Slice_mem){ cast(U8, (gen).ptr), (gen).cap }
|
|
|
|
finline Str8 str8_from_str8gen(Str8Gen gen) { return (Str8){ cast(UTF8_R, gen.ptr), gen.len}; }
|
|
|
|
void str8gen_append_str8(U8 gen, Str8 str);
|
|
void str8gen__append_fmt(U8 gen, Str8 fmt_template, Slice_A2_Str8*R_ tokens);
|
|
|
|
#define str8gen_append_fmt(gen, fmt_template, ...) str8gen__append_fmt(gen, lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__))
|
|
#pragma endregion String Operations
|
|
|
|
#pragma region File System
|
|
typedef def_struct(FileOpInfo) {
|
|
Slice_Mem content;
|
|
};
|
|
typedef def_struct(Opts_read_file_contents) {
|
|
AllocatorInfo backing;
|
|
B4 zero_backing;
|
|
A4_B1 _PAD_;
|
|
};
|
|
void api_file_read_contents(FileOpInfo*R_ result, Str8 path, Opts_read_file_contents opts);
|
|
void file_write_str8 (Str8 path, Str8 content);
|
|
|
|
FileOpInfo file__read_contents(Str8 path, Opts_read_file_contents*R_ opts);
|
|
#define file_read_contents(path, ...) file__read_contents(path, &(Opts_read_file_contents){__VA_ARGS__})
|
|
#pragma endregion File System
|
|
|
|
#pragma region WATL
|
|
typedef def_enum(U4, WATL_TokKind) {
|
|
WATL_Tok_Space = ' ',
|
|
WATL_Tok_Tab = '\t',
|
|
WATL_Tok_CarriageReturn = '\r',
|
|
WATL_Tok_LineFeed = '\n',
|
|
WATL_Tok_Text = 0xFFFFFFF,
|
|
};
|
|
typedef Str8 def_tset(WATL_Tok);
|
|
typedef def_Slice(WATL_Tok);
|
|
typedef def_enum(U4, WATL_LexStatus) {
|
|
WATL_LexStatus_MemFail_SliceConstraintFail = (1 << 0),
|
|
};
|
|
typedef def_struct(WATL_Pos) {
|
|
S4 line;
|
|
S4 column;
|
|
};
|
|
typedef def_struct(WATL_LexMsg) {
|
|
WATL_LexMsg_R next;
|
|
Str8 content;
|
|
WATL_Tok_R tok;
|
|
WATL_Pos pos;
|
|
};
|
|
typedef def_struct(WATL_LexInfo) {
|
|
WATL_LexMsg_R msgs;
|
|
Slice_WATL_Tok toks;
|
|
WATL_LexStatus signal;
|
|
A4_B1 _PAD_;
|
|
};
|
|
typedef def_struct(Opts_watl_lex) {
|
|
AllocatorInfo ainfo_msgs;
|
|
AllocatorInfo ainfo_toks;
|
|
B1 failon_unsupported_codepoints;
|
|
B1 failon_pos_untrackable;
|
|
B1 failon_slice_constraint_fail;
|
|
A4_B1 _PAD_;
|
|
};
|
|
void api_watl_lex(WATL_LexInfo* info, Str8 source, Opts_watl_lex*R_ opts);
|
|
WATL_LexInfo watl__lex ( Str8 source, Opts_watl_lex*R_ opts);
|
|
#define watl_lex(source, ...) watl__lex(source, &(Opts_watl_lex){__VA_ARGS__})
|
|
|
|
typedef Str8 WATL_Node;
|
|
typedef def_Slice(WATL_Node);
|
|
typedef Slice_WATL_Node def_tset(WATL_Line);
|
|
typedef def_Slice(WATL_Line);
|
|
typedef def_struct(WATL_ParseMsg) {
|
|
WATL_ParseMsg_R next;
|
|
Str8 content;
|
|
WATL_Line_R line;
|
|
WATL_Tok_R tok;
|
|
WATL_Pos pos;
|
|
};
|
|
typedef def_enum(U4, WATL_ParseStatus) {
|
|
WATL_ParseStatus_MemFail_SliceConstraintFail = (1 << 0),
|
|
};
|
|
typedef def_struct(WATL_ParseInfo) {
|
|
Slice_WATL_Line lines;
|
|
WATL_ParseMsg_R msgs;
|
|
WATL_ParseStatus signal;
|
|
A4_B1 _PAD_;
|
|
};
|
|
typedef def_struct(Opts_watl_parse) {
|
|
AllocatorInfo ainfo_msgs;
|
|
AllocatorInfo ainfo_nodes;
|
|
AllocatorInfo ainfo_lines;
|
|
Str8Cache_R str_cache;
|
|
B4 failon_slice_constraint_fail;
|
|
A4_B1 _PAD_;
|
|
};
|
|
void api_watl_parse(WATL_ParseInfo_R info, Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts);
|
|
WATL_ParseInfo watl__parse ( Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts);
|
|
#define watl_parse(tokens, ...) watl__parse(tokens, &(Opts_watl_parse){__VA_ARGS__})
|
|
|
|
Str8 watl_dump_listing(AllocatorInfo buffer, Slice_WATL_Line lines);
|
|
#pragma endregion WATL
|
|
|
|
#pragma endregion Header
|
|
|
|
#pragma region Implementation
|
|
|
|
#pragma region Memory Operations
|
|
void* __cdecl memcpy (void* _Dst, void const* _Src, U8 _Size);
|
|
void* __cdecl memmove(void* _Dst, void const* _Src, U8 _Size);
|
|
void* __cdecl memset (void* _Dst, int _Val, U8 _Size);
|
|
inline
|
|
U8 align_pow2(U8 x, U8 b) {
|
|
assert(b != 0);
|
|
assert((b & (b - 1)) == 0); // Check power of 2
|
|
return ((x + b - 1) & (~(b - 1)));
|
|
}
|
|
U8 memory_copy(U8_R dest, U8_R src, U8 len) __asm__("memcpy");
|
|
U8 memory_copy_overlapping(U8_R dest, U8_R src, U8 len) __asm__("memmove");
|
|
inline
|
|
B4 memory_zero(U8_R dest, U8 length) {
|
|
if (dest == nullptr) return false;
|
|
memset((unsigned char*)dest, 0, length);
|
|
return true;
|
|
}
|
|
inline void slice__zero(Slice_B1 mem, U8 typewidth) { slice_assert(mem); memory_zero( u8_r(mem.ptr), mem.len); }
|
|
inline
|
|
void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth) {
|
|
assert(dest.len >= src.len);
|
|
slice_assert(dest);
|
|
slice_assert(src);
|
|
memory_copy(u8_r(dest.ptr), u8_r(src.ptr), src.len);
|
|
}
|
|
#pragma endregion Memory Operations
|
|
|
|
#pragma endrgion Implementation
|
|
|
|
int main(void)
|
|
{
|
|
U8 a = 4;
|
|
U8 b = 2;
|
|
a = add_s(a, b);
|
|
U8 test = ge_s(a, b);
|
|
return 0;
|
|
}
|
|
|
|
#pragma clang diagnostic pop
|