mirror of
https://github.com/Ed94/WATL_Exercise.git
synced 2025-10-08 17:50:55 -07:00
1451 lines
54 KiB
C
1451 lines
54 KiB
C
/*
|
|
WATL Exercise
|
|
Version: 0 (From Scratch, 1-Stage Compilation, LLVM & WinAPI Only, Win CRT Multi-threaded Static Linkage)
|
|
Host: Windows 11 (x86-64)
|
|
Toolchain: LLVM (2025-08-30), C-Stanard: 11
|
|
|
|
Based on: Neokineogfx - Fixing C
|
|
https://youtu.be/RrL7121MOeA
|
|
*/
|
|
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wunused-const-variable"
|
|
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
|
|
#pragma clang diagnostic ignored "-Wswitch"
|
|
#pragma clang diagnostic ignored "-Wunused-variable"
|
|
#pragma clang diagnostic ignored "-Wunknown-pragmas"
|
|
#pragma clang diagnostic ignored "-Wvarargs"
|
|
#pragma clang diagnostic ignored "-Wunused-function"
|
|
#pragma clang diagnostic ignored "-Wbraced-scalar-init"
|
|
#pragma clang diagnostic ignored "-W#pragma-messages"
|
|
#pragma clang diagnostic ignored "-Wstatic-in-inline"
|
|
#pragma clang diagnostic ignored "-Wkeyword-macro"
|
|
#pragma clang diagnostic ignored "-Wc23-compat"
|
|
#pragma clang diagnostic ignored "-Wreserved-identifier"
|
|
#pragma clang diagnostic ignored "-Wpre-c11-compat"
|
|
#pragma clang diagnostic ignored "-Wc23-extensions"
|
|
#pragma clang diagnostic ignored "-Wunused-macros"
|
|
#pragma clang diagnostic ignored "-Wdeclaration-after-statement"
|
|
#pragma clang diagnostic ignored "-Wunsafe-buffer-usage"
|
|
#pragma clang diagnostic ignored "-Wc++-keyword"
|
|
#pragma clang diagnostic ignored "-Wimplicit-function-declaration"
|
|
#pragma clang diagnostic ignored "-Wcast-align"
|
|
#pragma clang diagnostic ignored "-Wunused-parameter"
|
|
#pragma clang diagnostic ignored "-Wswitch-default"
|
|
#pragma clang diagnostic ignored "-Wmissing-field-initializers"
|
|
|
|
#pragma region Header
|
|
|
|
#pragma region DSL
|
|
#if 0
|
|
// Original macros
|
|
|
|
#define A_(x) __attribute__((aligned (x)))
|
|
#define E_(x,y) __builtin_expect(x,y)
|
|
#define S_ static
|
|
#define I_ static inline __attribute__((always_inline))
|
|
#define N_ static __attribute__((noinline))
|
|
#define R_ __restrict
|
|
#define V_ volatile
|
|
// #define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
|
|
#endif
|
|
|
|
// Ones I'm deciding to use..
|
|
|
|
#define align_(value) __attribute__((aligned (value))) // for easy alignment
|
|
#define expect_(x, y) __builtin_expect(x, y) // so compiler knows the common path
|
|
#define finline static inline __attribute__((always_inline)) // force inline
|
|
#define noinline static __attribute__((noinline)) // force no inline [used in thread api]
|
|
#define R_ __restrict // pointers are either restricted or volatile and nothing else
|
|
#define V_ volatile // pointers are either restricted or volatile and nothing else
|
|
// #define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
|
|
|
|
#define glue_impl(A, B) A ## B
|
|
#define glue(A, B) glue_impl(A, B)
|
|
#define stringify_impl(S) #S
|
|
#define stringify(S) stringify_impl(S)
|
|
#define tmpl(prefix, type) prefix ## _ ## type
|
|
|
|
#define local_persist static
|
|
#define global static
|
|
|
|
#define static_assert _Static_assert
|
|
#define typeof __typeof__
|
|
#define typeof_ptr(ptr) typeof(ptr[0])
|
|
#define typeof_same(a, b) _Generic((a), typeof((b)): 1, default: 0)
|
|
|
|
#define def_R_(type) type* restrict type ## _R
|
|
#define def_V_(type) type* volatile type ## _V
|
|
#define def_ptr_set(type) def_R_(type); typedef def_V_(type)
|
|
#define def_tset(type) type; typedef def_ptr_set(type)
|
|
|
|
typedef __UINT8_TYPE__ def_tset(U1); typedef __UINT16_TYPE__ def_tset(U2); typedef __UINT32_TYPE__ def_tset(U4); typedef __UINT64_TYPE__ def_tset(U8);
|
|
typedef __INT8_TYPE__ def_tset(S1); typedef __INT16_TYPE__ def_tset(S2); typedef __INT32_TYPE__ def_tset(S4); typedef __INT64_TYPE__ def_tset(S8);
|
|
typedef unsigned char def_tset(B1); typedef __UINT16_TYPE__ def_tset(B2); typedef __UINT32_TYPE__ def_tset(B4);
|
|
typedef float def_tset(F4);
|
|
typedef double def_tset(F8);
|
|
typedef float V4_F4 __attribute__((vector_size(16))); typedef def_ptr_set(V4_F4);
|
|
enum { false = 0, true = 1, true_overflow, };
|
|
|
|
#define u1_r(value) cast(U1_R, value)
|
|
#define u2_r(value) cast(U2_R, value)
|
|
#define u4_r(value) cast(U4_R, value)
|
|
#define u8_r(value) cast(U8_R, value)
|
|
#define u1_v(value) cast(U1_V, value)
|
|
#define u2_v(value) cast(U2_V, value)
|
|
#define u4_v(value) cast(U4_V, value)
|
|
#define u8_v(value) cast(U8_V, value)
|
|
|
|
#define u1_(value) cast(U1, value)
|
|
#define u2_(value) cast(U2, value)
|
|
#define u4_(value) cast(U4, value)
|
|
#define u8_(value) cast(U8, value)
|
|
#define s1_(value) cast(S1, value)
|
|
#define s2_(value) cast(S2, value)
|
|
#define s4_(value) cast(S4, value)
|
|
#define s8_(value) cast(S8, value)
|
|
#define f4_(value) cast(F4, value)
|
|
#define f8_(value) cast(F8, value)
|
|
|
|
#define farray_len(array) (SSIZE)sizeof(array) / size_of( typeof((array)[0]))
|
|
#define farray_init(type, ...) (type[]){__VA_ARGS__}
|
|
#define def_farray_sym(_type, _len) A ## _len ## _ ## _type
|
|
#define def_farray_impl(_type, _len) _type def_farray_sym(_type, _len)[_len]; typedef def_ptr_set(def_farray_sym(_type, _len))
|
|
#define def_farray(type, len) def_farray_impl(type, len)
|
|
#define def_enum(underlying_type, symbol) underlying_type def_tset(symbol); enum symbol
|
|
#define def_struct(symbol) struct symbol def_tset(symbol); struct symbol
|
|
#define def_union(symbol) union symbol def_tset(symbol); union symbol
|
|
#define def_proc(symbol) symbol
|
|
#define opt_args(symbol, ...) &(symbol){__VA_ARGS__}
|
|
|
|
#define alignas _Alignas
|
|
#define alignof _Alignof
|
|
#define cast(type, data) ((type)(data))
|
|
#define pcast(type, data) * cast(type*, & (data))
|
|
#define nullptr cast(void*, 0)
|
|
#define null cast(U8, 0)
|
|
#define offset_of(type, member) cast(U8, & (((type*) 0)->member))
|
|
#define size_of(data) cast(U8, sizeof(data))
|
|
|
|
#define kilo(n) (cast(U8, n) << 10)
|
|
#define mega(n) (cast(U8, n) << 20)
|
|
#define giga(n) (cast(U8, n) << 30)
|
|
#define tera(n) (cast(U8, n) << 40)
|
|
|
|
// Signed stuff (still diff flavor from Lottes)
|
|
|
|
#define sop_1(op, a, b) cast(U1, s1_(a) op s1_(b))
|
|
#define sop_2(op, a, b) cast(U2, s2_(a) op s2_(b))
|
|
#define sop_4(op, a, b) cast(U4, s4_(a) op s4_(b))
|
|
#define sop_8(op, a, b) cast(U8, s8_(a) op s8_(b))
|
|
|
|
#define def_signed_op(id, op, width) finline U ## width id ## _s ## width(U ## width a, U ## width b) {return sop_ ## width(op, a, b); }
|
|
#define def_signed_ops(id, op) def_signed_op(id, op, 1) def_signed_op(id, op, 2) def_signed_op(id, op, 4) def_signed_op(id, op, 8)
|
|
def_signed_ops(add, +) def_signed_ops(sub, -) def_signed_ops(mut, *) def_signed_ops(div, /)
|
|
def_signed_ops(gt, >) def_signed_ops(lt, <) def_signed_ops(ge, >=) def_signed_ops(le, <=)
|
|
|
|
#define def_generic_sop(op, a, ...) _Generic((a), U1: op ## _s1, U2: op ## _s2, U4: op ## _s4, U8: op ## _s8) (a, __VA_ARGS__)
|
|
#define add_s(a,b) def_generic_sop(add,a,b)
|
|
#define sub_s(a,b) def_generic_sop(sub,a,b)
|
|
#define mut_s(a,b) def_generic_sop(mut,a,b)
|
|
#define gt_s(a,b) def_generic_sop(gt, a,b)
|
|
#define lt_s(a,b) def_generic_sop(lt, a,b)
|
|
#define ge_s(a,b) def_generic_sop(ge, a,b)
|
|
#define le_s(a,b) def_generic_sop(le, a,b)
|
|
|
|
finline U4 AtmAdd_u4 (U4_R a, U4 v){__asm__ volatile("lock xaddl %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
finline U8 AtmAdd_u8 (U8_R a, U8 v){__asm__ volatile("lock xaddq %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
finline U4 AtmSwap_u4(U4_R a, U4 v){__asm__ volatile("lock xchgl %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
finline U8 AtmSwap_u8(U8_R a, U8 v){__asm__ volatile("lock xchgq %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
|
|
#pragma endregion DSL
|
|
|
|
#pragma region Strings
|
|
typedef unsigned char def_tset(UTF8);
|
|
typedef def_struct(Str8) { UTF8*R_ ptr; U8 len; };
|
|
typedef Str8 def_tset(Slice_UTF8);
|
|
typedef def_struct(Slice_Str8) { Str8*R_ ptr; U8 len; };
|
|
#define lit(string_literal) (Str8){ (UTF8*R_) string_literal, size_of(string_literal) - 1 }
|
|
#pragma endregion Strings
|
|
|
|
#pragma region Debug
|
|
#define debug_trap() __debugbreak()
|
|
#define assert_trap(cond) do { if (cond) __debug_trap(); } while(0)
|
|
#define assert_msg(cond, msg, ...) do { \
|
|
if (! (cond)) \
|
|
{ \
|
|
assert_handler( \
|
|
stringify(cond), \
|
|
__FILE__, \
|
|
__func__, \
|
|
cast(S4, __LINE__), \
|
|
msg, \
|
|
## __VA_ARGS__); \
|
|
debug_trap(); \
|
|
} \
|
|
} while(0)
|
|
void assert_handler(UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line, UTF8*R_ msg, ... );
|
|
#pragma endregion Debug
|
|
|
|
#pragma region Memory
|
|
typedef def_farray(B1, 1);
|
|
typedef def_farray(B1, 2);
|
|
typedef def_farray(B1, 4);
|
|
typedef def_farray(B1, 8);
|
|
|
|
inline U8 align_pow2(U8 x, U8 b);
|
|
|
|
#define align_struct(type_width) ((U8)(((type_width) + 7) / 8 * 8))
|
|
|
|
#define assert_bounds(point, start, end) do { \
|
|
assert(start <= point); \
|
|
assert(point <= end); \
|
|
} while(0)
|
|
|
|
U8 mem_copy (U8 dest, U8 src, U8 length);
|
|
U8 mem_copy_overlapping(U8 dest, U8 src, U8 length);
|
|
B4 mem_zero (U8 dest, U8 length);
|
|
|
|
finline void BarC(void){__asm__ volatile("::""memory");} // Compiler Barrier
|
|
finline void BarM(void){__builtin_ia32_mfence();} // Memory Barrier
|
|
finline void BarR(void){__builtin_ia32_lfence();} // Read Barrier
|
|
finline void BarW(void){__builtin_ia32_sfence();} // Write Barrier
|
|
|
|
#define check_nil(nil, p) ((p) == 0 || (p) == nil)
|
|
#define set_nil(nil, p) ((p) = nil)
|
|
|
|
#define sll_stack_push_n(f, n, next) do { (n)->next = (f); (f) = (n); } while(0)
|
|
|
|
#define sll_queue_push_nz(nil, f, l, n, next) \
|
|
( \
|
|
check_nil(nil, f) ? ( \
|
|
(f) = (l) = (n), \
|
|
set_nil(nil, (n)->next) \
|
|
) \
|
|
: ( \
|
|
(l)->next=(n), \
|
|
(l) = (n), \
|
|
set_nil(nil,(n)->next) \
|
|
) \
|
|
)
|
|
#define sll_queue_push_n(f, l, n, next) sll_queue_push_nz(0, f, l, n, next)
|
|
|
|
typedef def_struct(Slice_Mem) { U8 ptr; U8 len; };
|
|
|
|
#define def_Slice(type) def_struct(tmpl(Slice,type)) { type*R_ ptr; U8 len; }; typedef def_ptr_set(tmpl(Slice,type))
|
|
#define slice_assert(slice) do { assert((slice).ptr != 0); assert((slice).len > 0); } while(0)
|
|
#define slice_end(slice) ((slice).ptr + (slice).len)
|
|
#define size_of_slice_type(slice) size_of( * (slice).ptr )
|
|
|
|
typedef def_Slice(void);
|
|
typedef def_Slice(B1);
|
|
#define slice_byte(slice) ((Slice_B1){cast(B1, (slice).ptr), (slice).len * size_of_slice_type(slice)})
|
|
#define slice_fmem(mem) ((Slice_B1){ mem, size_of(mem) })
|
|
|
|
void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth);
|
|
void slice__zero(Slice_B1 mem, U8 typewidth);
|
|
#define slice_copy(dest, src) do { \
|
|
static_assert(typeof_same(dest, src)); \
|
|
slice__copy(slice_byte(dest), size_of_slice_type(dest), slice_byte(src), size_of_slice_type(src)); \
|
|
} while (0)
|
|
#define slice_zero(slice) slice__zero(slice_byte(slice), size_of_slice_type(slice))
|
|
|
|
#define slice_iter(container, iter) typeof((container).ptr) iter = (container).ptr; iter != slice_end(container); ++ iter
|
|
#define slice_arg_from_array(type, ...) & (tmpl(Slice,type)) { .ptr = farray_init(type, __VA_ARGS__), .len = farray_len( farray_init(type, __VA_ARGS__)) }
|
|
#pragma endregion Memory
|
|
|
|
#pragma region Math
|
|
#define min(A, B) (((A) < (B)) ? (A) : (B))
|
|
#define max(A, B) (((A) > (B)) ? (A) : (B))
|
|
#define clamp_bot(X, B) max(X, B)
|
|
#pragma endregion Math
|
|
|
|
#pragma region Allocator Interface
|
|
typedef def_enum(U4, AllocatorOp) {
|
|
AllocatorOp_Alloc_NoZero = 0, // If Alloc exist, so must No_Zero
|
|
AllocatorOp_Alloc,
|
|
AllocatorOp_Free,
|
|
AllocatorOp_Reset,
|
|
AllocatorOp_Grow_NoZero,
|
|
AllocatorOp_Grow,
|
|
AllocatorOp_Shrink,
|
|
AllocatorOp_Rewind,
|
|
AllocatorOp_SavePoint,
|
|
AllocatorOp_Query, // Must always be implemented
|
|
};
|
|
typedef def_enum(U4, AllocatorQueryFlags) {
|
|
AllocatorQuery_Alloc = (1 << 0),
|
|
AllocatorQuery_Free = (1 << 1),
|
|
// Wipe the allocator's state
|
|
AllocatorQuery_Reset = (1 << 2),
|
|
// Supports both grow and shrink
|
|
AllocatorQuery_Shrink = (1 << 4),
|
|
AllocatorQuery_Grow = (1 << 5),
|
|
AllocatorQuery_Resize = AllocatorQuery_Grow | AllocatorQuery_Shrink,
|
|
// Ability to rewind to a save point (ex: arenas, stack), must also be able to save such a point
|
|
AllocatorQuery_Rewind = (1 << 6),
|
|
};
|
|
typedef struct AllocatorProc_In def_tset(AllocatorProc_In);
|
|
typedef struct AllocatorProc_Out def_tset(AllocatorProc_Out);
|
|
typedef struct AllocatorSP AllocatorSP;
|
|
typedef void def_proc(AllocatorProc) (AllocatorProc_In In, AllocatorProc_Out_R Out);
|
|
struct AllocatorSP {
|
|
AllocatorProc* type_sig;
|
|
U8 slot;
|
|
};
|
|
struct AllocatorProc_In {
|
|
U8 data;
|
|
U8 requested_size;
|
|
U8 alignment;
|
|
union {
|
|
Slice_Mem old_allocation;
|
|
AllocatorSP save_point;
|
|
};
|
|
AllocatorOp op;
|
|
A4_B1 _PAD_;
|
|
};
|
|
struct AllocatorProc_Out {
|
|
union {
|
|
Slice_Mem allocation;
|
|
AllocatorSP save_point;
|
|
};
|
|
AllocatorQueryFlags features;
|
|
A4_B1 _PAD_;
|
|
U8 left; // Contiguous memory left
|
|
U8 max_alloc;
|
|
U8 min_alloc;
|
|
B4 continuity_break; // Whether this allocation broke continuity with the previous (address space wise)
|
|
A4_B1 _PAD_2;
|
|
};
|
|
typedef def_struct(AllocatorInfo) {
|
|
AllocatorProc* proc;
|
|
U8 data;
|
|
};
|
|
static_assert(size_of(AllocatorSP) <= size_of(Slice_Mem));
|
|
typedef def_struct(AllocatorQueryInfo) {
|
|
AllocatorSP save_point;
|
|
AllocatorQueryFlags features;
|
|
A4_B1 _PAD_;
|
|
U8 left; // Contiguous memory left
|
|
U8 max_alloc;
|
|
U8 min_alloc;
|
|
B4 continuity_break; // Whether this allocation broke continuity with the previous (address space wise)
|
|
A4_B1 _PAD_2;
|
|
};
|
|
static_assert(size_of(AllocatorProc_Out) == size_of(AllocatorQueryInfo));
|
|
|
|
#define MEMORY_ALIGNMENT_DEFAULT (2 * size_of(void*))
|
|
|
|
AllocatorQueryInfo allocator_query(AllocatorInfo ainfo);
|
|
|
|
void mem_free (AllocatorInfo ainfo, Slice_Mem mem);
|
|
void mem_reset (AllocatorInfo ainfo);
|
|
void mem_rewind (AllocatorInfo ainfo, AllocatorSP save_point);
|
|
AllocatorSP mem_save_point(AllocatorInfo ainfo);
|
|
|
|
typedef def_struct(Opts_mem_alloc) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
|
|
typedef def_struct(Opts_mem_grow) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
|
|
typedef def_struct(Opts_mem_shrink) { U8 alignment; };
|
|
typedef def_struct(Opts_mem_resize) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
|
|
|
|
Slice_Mem mem__alloc (AllocatorInfo ainfo, U8 size, Opts_mem_alloc_R opts);
|
|
Slice_Mem mem__grow (AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow_R opts);
|
|
Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resize_R opts);
|
|
Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shrink_R opts);
|
|
|
|
#define mem_alloc(ainfo, size, ...) mem__alloc (ainfo, size, opt_args(Opts_mem_alloc, __VA_ARGS__))
|
|
#define mem_grow(ainfo, mem, size, ...) mem__grow (ainfo, mem, size, opt_args(Opts_mem_grow, __VA_ARGS__))
|
|
#define mem_resize(ainfo, mem, size, ...) mem__resize(ainfo, mem, size, opt_args(Opts_mem_resize, __VA_ARGS__))
|
|
#define mem_shrink(ainfo, mem, size, ...) mem__shrink(ainfo, mem, size, opt_args(Opts_mem_shrink, __VA_ARGS__))
|
|
|
|
#define alloc_type(ainfo, type, ...) (type*R_) mem__alloc(ainfo, size_of(type), opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr
|
|
#define alloc_slice(ainfo, type, num, ...) (tmpl(Slice,type)){ mem__alloc(ainfo, size_of(type) * num, opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr, num }
|
|
#pragma endregion Allocator Interface
|
|
|
|
#pragma region FArena (Fixed-Sized Arena)
|
|
typedef def_struct(Opts_farena) {
|
|
Str8 type_name;
|
|
U8 alignment;
|
|
};
|
|
typedef def_struct(FArena) {
|
|
U8 start;
|
|
U8 capacity;
|
|
U8 used;
|
|
};
|
|
typedef def_ptr_set(FArena);
|
|
FArena farena_make (Slice_Mem mem);
|
|
void farena_init (FArena_R arena, Slice_Mem byte);
|
|
Slice_Mem farena__push (FArena_R arena, U8 amount, U8 type_width, Opts_farena*R_ opts);
|
|
void farena_reset (FArena_R arena);
|
|
void farena_rewind(FArena_R arena, AllocatorSP save_point);
|
|
AllocatorSP farena_save (FArena arena);
|
|
|
|
void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out);
|
|
#define ainfo_farena(arena) (AllocatorInfo){ .proc = farena_allocator_proc, .data = & arena }
|
|
|
|
#define farena_push_mem(arena, amount, ...) farena__push(arena, amount, 1, opt_args(Opts_farena, lit(stringify(B1)), __VA_ARGS__))
|
|
|
|
#define farena_push(arena, type, ...) \
|
|
cast(type*, farena__push(arena, size_of(type), 1, opt_args(Opts_farena, lit(stringify(type)), __VA_ARGS__))).ptr
|
|
|
|
#define farena_push_array(arena, type, amount, ...) \
|
|
(Slice ## type){ farena__push(arena, size_of(type), amount, opt_args(Opts_farena, lit(stringify(type)), __VA_ARGS__)).ptr, amount }
|
|
#pragma endregion FArena
|
|
|
|
#pragma region OS
|
|
finline U8 Clk (void){U8 aa,dd;__asm__ volatile("rdtsc":"=a"(aa),"=d"(dd));return aa;}
|
|
finline void Pause(void){__asm__ volatile("pause":::"memory");}
|
|
|
|
typedef def_struct(OS_SystemInfo) {
|
|
U8 target_page_size;
|
|
};
|
|
typedef def_struct(Opts_vmem) {
|
|
U8 base_addr;
|
|
B4 no_large_pages;
|
|
A4_B1 _PAD_;
|
|
};
|
|
void os_init(void);
|
|
OS_SystemInfo* os_system_info(void);
|
|
|
|
inline B4 os__vmem_commit (U8 vm, U8 size, Opts_vmem*R_ opts);
|
|
inline U8 os__vmem_reserve( U8 size, Opts_vmem*R_ opts);
|
|
inline void os_vmem_release (U8 vm, U8 size);
|
|
|
|
#define os_vmem_reserve(size, ...) os__vmem_reserve( size, opt_args(Opts_vmem, __VA_ARGS__))
|
|
#define os_vmem_commit(vm, size, ...) os__vmem_commit (vm, size, opt_args(Opts_vmem, __VA_ARGS__))
|
|
#pragma endregion OS
|
|
|
|
#pragma region VArena (Virutal Address Space Arena)
|
|
typedef Opts_farena Opts_varena;
|
|
typedef def_enum(U4, VArenaFlags) {
|
|
VArenaFlag_NoLargePages = (1 << 0),
|
|
};
|
|
typedef def_struct(VArena) {
|
|
U8 reserve_start;
|
|
U8 reserve;
|
|
U8 commit_size;
|
|
U8 committed;
|
|
U8 commit_used;
|
|
VArenaFlags flags;
|
|
A4_B1 _PAD;
|
|
};
|
|
typedef def_struct(Opts_varena_make) {
|
|
U8 base_addr;
|
|
U8 reserve_size;
|
|
U8 commit_size;
|
|
VArenaFlags flags;
|
|
A4_B1 _PAD_;
|
|
};
|
|
VArena_R varena__make(Opts_varena_make*R_ opts);
|
|
#define varena_make(...) varena__make(opt_args(Opts_varena_make, __VA_ARGS__))
|
|
|
|
Slice_Mem varena__push (VArena_R arena, U8 amount, U8 type_width, Opts_varena*R_ opts);
|
|
void varena_release(VArena_R arena);
|
|
void varena_rewind (VArena_R arena, AllocatorSP save_point);
|
|
void varena_reset (VArena_R arena);
|
|
Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size, Opts_varena*R_ opts);
|
|
AllocatorSP varena_save (VArena_R arena);
|
|
|
|
void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out);
|
|
#define ainfo_varena(varena) (AllocatorInfo) { .proc = & varena_allocator_proc, .data = varena }
|
|
|
|
#define varena_push_mem(arena, amount, ...) varena__push(arena, amount, 1, opt_args(Opts_varena, lit(stringify(B1)), __VA_ARGS__))
|
|
|
|
#define varena_push(arena, type, ...) \
|
|
cast(type*R_, varena__push(arena, 1, size_of(type), opt_args(Opts_varena, lit(stringify(type)), __VA_ARGS__) ).ptr)
|
|
|
|
#define varena_push_array(arena, type, amount, ...) \
|
|
(tmpl(Slice,type)){ varena__push(arena, size_of(type), amount, opt_args(Opts_varena, lit(stringify(type)), __VA_ARGS__)).ptr, amount }
|
|
#pragma endregion VArena
|
|
|
|
#pragma region Arena (Casey-Ryan Composite Arenas)
|
|
typedef Opts_varena Opts_arena;
|
|
typedef def_enum(U4, ArenaFlags) {
|
|
ArenaFlag_NoLargePages = (1 << 0),
|
|
ArenaFlag_NoChain = (1 << 1),
|
|
};
|
|
typedef def_struct(Arena) {
|
|
VArena_R backing;
|
|
Arena_R prev;
|
|
Arena_R current;
|
|
U8 base_pos;
|
|
U8 pos;
|
|
ArenaFlags flags;
|
|
A4_B1 _PAD_;
|
|
};
|
|
typedef Opts_varena_make Opts_arena_make;
|
|
Arena_R arena__make (Opts_arena_make*R_ opts);
|
|
Slice_Mem arena__push (Arena_R arena, U8 amount, U8 type_width, Opts_arena*R_ opts);
|
|
void arena_release(Arena_R arena);
|
|
void arena_reset (Arena_R arena);
|
|
void arena_rewind (Arena_R arena, AllocatorSP save_point);
|
|
AllocatorSP arena_save (Arena_R arena);
|
|
|
|
void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out);
|
|
#define ainfo_arena(arena) (AllocatorInfo){ .proc = & arena_allocator_proc, .data = arena }
|
|
|
|
#define arena_make(...) arena__make(opt_args(Opts_arena_make, __VA_ARGS__))
|
|
|
|
#define arena_push_mem(arena, amount, ...) arena__push(arena, amount, 1, opt_args(Opts_arena, lit(stringify(B1)), __VA_ARGS__))
|
|
|
|
#define arena_push(arena, type, ...) \
|
|
cast(type*R_, arena__push(arena, 1, size_of(type), opt_args(Opts_arena, lit(stringify(type)), __VA_ARGS__) ).ptr)
|
|
|
|
#define arena_push_array(arena, type, amount, ...) \
|
|
(tmpl(Slice,type)){ arena__push(arena, size_of(type), amount, opt_args(Opts_arena, lit(stringify(type)), __VA_ARGS__)).ptr, amount }
|
|
#pragma endregion Arena
|
|
|
|
#pragma region Hashing
|
|
finline
|
|
void hash64_djb8(U8_R hash, Slice_Mem bytes) {
|
|
U8 elem = bytes.ptr;
|
|
loop:
|
|
hash[0] <<= 8;
|
|
hash[0] += hash[0];
|
|
hash[0] += elem;
|
|
if (elem != bytes.ptr + bytes.len)
|
|
goto end;
|
|
++ elem;
|
|
goto loop;
|
|
end:
|
|
return;
|
|
}
|
|
#pragma endregion Hashing
|
|
|
|
#pragma region Key Table 1-Layer Linear (KT1L)
|
|
#define def_KT1L_Slot(type) \
|
|
def_struct(tmpl(KT1L_Slot,type)) { \
|
|
U8 key; \
|
|
type value; \
|
|
}
|
|
#define def_KT1L(type) \
|
|
def_Slice(tmpl(KT1L_Slot,type)); \
|
|
typedef tmpl(Slice_KT1L_Slot,type) tmpl(KT1L,type)
|
|
|
|
typedef Slice_Mem KT1L_Byte;
|
|
typedef def_struct(KT1L_Meta) {
|
|
U8 slot_size;
|
|
U8 kt_value_offset;
|
|
U8 type_width;
|
|
Str8 type_name;
|
|
};
|
|
void kt1l__populate_slice_a2(KT1L_Byte*R_ kt, AllocatorInfo backing, KT1L_Meta m, Slice_Mem values, U8 num_values );
|
|
#define kt1l_populate_slice_a2(type, kt, ainfo, values) kt1l__populate_slice_a2( \
|
|
cast(KT1L_Byte*R_, kt), \
|
|
ainfo, \
|
|
(KT1L_Meta){ \
|
|
.slot_size = size_of(tmpl(KT1L_Slot,type)), \
|
|
.kt_value_offset = offset_of(tmpl(KT1L_Slot,type), value), \
|
|
.type_width = size_of(type), \
|
|
.type_name = lit(stringify(type)) \
|
|
}, \
|
|
slice_byte(values), (values).len \
|
|
)
|
|
#pragma endregion KT1L
|
|
|
|
#pragma region Key Table 1-Layer Chained-Chunked-Cells (KT1CX)
|
|
#define def_KT1CX_Slot(type) \
|
|
def_struct(tmpl(KT1CX_Slot,type)) { \
|
|
type value; \
|
|
U8 key; \
|
|
B4 occupied; \
|
|
A4_B1 _PAD_; \
|
|
}
|
|
#define def_KT1CX_Cell(type, depth) \
|
|
def_struct(tmpl(KT1CX_Cell,type)) { \
|
|
tmpl(KT1CX_Slot,type) slots[depth]; \
|
|
tmpl(KT1CX_Slot,type)*R_ next; \
|
|
}
|
|
#define def_KT1CX(type) \
|
|
def_struct(tmpl(KT1CX,type)) { \
|
|
tmpl(Slice_KT1CX_Cell,type) cell_pool; \
|
|
tmpl(Slice_KT1CX_Cell,type) table; \
|
|
}
|
|
typedef def_struct(KT1CX_Byte_Slot) {
|
|
U8 key;
|
|
B4 occupied;
|
|
A4_B1 _PAD_;
|
|
};
|
|
typedef def_struct(KT1CX_Byte_Cell) {
|
|
U8 next;
|
|
};
|
|
typedef def_struct(KT1CX_Byte) {
|
|
Slice_Mem cell_pool;
|
|
Slice_Mem table;
|
|
};
|
|
typedef def_struct(KT1CX_ByteMeta) {
|
|
U8 slot_size;
|
|
U8 slot_key_offset;
|
|
U8 cell_next_offset;
|
|
U8 cell_depth;
|
|
U8 cell_size;
|
|
U8 type_width;
|
|
Str8 type_name;
|
|
};
|
|
typedef def_struct(KT1CX_InfoMeta) {
|
|
U8 cell_pool_size;
|
|
U8 table_size;
|
|
U8 slot_size;
|
|
U8 slot_key_offset;
|
|
U8 cell_next_offset;
|
|
U8 cell_depth;
|
|
U8 cell_size;
|
|
U8 type_width;
|
|
Str8 type_name;
|
|
};
|
|
typedef def_struct(KT1CX_Info) {
|
|
AllocatorInfo backing_table;
|
|
AllocatorInfo backing_cells;
|
|
};
|
|
void kt1cx_init (KT1CX_Info info, KT1CX_InfoMeta m, KT1CX_Byte* result);
|
|
void kt1cx_clear (KT1CX_Byte kt, KT1CX_ByteMeta meta);
|
|
U8 kt1cx_slot_id(KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta);
|
|
U8 kt1cx_get (KT1CX_Byte kt, U8 key, KT1CX_ByteMeta meta);
|
|
U8 kt1cx_set (KT1CX_Byte kt, U8 key, Slice_Mem value, AllocatorInfo backing_cells, KT1CX_ByteMeta meta);
|
|
|
|
#define kt1cx_assert(kt) do { \
|
|
slice_assert(kt.cell_pool); \
|
|
slice_assert(kt.table); \
|
|
} while(0)
|
|
#define kt1cx_byte(kt) (KT1CX_Byte){slice_byte(kt.cell_pool), { cast(U8, kt.table.ptr), kt.table.len } }
|
|
#pragma endregion KT1CX
|
|
|
|
#pragma region String Operations
|
|
finline B4 char_is_upper(U8 c) { return('A' <= c && c <= 'Z'); }
|
|
finline U8 char_to_lower(U8 c) { if (char_is_upper(c)) { c += ('a' - 'A'); } return(c); }
|
|
inline U8 integer_symbols(U8 value) {
|
|
local_persist U1 lookup_table[16] = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F', }; return lookup_table[cast(U1, value)];
|
|
}
|
|
|
|
char* str8_to_cstr_capped(Str8 content, Slice_Mem mem);
|
|
Str8 str8_from_u32(AllocatorInfo ainfo, U4 num, U4 radix, U8 min_digits, U8 digit_group_separator);
|
|
|
|
typedef def_farray(Str8, 2);
|
|
typedef def_Slice(A2_Str8);
|
|
typedef def_KT1L_Slot(Str8);
|
|
typedef def_KT1L(Str8);
|
|
|
|
Str8 str8__fmt_backed(AllocatorInfo tbl_backing, AllocatorInfo buf_backing, Str8 fmt_template, Slice_A2_Str8* entries);
|
|
#define str8_fmt_backed(tbl_backing, buf_backing, fmt_template, ...) \
|
|
str8__fmt_backed(tbl_backing, buf_backing, lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__))
|
|
|
|
Str8 str8__fmt(Str8 fmt_template, Slice_A2_Str8*R_ entries);
|
|
#define str8_fmt(fmt_template, ...) str8__fmt(lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__))
|
|
|
|
#define Str8Cache_CELL_DEPTH 4
|
|
|
|
typedef def_KT1CX_Slot(Str8);
|
|
typedef def_KT1CX_Cell(Str8, Str8Cache_CELL_DEPTH);
|
|
typedef def_Slice(KT1CX_Cell_Str8);
|
|
typedef def_KT1CX(Str8);
|
|
typedef def_struct(Str8Cache) {
|
|
AllocatorInfo str_reserve;
|
|
AllocatorInfo cell_reserve;
|
|
AllocatorInfo tbl_backing;
|
|
KT1CX_Str8 kt;
|
|
};
|
|
|
|
typedef def_struct(Opts_str8cache_init) {
|
|
AllocatorInfo str_reserve;
|
|
AllocatorInfo cell_reserve;
|
|
AllocatorInfo tbl_backing;
|
|
U8 cell_pool_size;
|
|
U8 table_size;
|
|
};
|
|
void str8cache__init(Str8Cache_R cache, Opts_str8cache_init*R_ opts);
|
|
Str8Cache str8cache__make( Opts_str8cache_init*R_ opts);
|
|
|
|
#define str8cache_init(cache, ...) str8cache__init(cache, opt_args(Opts_str8cache_init, __VA_ARGS__))
|
|
#define str8cache_make(...) str8cache__make( opt_args(Opts_str8cache_init, __VA_ARGS__))
|
|
|
|
void str8cache_clear(KT1CX_Str8 kt);
|
|
U8 str8cache_get(KT1CX_Str8 kt, U8 key);
|
|
U8 str8cache_set(KT1CX_Str8 kt, U8 key, Str8 value, AllocatorInfo str_reserve, AllocatorInfo backing_cells);
|
|
|
|
Str8 cache_str8(Str8Cache* cache, Str8 str);
|
|
|
|
typedef def_struct(Str8Gen) {
|
|
AllocatorInfo backing;
|
|
U8 ptr;
|
|
U8 len;
|
|
U8 cap;
|
|
};
|
|
void str8gen_init(Str8Gen_R gen, AllocatorInfo backing);
|
|
Str8Gen str8gen_make( AllocatorInfo backing);
|
|
|
|
#define str8gen_slice_mem(gen) (Slice_mem){ cast(U8, (gen).ptr), (gen).cap }
|
|
|
|
finline Str8 str8_from_str8gen(Str8Gen gen) { return (Str8){ cast(UTF8_R, gen.ptr), gen.len}; }
|
|
|
|
void str8gen_append_str8(U8 gen, Str8 str);
|
|
void str8gen__append_fmt(U8 gen, Str8 fmt_template, Slice_A2_Str8*R_ tokens);
|
|
|
|
#define str8gen_append_fmt(gen, fmt_template, ...) str8gen__append_fmt(gen, lit(fmt_template), slice_arg_from_array(A2_Str8, __VA_ARGS__))
|
|
#pragma endregion String Operations
|
|
|
|
#pragma region File System
|
|
typedef def_struct(FileOpInfo) {
|
|
Slice_Mem content;
|
|
};
|
|
typedef def_struct(Opts_read_file_contents) {
|
|
AllocatorInfo backing;
|
|
B4 zero_backing;
|
|
A4_B1 _PAD_;
|
|
};
|
|
void api_file_read_contents(FileOpInfo*R_ result, Str8 path, Opts_read_file_contents opts);
|
|
void file_write_str8 (Str8 path, Str8 content);
|
|
|
|
FileOpInfo file__read_contents(Str8 path, Opts_read_file_contents*R_ opts);
|
|
#define file_read_contents(path, ...) file__read_contents(path, &(Opts_read_file_contents){__VA_ARGS__})
|
|
#pragma endregion File System
|
|
|
|
#pragma region WATL
|
|
typedef def_enum(U4, WATL_TokKind) {
|
|
WATL_Tok_Space = ' ',
|
|
WATL_Tok_Tab = '\t',
|
|
WATL_Tok_CarriageReturn = '\r',
|
|
WATL_Tok_LineFeed = '\n',
|
|
WATL_Tok_Text = 0xFFFFFFF,
|
|
};
|
|
typedef Str8 def_tset(WATL_Tok);
|
|
typedef def_Slice(WATL_Tok);
|
|
typedef def_enum(U4, WATL_LexStatus) {
|
|
WATL_LexStatus_MemFail_SliceConstraintFail = (1 << 0),
|
|
};
|
|
typedef def_struct(WATL_Pos) {
|
|
S4 line;
|
|
S4 column;
|
|
};
|
|
typedef def_struct(WATL_LexMsg) {
|
|
WATL_LexMsg_R next;
|
|
Str8 content;
|
|
WATL_Tok_R tok;
|
|
WATL_Pos pos;
|
|
};
|
|
typedef def_struct(WATL_LexInfo) {
|
|
WATL_LexMsg_R msgs;
|
|
Slice_WATL_Tok toks;
|
|
WATL_LexStatus signal;
|
|
A4_B1 _PAD_;
|
|
};
|
|
typedef def_struct(Opts_watl_lex) {
|
|
AllocatorInfo ainfo_msgs;
|
|
AllocatorInfo ainfo_toks;
|
|
B1 failon_unsupported_codepoints;
|
|
B1 failon_pos_untrackable;
|
|
B1 failon_slice_constraint_fail;
|
|
A4_B1 _PAD_;
|
|
};
|
|
void api_watl_lex(WATL_LexInfo* info, Str8 source, Opts_watl_lex*R_ opts);
|
|
WATL_LexInfo watl__lex ( Str8 source, Opts_watl_lex*R_ opts);
|
|
#define watl_lex(source, ...) watl__lex(source, &(Opts_watl_lex){__VA_ARGS__})
|
|
|
|
typedef Str8 WATL_Node;
|
|
typedef def_Slice(WATL_Node);
|
|
typedef Slice_WATL_Node def_tset(WATL_Line);
|
|
typedef def_Slice(WATL_Line);
|
|
typedef def_struct(WATL_ParseMsg) {
|
|
WATL_ParseMsg_R next;
|
|
Str8 content;
|
|
WATL_Line_R line;
|
|
WATL_Tok_R tok;
|
|
WATL_Pos pos;
|
|
};
|
|
typedef def_enum(U4, WATL_ParseStatus) {
|
|
WATL_ParseStatus_MemFail_SliceConstraintFail = (1 << 0),
|
|
};
|
|
typedef def_struct(WATL_ParseInfo) {
|
|
Slice_WATL_Line lines;
|
|
WATL_ParseMsg_R msgs;
|
|
WATL_ParseStatus signal;
|
|
A4_B1 _PAD_;
|
|
};
|
|
typedef def_struct(Opts_watl_parse) {
|
|
AllocatorInfo ainfo_msgs;
|
|
AllocatorInfo ainfo_nodes;
|
|
AllocatorInfo ainfo_lines;
|
|
Str8Cache_R str_cache;
|
|
B4 failon_slice_constraint_fail;
|
|
A4_B1 _PAD_;
|
|
};
|
|
void api_watl_parse(WATL_ParseInfo_R info, Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts);
|
|
WATL_ParseInfo watl__parse ( Slice_WATL_Tok tokens, Opts_watl_parse*R_ opts);
|
|
#define watl_parse(tokens, ...) watl__parse(tokens, &(Opts_watl_parse){__VA_ARGS__})
|
|
|
|
Str8 watl_dump_listing(AllocatorInfo buffer, Slice_WATL_Line lines);
|
|
#pragma endregion WATL
|
|
|
|
#pragma endregion Header
|
|
|
|
#pragma region Implementation
|
|
|
|
#pragma region Memory Operations
|
|
void* __cdecl memcpy (void*R_ _Dst, void const*R_ _Src, U8 _Size);
|
|
void* __cdecl memmove(void* _Dst, void const* _Src, U8 _Size);
|
|
void* __cdecl memset (void*R_ _Dst, int _Val, U8 _Size);
|
|
inline
|
|
U8 align_pow2(U8 x, U8 b) {
|
|
assert(b != 0);
|
|
assert((b & (b - 1)) == 0); // Check power of 2
|
|
return ((x + b - 1) & (~(b - 1)));
|
|
}
|
|
U8 memory_copy(U8 dest, U8 src, U8 len) __asm__("memcpy");
|
|
U8 memory_copy_overlapping(U8 dest, U8 src, U8 len) __asm__("memmove");
|
|
inline
|
|
B4 memory_zero(U8 dest, U8 length) {
|
|
if (dest == 0) return false;
|
|
memset((void*R_)dest, 0, length);
|
|
return true;
|
|
}
|
|
inline void slice__zero(Slice_B1 mem, U8 typewidth) { slice_assert(mem); memory_zero(u8_(mem.ptr), mem.len); }
|
|
inline
|
|
void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth) {
|
|
assert(dest.len >= src.len);
|
|
slice_assert(dest);
|
|
slice_assert(src);
|
|
memory_copy(u8_(dest.ptr), u8_(src.ptr), src.len);
|
|
}
|
|
#pragma endregion Memory Operations
|
|
|
|
#pragma region Allocator Interface
|
|
inline
|
|
AllocatorQueryInfo allocator_query(AllocatorInfo ainfo) {
|
|
assert(ainfo.proc != nullptr);
|
|
AllocatorQueryInfo out; ainfo.proc((AllocatorProc_In){ .data = ainfo.data, .op = AllocatorOp_Query}, (AllocatorProc_Out_R)& out);
|
|
return out;
|
|
}
|
|
inline
|
|
void mem_free(AllocatorInfo ainfo, Slice_Mem mem) {
|
|
assert(ainfo.proc != nullptr);
|
|
ainfo.proc((AllocatorProc_In){.data = ainfo.data, .op = AllocatorOp_Free, .old_allocation = mem}, &(AllocatorProc_Out){});
|
|
}
|
|
inline
|
|
void mem_reset(AllocatorInfo ainfo) {
|
|
assert(ainfo.proc != nullptr);
|
|
ainfo.proc((AllocatorProc_In){.data = ainfo.data, .op = AllocatorOp_Reset}, &(AllocatorProc_Out){});
|
|
}
|
|
inline
|
|
void mem_rewind(AllocatorInfo ainfo, AllocatorSP save_point) {
|
|
assert(ainfo.proc != nullptr);
|
|
ainfo.proc((AllocatorProc_In){.data = ainfo.data, .op = AllocatorOp_Rewind, .save_point = save_point}, &(AllocatorProc_Out){});
|
|
}
|
|
inline
|
|
AllocatorSP mem_save_point(AllocatorInfo ainfo) {
|
|
assert(ainfo.proc != nullptr);
|
|
AllocatorProc_Out out;
|
|
ainfo.proc((AllocatorProc_In){.data = ainfo.data, .op = AllocatorOp_SavePoint}, & out);
|
|
return out.save_point;
|
|
}
|
|
inline
|
|
Slice_Mem mem__alloc(AllocatorInfo ainfo, U8 size, Opts_mem_alloc* opts) {
|
|
assert(ainfo.proc != nullptr);
|
|
assert(opts != nullptr);
|
|
AllocatorProc_In in = {
|
|
.data = ainfo.data,
|
|
.op = opts->no_zero ? AllocatorOp_Alloc_NoZero : AllocatorOp_Alloc,
|
|
.requested_size = size,
|
|
.alignment = opts->alignment,
|
|
};
|
|
AllocatorProc_Out out;
|
|
ainfo.proc(in, & out);
|
|
return out.allocation;
|
|
}
|
|
inline
|
|
Slice_Mem mem__grow(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow* opts) {
|
|
assert(ainfo.proc != nullptr);
|
|
assert(opts != nullptr);
|
|
AllocatorProc_In in = {
|
|
.data = ainfo.data,
|
|
.op = opts->no_zero ? AllocatorOp_Grow_NoZero : AllocatorOp_Grow,
|
|
.requested_size = size,
|
|
.alignment = opts->alignment,
|
|
.old_allocation = mem
|
|
};
|
|
AllocatorProc_Out out;
|
|
ainfo.proc(in, & out);
|
|
return out.allocation;
|
|
}
|
|
inline
|
|
Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resize* opts) {
|
|
assert(ainfo.proc != nullptr);
|
|
assert(opts != nullptr);
|
|
AllocatorProc_In in = {
|
|
.data = ainfo.data,
|
|
.op = mem.len < size ? AllocatorOp_Shrink : (opts->no_zero ? AllocatorOp_Grow : AllocatorOp_Grow_NoZero),
|
|
.requested_size = size,
|
|
.alignment = opts->alignment,
|
|
.old_allocation = mem,
|
|
};
|
|
AllocatorProc_Out out;
|
|
ainfo.proc(in, & out);
|
|
return out.allocation;
|
|
}
|
|
inline
|
|
Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shrink* opts) {
|
|
assert(ainfo.proc != nullptr);
|
|
assert(opts != nullptr);
|
|
AllocatorProc_In in = {
|
|
.data = ainfo.data,
|
|
.op = AllocatorOp_Shrink,
|
|
.requested_size = size,
|
|
.alignment = opts->alignment,
|
|
.old_allocation = mem
|
|
};
|
|
AllocatorProc_Out out;
|
|
ainfo.proc(in, & out);
|
|
return out.allocation;
|
|
}
|
|
#pragma endregion Allocator Interface
|
|
|
|
#pragma region FArena (Fixed-Sized Arena)
|
|
inline
|
|
void farena_init(FArena* arena, Slice_Mem mem) {
|
|
assert(arena != nullptr);
|
|
arena->start = mem.ptr;
|
|
arena->capacity = mem.len;
|
|
arena->used = 0;
|
|
}
|
|
inline FArena farena_make(Slice_Mem mem) { FArena a; farena_init(& a, mem); return a; }
|
|
inline
|
|
Slice_Mem farena__push(FArena_R arena, U8 amount, U8 type_width, Opts_farena*R_ opts) {
|
|
assert(opts != nullptr);
|
|
if (amount == 0) {
|
|
return (Slice_Mem){};
|
|
}
|
|
U8 desired = type_width * amount;
|
|
U8 to_commit = align_pow2(desired, opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT);
|
|
U8 unused = arena->capacity - arena->used;
|
|
assert(to_commit <= unused);
|
|
U8 ptr = arena->start + arena->used;
|
|
arena->used += to_commit;
|
|
return (Slice_Mem){ptr, desired};
|
|
}
|
|
inline void farena_reset(FArena* arena) { arena->used = 0; }
|
|
inline
|
|
void farena_rewind(FArena_R arena, AllocatorSP save_point) {
|
|
assert(save_point.type_sig == & farena_allocator_proc);
|
|
U8 end = arena->start + arena->used;
|
|
assert_bounds(save_point.slot, arena->start, end);
|
|
arena->used -= save_point.slot - arena->start;
|
|
}
|
|
inline
|
|
AllocatorSP farena_save (FArena arena) {
|
|
AllocatorSP sp = { .type_sig = & farena_allocator_proc, .slot = arena.used };
|
|
return sp;
|
|
}
|
|
void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
|
|
{
|
|
assert(out != nullptr);
|
|
assert(in.data != 0);
|
|
FArena* arena = cast(FArena*, in.data);
|
|
switch (in.op)
|
|
{
|
|
case AllocatorOp_Alloc:
|
|
case AllocatorOp_Alloc_NoZero:
|
|
out->allocation = farena_push_mem(arena, in.requested_size, .alignment = in.alignment);
|
|
memory_zero(out->allocation.ptr, out->allocation.len * in.op);
|
|
break;
|
|
|
|
case AllocatorOp_Free:
|
|
break;
|
|
case AllocatorOp_Reset:
|
|
farena_reset(arena);
|
|
break;
|
|
|
|
case AllocatorOp_Grow:
|
|
case AllocatorOp_Grow_NoZero: {
|
|
// Check if the allocation is at the end of the arena
|
|
U8 alloc_end = in.old_allocation.ptr + in.old_allocation.len;
|
|
U8 arena_end = arena->start + arena->used;
|
|
if (alloc_end != arena_end) {
|
|
// Not at the end, can't grow in place
|
|
out->allocation = (Slice_Mem){0};
|
|
break;
|
|
}
|
|
// Calculate growth
|
|
U8 grow_amount = in.requested_size - in.old_allocation.len;
|
|
U8 aligned_grow = align_pow2(grow_amount, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
|
|
U8 unused = arena->capacity - arena->used;
|
|
if (aligned_grow > unused) {
|
|
// Not enough space
|
|
out->allocation = (Slice_Mem){0};
|
|
break;
|
|
}
|
|
arena->used += aligned_grow;
|
|
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
|
|
memory_zero(in.old_allocation.ptr + in.old_allocation.len, grow_amount * in.op - AllocatorOp_Grow_NoZero);
|
|
}
|
|
break;
|
|
|
|
case AllocatorOp_Shrink: {
|
|
// Check if the allocation is at the end of the arena
|
|
U8 alloc_end = in.old_allocation.ptr + in.old_allocation.len;
|
|
U8 arena_end = arena->start + arena->used;
|
|
if (alloc_end != arena_end) {
|
|
// Not at the end, can't shrink but return adjusted size
|
|
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
|
|
break;
|
|
}
|
|
// Calculate shrinkage
|
|
//SSIZE shrink_amount = in.old_allocation.len - in.requested_size;
|
|
U8 aligned_original = align_pow2(in.old_allocation.len, MEMORY_ALIGNMENT_DEFAULT);
|
|
U8 aligned_new = align_pow2(in.requested_size, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
|
|
arena->used -= (aligned_original - aligned_new);
|
|
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
|
|
}
|
|
break;
|
|
|
|
case AllocatorOp_Rewind:
|
|
farena_rewind(arena, in.save_point);
|
|
break;
|
|
case AllocatorOp_SavePoint:
|
|
out->save_point = farena_save(* arena);
|
|
break;
|
|
|
|
case AllocatorOp_Query:
|
|
out->features =
|
|
AllocatorQuery_Alloc
|
|
| AllocatorQuery_Reset
|
|
| AllocatorQuery_Resize
|
|
| AllocatorQuery_Rewind
|
|
;
|
|
out->max_alloc = arena->capacity - arena->used;
|
|
out->min_alloc = 0;
|
|
out->left = out->max_alloc;
|
|
out->save_point = farena_save(* arena);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
#pragma endregion FArena
|
|
|
|
#pragma region OS
|
|
#pragma warning(push)
|
|
#pragma warning(disable: 4820)
|
|
#pragma comment(lib, "Kernel32.lib")
|
|
#pragma comment(lib, "Advapi32.lib")
|
|
#define MS_INVALID_HANDLE_VALUE ((MS_HANDLE)(__int64)-1)
|
|
#define MS_ANYSIZE_ARRAY 1
|
|
#define MS_MEM_COMMIT 0x00001000
|
|
#define MS_MEM_RESERVE 0x00002000
|
|
#define MS_MEM_LARGE_PAGES 0x20000000
|
|
#define MS_PAGE_READWRITE 0x04
|
|
#define MS_TOKEN_ADJUST_PRIVILEGES (0x0020)
|
|
#define MS_SE_PRIVILEGE_ENABLED (0x00000002L)
|
|
#define MS_TOKEN_QUERY (0x0008)
|
|
#define MS__TEXT(quote) L ## quote // r_winnt
|
|
#define MS_TEXT(quote) MS__TEXT(quote) // r_winnt
|
|
#define MS_SE_LOCK_MEMORY_NAME MS_TEXT("SeLockMemoryPrivilege")
|
|
typedef int MS_BOOL;
|
|
typedef unsigned long MS_DWORD;
|
|
typedef MS_DWORD* MS_PDWORD;
|
|
typedef void* MS_HANDLE;
|
|
typedef MS_HANDLE* MS_PHANDLE;
|
|
typedef long MS_LONG;
|
|
typedef S8 MS_LONGLONG;
|
|
typedef char const* MS_LPCSTR;
|
|
typedef unsigned short* MS_LPWSTR, *MS_PWSTR;
|
|
typedef void* MS_LPVOID;
|
|
typedef MS_DWORD* MS_LPDWORD;
|
|
typedef U8 MS_ULONG_PTR, *MS_PULONG_PTR;
|
|
typedef void const* MS_LPCVOID;
|
|
typedef struct MS_SECURITY_ATTRIBUTES *MS_PSECURITY_ATTRIBUTES, *MS_LPSECURITY_ATTRIBUTES;
|
|
typedef struct MS_OVERLAPPED *MS_LPOVERLAPPED;
|
|
typedef def_union(MS_LARGE_INTEGER) { struct { MS_DWORD LowPart; MS_LONG HighPart; } _; struct { MS_DWORD LowPart; MS_LONG HighPart; } u; MS_LONGLONG QuadPart; };
|
|
typedef def_struct(MS_FILE) { void* _Placeholder; };
|
|
typedef def_struct(MS_SECURITY_ATTRIBUTES) { MS_DWORD nLength; MS_LPVOID lpSecurityDescriptor; MS_BOOL bInheritHandle; };
|
|
typedef def_struct(MS_OVERLAPPED) { MS_ULONG_PTR Internal; MS_ULONG_PTR InternalHigh; union { struct { MS_DWORD Offset; MS_DWORD OffsetHigh; } _; void* Pointer; } _; MS_HANDLE hEvent; };
|
|
typedef struct MS_LUID* MS_PLUID;
|
|
typedef struct MS_LUID_AND_ATTRIBUTES* MS_PLUID_AND_ATTRIBUTES;
|
|
typedef struct MS_TOKEN_PRIVILEGES* MS_PTOKEN_PRIVILEGES;
|
|
typedef def_struct(MS_LUID) { MS_DWORD LowPart; MS_LONG HighPart; };
|
|
typedef def_struct(MS_LUID_AND_ATTRIBUTES) { MS_LUID Luid; MS_DWORD Attributes; };
|
|
typedef def_struct(MS_TOKEN_PRIVILEGES) { MS_DWORD PrivilegeCount; MS_LUID_AND_ATTRIBUTES Privileges[MS_ANYSIZE_ARRAY]; };
|
|
__declspec(dllimport) MS_BOOL __stdcall CloseHandle(MS_HANDLE hObject);
|
|
__declspec(dllimport) MS_BOOL __stdcall AdjustTokenPrivileges(MS_HANDLE TokenHandle, MS_BOOL DisableAllPrivileges, MS_PTOKEN_PRIVILEGES NewState, MS_DWORD BufferLength, MS_PTOKEN_PRIVILEGES PreviousState, MS_PDWORD ReturnLength);
|
|
__declspec(dllimport) MS_HANDLE __stdcall GetCurrentProcess(void);
|
|
__declspec(dllimport) U8 __stdcall GetLargePageMinimum(void);
|
|
__declspec(dllimport) MS_BOOL __stdcall LookupPrivilegeValueW(MS_LPWSTR lpSystemName, MS_LPWSTR lpName, MS_PLUID lpLuid);
|
|
__declspec(dllimport) MS_BOOL __stdcall OpenProcessToken(MS_HANDLE ProcessHandle, MS_DWORD DesiredAccess, MS_PHANDLE TokenHandle);
|
|
__declspec(dllimport) MS_LPVOID __stdcall VirtualAlloc(MS_LPVOID lpAddress, U8 dwSize, MS_DWORD flAllocationType, MS_DWORD flProtect);
|
|
__declspec(dllimport) MS_BOOL __stdcall VirtualFree (MS_LPVOID lpAddress, U8 dwSize, MS_DWORD dwFreeType);
|
|
#pragma warning(pop)
|
|
|
|
typedef def_struct(OS_Windows_State) {
|
|
OS_SystemInfo system_info;
|
|
};
|
|
global OS_Windows_State os__windows_info;
|
|
|
|
inline
|
|
OS_SystemInfo* os_system_info(void) {
|
|
return & os__windows_info.system_info;
|
|
}
|
|
inline
|
|
void os__enable_large_pages(void) {
|
|
MS_HANDLE token;
|
|
if (OpenProcessToken(GetCurrentProcess(), MS_TOKEN_ADJUST_PRIVILEGES | MS_TOKEN_QUERY, &token))
|
|
{
|
|
MS_LUID luid;
|
|
if (LookupPrivilegeValueW(0, MS_SE_LOCK_MEMORY_NAME, &luid))
|
|
{
|
|
MS_TOKEN_PRIVILEGES priv;
|
|
priv.PrivilegeCount = 1;
|
|
priv.Privileges[0].Luid = luid;
|
|
priv.Privileges[0].Attributes = MS_SE_PRIVILEGE_ENABLED;
|
|
AdjustTokenPrivileges(token, 0, & priv, size_of(priv), 0, 0);
|
|
}
|
|
CloseHandle(token);
|
|
}
|
|
}
|
|
inline
|
|
void os_init(void) {
|
|
os__enable_large_pages();
|
|
OS_SystemInfo* info = & os__windows_info.system_info;
|
|
info->target_page_size = (U8)GetLargePageMinimum();
|
|
}
|
|
// TODO(Ed): Large pages disabled for now... (not failing gracefully)
|
|
inline U8 os__vmem_reserve(U8 size, Opts_vmem* opts) {
|
|
assert(opts != nullptr);
|
|
void* result = VirtualAlloc(cast(void*, opts->base_addr), size
|
|
, MS_MEM_RESERVE
|
|
// |MS_MEM_COMMIT|(opts->no_large_pages == false ? MS_MEM_LARGE_PAGES : 0)
|
|
, MS_PAGE_READWRITE
|
|
);
|
|
return u8_(result);
|
|
}
|
|
inline B4 os__vmem_commit(U8 vm, U8 size, Opts_vmem* opts) {
|
|
assert(opts != nullptr);
|
|
// if (opts->no_large_pages == false ) { return 1; }
|
|
B4 result = (VirtualAlloc(cast(MS_LPVOID, vm), size, MS_MEM_COMMIT, MS_PAGE_READWRITE) != 0);
|
|
return result;
|
|
}
|
|
inline void os_vmem_release(U8 vm, U8 size) { VirtualFree(cast(MS_LPVOID, vm), 0, MS_MEM_RESERVE); }
|
|
#pragma endregion OS
|
|
|
|
#pragma region VArena (Virutal Address Space Arena)
|
|
inline
|
|
VArena_R varena__make(Opts_varena_make*R_ opts) {
|
|
assert(opts != nullptr);
|
|
if (opts->reserve_size == 0) { opts->reserve_size = mega(64); }
|
|
if (opts->commit_size == 0) { opts->commit_size = mega(64); }
|
|
U8 reserve_size = align_pow2(opts->reserve_size, os_system_info()->target_page_size);
|
|
U8 commit_size = align_pow2(opts->commit_size, os_system_info()->target_page_size);
|
|
B4 no_large_pages = (opts->flags & VArenaFlag_NoLargePages) != 0;
|
|
U8 base = os_vmem_reserve(reserve_size, .base_addr = opts->base_addr, .no_large_pages = no_large_pages);
|
|
assert(base != 0);
|
|
os_vmem_commit(base, commit_size, .no_large_pages = no_large_pages);
|
|
U8 header_size = align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT);
|
|
VArena_R vm = cast(VArena_R, base);
|
|
vm[0] = (VArena){
|
|
.reserve_start = base + header_size,
|
|
.reserve = reserve_size,
|
|
.commit_size = commit_size,
|
|
.committed = commit_size,
|
|
.commit_used = header_size,
|
|
.flags = opts->flags
|
|
};
|
|
return vm;
|
|
}
|
|
inline
|
|
Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena*R_ opts) {
|
|
assert(amount != 0);
|
|
U8 alignment = opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT;
|
|
U8 requested_size = amount * type_width;
|
|
U8 aligned_size = align_pow2(requested_size, alignment);
|
|
U8 current_offset = vm->reserve_start + vm->commit_used;
|
|
U8 to_be_used = vm->commit_used + aligned_size;
|
|
U8 reserve_left = vm->reserve - vm->commit_used;
|
|
U8 commit_left = vm->committed - vm->commit_used;
|
|
B4 exhausted = commit_left < to_be_used;
|
|
assert(to_be_used < reserve_left);
|
|
if (exhausted)
|
|
{
|
|
U8 next_commit_size = reserve_left > 0 ?
|
|
max(vm->commit_size, to_be_used)
|
|
: align_pow2( reserve_left, os_system_info()->target_page_size);
|
|
if (next_commit_size) {
|
|
U8 next_commit_start = u8_(vm) + vm->committed;
|
|
B4 no_large_pages = (vm->flags & VArenaFlag_NoLargePages) != 0;
|
|
B4 commit_result = os_vmem_commit(next_commit_start, next_commit_size, .no_large_pages = no_large_pages);
|
|
if (commit_result == false) {
|
|
return (Slice_Mem){0};
|
|
}
|
|
vm->committed += next_commit_size;
|
|
}
|
|
}
|
|
vm->commit_used = to_be_used;
|
|
return (Slice_Mem){.ptr = current_offset, .len = requested_size};
|
|
}
|
|
inline void varena_release(VArena_R arena) { os_vmem_release(u8_(arena), arena->reserve); }
|
|
inline Slice_Mem varena__shrink(VArena_R vm, Slice_Mem old_allocation, U8 requested_size, Opts_varena* opts) {
|
|
assert(opts != nullptr);
|
|
Slice_Mem result = {0};
|
|
U8 current_offset = vm->reserve_start + vm->commit_used;
|
|
U8 shrink_amount = old_allocation.len - requested_size;
|
|
if (lt_s(shrink_amount, 0)) {
|
|
result = old_allocation;
|
|
return result;
|
|
}
|
|
assert(old_allocation.ptr == current_offset);
|
|
vm->commit_used -= shrink_amount;
|
|
result = (Slice_Mem){ old_allocation.ptr, requested_size };
|
|
return result;
|
|
}
|
|
inline
|
|
void varena_rewind(VArena* vm, AllocatorSP sp) {
|
|
assert(vm != nullptr);
|
|
assert(sp.type_sig == & varena_allocator_proc);
|
|
vm->commit_used = max(sp.slot, sizeof(VArena));
|
|
}
|
|
inline AllocatorSP varena_save(VArena* vm) { return (AllocatorSP){varena_allocator_proc, vm->commit_used}; }
|
|
void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
|
|
{
|
|
VArena* vm = cast(VArena*, in.data);
|
|
switch (in.op)
|
|
{
|
|
case AllocatorOp_Alloc:
|
|
case AllocatorOp_Alloc_NoZero:
|
|
out->allocation = varena_push_mem(vm, in.requested_size, .alignment = in.alignment);
|
|
memory_zero(out->allocation.ptr, out->allocation.len * in.op);
|
|
break;
|
|
|
|
case AllocatorOp_Free:
|
|
break;
|
|
case AllocatorOp_Reset:
|
|
vm->commit_used = 0;
|
|
break;
|
|
|
|
case AllocatorOp_Grow_NoZero:
|
|
case AllocatorOp_Grow: {
|
|
U8 grow_amount = in.requested_size - in.old_allocation.len;
|
|
if (grow_amount == 0) {
|
|
out->allocation = in.old_allocation;
|
|
return;
|
|
}
|
|
U8 current_offset = vm->reserve_start + vm->commit_used;
|
|
// Growing when not the last allocation not allowed
|
|
assert(in.old_allocation.ptr == current_offset);
|
|
Slice_Mem allocation = varena_push_mem(vm, grow_amount, .alignment = in.alignment);
|
|
assert(allocation.ptr != 0);
|
|
out->allocation = (Slice_Mem){ in.old_allocation.ptr, in.requested_size };
|
|
memory_zero(out->allocation.ptr, out->allocation.len * (in.op - AllocatorOp_Grow_NoZero));
|
|
}
|
|
break;
|
|
case AllocatorOp_Shrink: {
|
|
U8 current_offset = vm->reserve_start + vm->commit_used;
|
|
U8 shrink_amount = in.old_allocation.len - in.requested_size;
|
|
if (lt_s(shrink_amount, 0)) {
|
|
out->allocation = in.old_allocation;
|
|
return;
|
|
}
|
|
assert(in.old_allocation.ptr == current_offset);
|
|
vm->commit_used -= shrink_amount;
|
|
out->allocation = (Slice_Mem){ in.old_allocation.ptr, in.requested_size };
|
|
}
|
|
break;
|
|
|
|
case AllocatorOp_Rewind:
|
|
vm->commit_used = in.save_point.slot;
|
|
break;
|
|
case AllocatorOp_SavePoint:
|
|
out->save_point = varena_save(vm);
|
|
break;
|
|
|
|
case AllocatorOp_Query:
|
|
out->features =
|
|
AllocatorQuery_Alloc
|
|
| AllocatorQuery_Resize
|
|
| AllocatorQuery_Reset
|
|
| AllocatorQuery_Rewind
|
|
;
|
|
out->max_alloc = vm->reserve - vm->committed;
|
|
out->min_alloc = kilo(4);
|
|
out->left = out->max_alloc;
|
|
out->save_point = varena_save(vm);
|
|
break;
|
|
}
|
|
}
|
|
#pragma endregion VArena
|
|
|
|
#pragma region Arena (Chained Arena)
|
|
inline
|
|
Arena_R arena__make(Opts_arena_make*R_ opts) {
|
|
assert(opts != nullptr);
|
|
U8 header_size = align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT);
|
|
VArena* current = varena__make(opts);
|
|
assert(current != nullptr);
|
|
Arena* arena = varena_push(current, Arena);
|
|
* arena = (Arena){
|
|
.backing = current,
|
|
.prev = nullptr,
|
|
.current = arena,
|
|
.base_pos = 0,
|
|
.pos = header_size,
|
|
.flags = opts->flags,
|
|
};
|
|
return arena;
|
|
}
|
|
Slice_Mem arena__push(Arena_R arena, U8 amount, U8 type_width, Opts_arena* opts) {
|
|
assert(arena != nullptr);
|
|
assert(opts != nullptr);
|
|
Arena_R active = arena->current;
|
|
U8 size_requested = amount * type_width;
|
|
U8 alignment = opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT;
|
|
U8 size_aligned = align_pow2(size_requested, alignment);
|
|
U8 pos_pre = active->pos;
|
|
U8 pos_pst = pos_pre + size_aligned;
|
|
B4 should_chain =
|
|
((arena->flags & ArenaFlag_NoChain) == 0)
|
|
&& active->backing->reserve < pos_pst;
|
|
if (should_chain)
|
|
{
|
|
Arena* new_arena = arena_make(
|
|
.base_addr = 0,
|
|
.reserve_size = active->backing->reserve,
|
|
.commit_size = active->backing->commit_size,
|
|
.flags = active->backing->flags,
|
|
);
|
|
new_arena->base_pos = active->base_pos + active->backing->reserve;
|
|
sll_stack_push_n(arena->current, new_arena, prev);
|
|
active = arena->current;
|
|
}
|
|
U8 result = u8_(active) + pos_pre;
|
|
Slice_Mem vresult = varena_push_mem(active->backing, size_aligned, .alignment = alignment);
|
|
slice_assert(vresult);
|
|
assert(result == vresult.ptr);
|
|
active->pos = pos_pst;
|
|
return vresult;
|
|
}
|
|
inline
|
|
void arena_release(Arena* arena) {
|
|
assert(arena != nullptr);
|
|
Arena_R curr = arena->current;
|
|
Arena_R prev = nullptr;
|
|
for (; curr != nullptr; curr = prev) {
|
|
prev = curr->prev;
|
|
varena_release(curr->backing);
|
|
}
|
|
}
|
|
inline void arena_reset(Arena* arena) { arena_rewind(arena, (AllocatorSP){.type_sig = arena_allocator_proc, .slot = 0}); }
|
|
void arena_rewind(Arena* arena, AllocatorSP save_point) {
|
|
assert(arena != nullptr);
|
|
assert(save_point.type_sig == arena_allocator_proc);
|
|
U8 header_size = align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT);
|
|
Arena_R curr = arena->current;
|
|
U8 big_pos = clamp_bot(header_size, save_point.slot);
|
|
for (Arena_R prev = nullptr; curr->base_pos >= big_pos; curr = prev) {
|
|
prev = curr->prev;
|
|
varena_release(curr->backing);
|
|
}
|
|
arena->current = curr;
|
|
U8 new_pos = big_pos - curr->base_pos;
|
|
assert(new_pos <= curr->pos);
|
|
curr->pos = new_pos;
|
|
varena_rewind(curr->backing, (AllocatorSP){varena_allocator_proc, curr->pos + size_of(VArena)});
|
|
}
|
|
inline AllocatorSP arena_save(Arena_R arena) { return (AllocatorSP){arena_allocator_proc, arena->base_pos + arena->current->pos}; }
|
|
void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
|
|
{
|
|
assert(out != nullptr);
|
|
Arena* arena = cast(Arena*, in.data);
|
|
assert(arena != nullptr);
|
|
switch (in.op)
|
|
{
|
|
case AllocatorOp_Alloc:
|
|
case AllocatorOp_Alloc_NoZero:
|
|
out->allocation = arena_push_mem(arena, in.requested_size, .alignment = in.alignment);
|
|
memory_zero(out->allocation.ptr, out->allocation.len * in.op);
|
|
break;
|
|
case AllocatorOp_Free:
|
|
break;
|
|
case AllocatorOp_Reset:
|
|
arena_reset(arena);
|
|
break;
|
|
|
|
case AllocatorOp_Grow:
|
|
case AllocatorOp_Grow_NoZero: {
|
|
Arena_R active = arena->current;
|
|
U8 alloc_end = in.old_allocation.ptr + in.old_allocation.len;
|
|
U8 arena_end = u8_(active) + active->pos;
|
|
if (alloc_end == arena_end)
|
|
{
|
|
U8 grow_amount = in.requested_size - in.old_allocation.len;
|
|
U8 aligned_grow = align_pow2(grow_amount, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
|
|
if (active->pos + aligned_grow <= active->backing->reserve)
|
|
{
|
|
Slice_Mem vresult = varena_push_mem(active->backing, aligned_grow, .alignment = in.alignment);
|
|
if (vresult.ptr != null)
|
|
{
|
|
active->pos += aligned_grow;
|
|
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
|
|
out->continuity_break = false;
|
|
memory_zero(in.old_allocation.ptr + in.old_allocation.len, grow_amount * in.op - AllocatorOp_Grow_NoZero);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Slice_Mem new_alloc = arena__push(arena, in.requested_size, 1, &(Opts_arena){.alignment = in.alignment});
|
|
if (new_alloc.ptr == null) {
|
|
out->allocation = (Slice_Mem){0};
|
|
break;
|
|
}
|
|
memory_copy(new_alloc.ptr, in.old_allocation.ptr, in.old_allocation.len);
|
|
memory_zero(new_alloc.ptr + in.old_allocation.len, (in.requested_size - in.old_allocation.len) * in.op - AllocatorOp_Grow_NoZero);
|
|
out->allocation = new_alloc;
|
|
out->continuity_break = true;
|
|
}
|
|
break;
|
|
|
|
case AllocatorOp_Shrink: {
|
|
Arena_R active = arena->current;
|
|
U8 alloc_end = in.old_allocation.ptr + in.old_allocation.len;
|
|
U8 arena_end = u8_(active) + active->pos;
|
|
if (alloc_end != arena_end) {
|
|
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
|
|
break;
|
|
}
|
|
//SSIZE shrink_amount = in.old_allocation.len - in.requested_size;
|
|
U8 aligned_original = align_pow2(in.old_allocation.len, MEMORY_ALIGNMENT_DEFAULT);
|
|
U8 aligned_new = align_pow2(in.requested_size, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
|
|
U8 pos_reduction = aligned_original - aligned_new;
|
|
active->pos -= pos_reduction;
|
|
varena__shrink(active->backing, in.old_allocation, in.requested_size, &(Opts_varena){.alignment = in.alignment});
|
|
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
|
|
}
|
|
break;
|
|
|
|
case AllocatorOp_Rewind:
|
|
arena_rewind(arena, in.save_point);
|
|
break;
|
|
|
|
case AllocatorOp_SavePoint:
|
|
out->save_point = arena_save(arena);
|
|
break;
|
|
case AllocatorOp_Query:
|
|
out->features =
|
|
AllocatorQuery_Alloc
|
|
| AllocatorQuery_Resize
|
|
| AllocatorQuery_Reset
|
|
| AllocatorQuery_Rewind
|
|
;
|
|
out->max_alloc = arena->backing->reserve;
|
|
out->min_alloc = kilo(4);
|
|
out->left = out->max_alloc - arena->backing->commit_used;
|
|
out->save_point = arena_save(arena);
|
|
break;
|
|
}
|
|
}
|
|
#pragma endregion Arena
|
|
|
|
#pragma endregion Implementation
|
|
|
|
int main(void)
|
|
{
|
|
U8 a = 4;
|
|
U8 b = 2;
|
|
a = add_s(a, b);
|
|
U8 test = ge_s(a, b);
|
|
return 0;
|
|
}
|
|
|
|
#pragma clang diagnostic pop
|