Compare commits

...

3 Commits

7 changed files with 487 additions and 646 deletions

View File

@@ -1,2 +0,0 @@
#pragma once

View File

@@ -41,11 +41,15 @@ Win CRT imports will also be typeless signatures.
#pragma region Header #pragma region Header
#pragma region DSL #pragma region DSL
#define local_persist static
#define global static
#define internal static
#define A_(x) __attribute__((aligned (x))) #define A_(x) __attribute__((aligned (x)))
#define E_(x,y) __builtin_expect(x,y) #define E_(x,y) __builtin_expect(x,y)
#define S_ static #define S_ static
#define I_ static inline __attribute__((always_inline)) #define I_ internal inline __attribute__((always_inline))
#define N_ static __attribute__((noinline)) #define N_ internal __attribute__((noinline))
#define R_ __restrict #define R_ __restrict
#define V_ volatile #define V_ volatile
#define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__)) #define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
@@ -58,10 +62,6 @@ Win CRT imports will also be typeless signatures.
#define stringify(S) stringify_impl(S) #define stringify(S) stringify_impl(S)
#define tmpl(prefix, type) prefix ## _ ## type #define tmpl(prefix, type) prefix ## _ ## type
#define local_persist static
#define global static
#define internal static
#define static_assert _Static_assert #define static_assert _Static_assert
#define typeof __typeof__ #define typeof __typeof__
#define typeof_ptr(ptr) typeof(ptr[0]) #define typeof_ptr(ptr) typeof(ptr[0])
@@ -440,7 +440,7 @@ typedef def_struct(FArena) {
}; };
I_ void farena_init__u (U8 arena, U8 mem_ptr, U8 mem_len); I_ void farena_init__u (U8 arena, U8 mem_ptr, U8 mem_len);
void farena__push__u (U8 arena, U8 amount, U8 type_width, U8 alignment, U8 slice_mem); void farena__push__u (U8 arena, U8 amount, U8 type_width, U8 alignment, U8 slice_addr);
I_ void farena_reset__u (U8 arena); I_ void farena_reset__u (U8 arena);
I_ void farena_rewind__u(U8 arena, U8 sp_type_sig, U8 sp_slot); I_ void farena_rewind__u(U8 arena, U8 sp_type_sig, U8 sp_slot);
I_ void farena_save__u (U8 arena, U8 sp); I_ void farena_save__u (U8 arena, U8 sp);
@@ -468,70 +468,21 @@ cast(type*, farena__push(arena, size_of(type), 1, opt_args(Opts_farena, __VA_ARG
typedef def_struct(OS_SystemInfo) { U8 target_page_size; }; typedef def_struct(OS_SystemInfo) { U8 target_page_size; };
typedef def_struct(Opts_vmem) { U8 base_addr; B4 no_large_pages; A4_B1 _PAD_; }; typedef def_struct(Opts_vmem) { U8 base_addr; B4 no_large_pages; A4_B1 _PAD_; };
#define MS_INVALID_HANDLE_VALUE ((MS_HANDLE)(S8)-1)
#define MS_ANYSIZE_ARRAY 1
#define MS_MEM_COMMIT 0x00001000
#define MS_MEM_RESERVE 0x00002000
#define MS_MEM_LARGE_PAGES 0x20000000
#define MS_PAGE_READWRITE 0x04
#define MS_TOKEN_ADJUST_PRIVILEGES (0x0020)
#define MS_SE_PRIVILEGE_ENABLED (0x00000002L)
#define MS_TOKEN_QUERY (0x0008)
#define MS__TEXT(quote) L ## quote
#define MS_TEXT(quote) MS__TEXT(quote)
#define MS_SE_LOCK_MEMORY_NAME MS_TEXT("SeLockMemoryPrivilege")
typedef int MS_BOOL;
typedef unsigned long MS_DWORD;
typedef MS_DWORD* MS_PDWORD;
typedef void* MS_HANDLE;
typedef MS_HANDLE* MS_PHANDLE;
typedef long MS_LONG;
typedef S8 MS_LONGLONG;
typedef char const* MS_LPCSTR;
typedef unsigned short* MS_LPWSTR, *MS_PWSTR;
typedef void* MS_LPVOID;
typedef MS_DWORD* MS_LPDWORD;
typedef U8 MS_ULONG_PTR, *MS_PULONG_PTR;
typedef void const* MS_LPCVOID;
typedef struct MS_SECURITY_ATTRIBUTES *MS_PSECURITY_ATTRIBUTES, *MS_LPSECURITY_ATTRIBUTES;
typedef struct MS_OVERLAPPED *MS_LPOVERLAPPED;
typedef def_union(MS_LARGE_INTEGER) { struct { MS_DWORD LowPart; MS_LONG HighPart; } _; struct { MS_DWORD LowPart; MS_LONG HighPart; } u; MS_LONGLONG QuadPart; };
typedef def_struct(MS_FILE) { void* _Placeholder; };
typedef def_struct(MS_SECURITY_ATTRIBUTES) { MS_DWORD nLength; A4_B1 _PAD_; MS_LPVOID lpSecurityDescriptor; MS_BOOL bInheritHandle; };
typedef def_struct(MS_OVERLAPPED) { MS_ULONG_PTR Internal; MS_ULONG_PTR InternalHigh; union { struct { MS_DWORD Offset; MS_DWORD OffsetHigh; } _; void* Pointer; } _; MS_HANDLE hEvent; };
typedef struct MS_LUID* MS_PLUID;
typedef struct MS_LUID_AND_ATTRIBUTES* MS_PLUID_AND_ATTRIBUTES;
typedef struct MS_TOKEN_PRIVILEGES* MS_PTOKEN_PRIVILEGES;
typedef def_struct(MS_LUID) { MS_DWORD LowPart; MS_LONG HighPart; };
typedef def_struct(MS_LUID_AND_ATTRIBUTES) { MS_LUID Luid; MS_DWORD Attributes; };
typedef def_struct(MS_TOKEN_PRIVILEGES) { MS_DWORD PrivilegeCount; MS_LUID_AND_ATTRIBUTES Privileges[MS_ANYSIZE_ARRAY]; };
W_ MS_BOOL CloseHandle(MS_HANDLE hObject);
W_ MS_BOOL AdjustTokenPrivileges(MS_HANDLE TokenHandle, MS_BOOL DisableAllPrivileges, MS_PTOKEN_PRIVILEGES NewState, MS_DWORD BufferLength, MS_PTOKEN_PRIVILEGES PreviousState, MS_PDWORD ReturnLength);
W_ MS_HANDLE GetCurrentProcess(void);
W_ U8 GetLargePageMinimum(void);
W_ MS_BOOL LookupPrivilegeValueW(MS_LPWSTR lpSystemName, MS_LPWSTR lpName, MS_PLUID lpLuid);
W_ MS_BOOL OpenProcessToken(MS_HANDLE ProcessHandle, MS_DWORD DesiredAccess, MS_PHANDLE TokenHandle);
W_ MS_LPVOID VirtualAlloc(MS_LPVOID lpAddress, U8 dwSize, MS_DWORD flAllocationType, MS_DWORD flProtect);
W_ MS_BOOL VirtualFree (MS_LPVOID lpAddress, U8 dwSize, MS_DWORD dwFreeType);
typedef def_struct(OS_Windows_State) { OS_SystemInfo system_info; }; typedef def_struct(OS_Windows_State) { OS_SystemInfo system_info; };
global OS_Windows_State os__windows_info; global OS_Windows_State os__windows_info;
I_ OS_SystemInfo* os_system_info(void); I_ OS_SystemInfo* os_system_info(void);
I_ void os_init (void); I_ void os_init (void);
I_ U8 os__vmem_reserve__u(U8 size, U8 opts_addr); I_ U8 os_vmem_reserve__u( U8 size, U4 no_large_pages, U8 base_addr);
I_ B4 os__vmem_commit__u (U8 vm, U8 size, U8 opts_addr); I_ B4 os_vmem_commit__u (U8 vm, U8 size);
I_ void os_vmem_release__u(U8 vm, U8 size); I_ void os_vmem_release__u(U8 vm, U8 size);
I_ U8 os__vmem_reserve( U8 size, Opts_vmem_R opts); I_ U8 os__vmem_reserve( U8 size, Opts_vmem_R opts);
I_ B4 os__vmem_commit (U8 vm, U8 size, Opts_vmem_R opts); I_ B4 os_vmem_commit (U8 vm, U8 size);
I_ void os_vmem_release (U8 vm, U8 size); I_ void os_vmem_release (U8 vm, U8 size);
#define os_vmem_reserve(size, ...) os__vmem_reserve(size, opt_args(Opts_vmem, __VA_ARGS__)) #define os_vmem_reserve(size, ...) os__vmem_reserve(size, opt_args(Opts_vmem, __VA_ARGS__))
#define os_vmem_commit(vm, size, ...) os__vmem_commit (vm, size, opt_args(Opts_vmem, __VA_ARGS__))
#pragma endregion OS #pragma endregion OS
#pragma region VArena (Virtual Address Space Arena) #pragma region VArena (Virtual Address Space Arena)
@@ -554,7 +505,7 @@ typedef def_struct(Opts_varena_make) {
VArenaFlags flags; VArenaFlags flags;
}; };
I_ U8 varena__make__u (Opts_varena_make_R opts); I_ U8 varena__make__u (U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr);
I_ void varena_release__u(U8 arena); I_ void varena_release__u(U8 arena);
I_ void varena_reset__u (U8 arena); I_ void varena_reset__u (U8 arena);
I_ void varena_rewind__u (U8 arena, U8 sp_type_sig, U8 sp_slot); I_ void varena_rewind__u (U8 arena, U8 sp_type_sig, U8 sp_slot);
@@ -563,13 +514,13 @@ void varena__push__u (U8 arena, U8 amount, U8 type_width, U8 alignment, U8 s
void varena__grow__u (U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero); void varena__grow__u (U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero);
void varena__shrink__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment); void varena__shrink__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment);
VArena* varena__make (Opts_varena_make*R_ opts); I_ VArena* varena__make (Opts_varena_make*R_ opts);
Slice_Mem varena__push (VArena_R arena, U8 amount, U8 type_width, Opts_varena*R_ opts); I_ Slice_Mem varena__push (VArena_R arena, U8 amount, U8 type_width, Opts_varena*R_ opts);
void varena_release(VArena_R arena); I_ void varena_release(VArena_R arena);
void varena_reset (VArena_R arena); I_ void varena_reset (VArena_R arena);
void varena_rewind (VArena_R arena, AllocatorSP save_point); I_ void varena_rewind (VArena_R arena, AllocatorSP save_point);
Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size, Opts_varena*R_ opts); I_ Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size, Opts_varena*R_ opts);
AllocatorSP varena_save (VArena_R arena); I_ AllocatorSP varena_save (VArena_R arena);
void varena_allocator_proc(U8 data, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out); void varena_allocator_proc(U8 data, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out);
@@ -785,270 +736,257 @@ void farena_allocator_proc(U8 arena, U8 requested_size, U8 alignment, U8 old_ptr
#pragma endregion FArena #pragma endregion FArena
#pragma region OS #pragma region OS
#pragma warning(push)
#pragma warning(disable: 4820)
#pragma comment(lib, "Kernel32.lib")
#pragma comment(lib, "Advapi32.lib")
#define MS_INVALID_HANDLE_VALUE ((MS_HANDLE)(S8)-1)
#define MS_ANYSIZE_ARRAY 1
#define MS_MEM_COMMIT 0x00001000
#define MS_MEM_RESERVE 0x00002000
#define MS_MEM_LARGE_PAGES 0x20000000
#define MS_PAGE_READWRITE 0x04
#define MS_TOKEN_ADJUST_PRIVILEGES (0x0020)
#define MS_SE_PRIVILEGE_ENABLED (0x00000002L)
#define MS_TOKEN_QUERY (0x0008)
#define MS__TEXT(quote) L ## quote
#define MS_TEXT(quote) MS__TEXT(quote)
#define MS_SE_LOCK_MEMORY_NAME MS_TEXT("SeLockMemoryPrivilege")
typedef U4 MS_BOOL;
typedef U4 MS_DWORD;
typedef U8 MS_PDWORD;
typedef U8 MS_HANDLE;
typedef U8 MS_PHANDLE;
typedef U4 MS_LONG;
typedef U8 MS_LONGLONG;
typedef U8 MS_LPCSTR;
typedef U8 MS_LPWSTR, MS_PWSTR;
typedef U8 MS_LPVOID;
typedef U8 MS_LPDWORD;
typedef U8 MS_ULONG_PTR, MS_PULONG_PTR;
typedef U8 MS_LPCVOID;
typedef struct MS_SECURITY_ATTRIBUTES MS_SECURITY_ATTRIBUTES; typedef U8 MS_PSECURITY_ATTRIBUTES, MS_LPSECURITY_ATTRIBUTES;
typedef struct MS_OVERLAPPED MS_OVERLAPPED; typedef U8 MS_LPOVERLAPPED;
typedef def_union(MS_LARGE_INTEGER) { struct { MS_DWORD LowPart; MS_LONG HighPart; } _; struct { MS_DWORD LowPart; MS_LONG HighPart; } u; MS_LONGLONG QuadPart; };
typedef def_struct(MS_FILE) { U8 _Placeholder; };
typedef def_struct(MS_SECURITY_ATTRIBUTES) { MS_DWORD nLength; A4_B1 _PAD_; MS_LPVOID lpSecurityDescriptor; MS_BOOL bInheritHandle; };
typedef def_struct(MS_OVERLAPPED) { MS_ULONG_PTR Internal; MS_ULONG_PTR InternalHigh; union { struct { MS_DWORD Offset; MS_DWORD OffsetHigh; } _; U8 Pointer; } _; MS_HANDLE hEvent; };
typedef struct MS_LUID MS_LUID; typedef U8 MS_PLUID;
typedef struct MS_LUID_AND_ATTRIBUTES MS_LUID_AND_ATTRIBUTES; typedef U8 MS_PLUID_AND_ATTRIBUTES;
typedef struct MS_TOKEN_PRIVILEGES MS_TOKEN_PRIVILEGES; typedef U8 MS_PTOKEN_PRIVILEGES;
typedef def_struct(MS_LUID) { MS_DWORD LowPart; MS_LONG HighPart; };
typedef def_struct(MS_LUID_AND_ATTRIBUTES) { MS_LUID Luid; MS_DWORD Attributes; };
typedef def_struct(MS_TOKEN_PRIVILEGES) { MS_DWORD PrivilegeCount; MS_LUID_AND_ATTRIBUTES Privileges[MS_ANYSIZE_ARRAY]; };
W_ MS_BOOL ms_close_handle(MS_HANDLE hObject) __asm__("CloseHandle");
W_ MS_BOOL ms_adjust_token_privleges(MS_HANDLE TokenHandle, MS_BOOL DisableAllPrivileges, MS_PTOKEN_PRIVILEGES NewState, MS_DWORD BufferLength, MS_PTOKEN_PRIVILEGES PreviousState, MS_PDWORD ReturnLength) __asm__("AdjustTokenPrivileges");
W_ MS_HANDLE ms_get_current_process(void) __asm__("GetCurrentProcess");
W_ U8 ms_get_larg_page_minimum(void) __asm__("GetCurrentProcess");
W_ MS_BOOL ms_lookup_priviledge_value_w(MS_LPWSTR lpSystemName, MS_LPWSTR lpName, MS_PLUID lpLuid) __asm__("LookupPrivilegeValueW");
W_ MS_BOOL ms_open_process_token(MS_HANDLE ProcessHandle, MS_DWORD DesiredAccess, MS_PHANDLE TokenHandle) __asm__("OpenProcessToken");
W_ MS_LPVOID ms_virtual_alloc(MS_LPVOID lpAddress, U8 dwSize, MS_DWORD flAllocationType, MS_DWORD flProtect) __asm__("VirtualAlloc");
W_ MS_BOOL ms_virtual_free(MS_LPVOID lpAddress, U8 dwSize, MS_DWORD dwFreeType) __asm__("VirtualFree");
#pragma warning(pop)
I_ OS_SystemInfo* os_system_info(void) { I_ OS_SystemInfo* os_system_info(void) {
return & os__windows_info.system_info; return & os__windows_info.system_info;
} }
I_ void os__enable_large_pages(void) { I_ void os__enable_large_pages(void) {
MS_HANDLE token; MS_HANDLE token;
if (OpenProcessToken(GetCurrentProcess(), MS_TOKEN_ADJUST_PRIVILEGES | MS_TOKEN_QUERY, & token)) { if (ms_open_process_token(ms_get_current_process(), MS_TOKEN_ADJUST_PRIVILEGES | MS_TOKEN_QUERY, u8_(& token))) {
MS_LUID luid; MS_LUID luid;
if (LookupPrivilegeValueW(0, MS_SE_LOCK_MEMORY_NAME, & luid)) { if (ms_lookup_priviledge_value_w(0, u8_(MS_SE_LOCK_MEMORY_NAME), u8_(& luid))) {
MS_TOKEN_PRIVILEGES priv; MS_TOKEN_PRIVILEGES priv;
priv.PrivilegeCount = 1; priv.PrivilegeCount = 1;
priv.Privileges[0].Luid = luid; priv.Privileges[0].Luid = luid;
priv.Privileges[0].Attributes = MS_SE_PRIVILEGE_ENABLED; priv.Privileges[0].Attributes = MS_SE_PRIVILEGE_ENABLED;
AdjustTokenPrivileges(token, 0, & priv, size_of(priv), 0, 0); ms_adjust_token_privleges(token, 0, u8_(& priv), size_of(priv), 0, 0);
} }
CloseHandle(token); ms_close_handle(token);
} }
} }
I_ void os_init(void) { I_ void os_init(void) {
os__enable_large_pages(); os__enable_large_pages();
os_system_info()->target_page_size = GetLargePageMinimum(); os_system_info()->target_page_size = ms_get_larg_page_minimum();
} }
I_ U8 os__vmem_reserve__u(U8 size, U8 opts_addr) { I_ U8 os_vmem_reserve__u(U8 size, B4 no_large_pages, U8 base_addr) {
Opts_vmem_R opts = cast(Opts_vmem_R, opts_addr); assert(opts != nullptr); return cast(U8, VirtualAlloc(cast(MS_LPVOID, base_addr), size, MS_MEM_RESERVE,
MS_LPVOID base = VirtualAlloc(cast(MS_LPVOID, opts->base_addr), size, MS_MEM_RESERVE, MS_PAGE_READWRITE /* | (opts->no_large_pages ? 0 : MS_MEM_LARGE_PAGES) */)
MS_PAGE_READWRITE /* | (opts->no_large_pages ? 0 : MS_MEM_LARGE_PAGES) */); );
return u8_(base);
} }
I_ B4 os__vmem_commit__u(U8 vm, U8 size, U8 opts_addr) { return VirtualAlloc(cast(MS_LPVOID, vm), size, MS_MEM_COMMIT, MS_PAGE_READWRITE) != nullptr; } I_ B4 os_vmem_commit__u (U8 vm, U8 size) { return ms_virtual_alloc(cast(MS_LPVOID, vm), size, MS_MEM_COMMIT, MS_PAGE_READWRITE) != null; }
I_ void os_vmem_release__u(U8 vm, U8 size) { VirtualFree(cast(MS_LPVOID, vm), 0, MS_MEM_RESERVE); } I_ void os_vmem_release__u(U8 vm, U8 size) { ms_virtual_free(cast(MS_LPVOID, vm), 0, MS_MEM_RESERVE); }
I_ U8 os__vmem_reserve( U8 size, Opts_vmem_R opts) { return os__vmem_reserve__u( size, u8_(opts)); } I_ U8 os__vmem_reserve( U8 size, Opts_vmem_R opts) {
I_ B4 os__vmem_commit (U8 vm, U8 size, Opts_vmem_R opts) { return os__vmem_commit__u (vm, size, u8_(opts)); } assert(opts != nullptr);
return os_vmem_reserve__u(size, opts->no_large_pages, opts->base_addr);
}
I_ B4 os_vmem_commit (U8 vm, U8 size) { return os_vmem_commit__u(vm, size); }
I_ void os_vmem_release(U8 vm, U8 size) { os_vmem_release__u(vm, size); } I_ void os_vmem_release(U8 vm, U8 size) { os_vmem_release__u(vm, size); }
#pragma endregion OS #pragma endregion OS
#pragma region VArena (Virtual Address Space Arena) #pragma region VArena (Virtual Address Space Arena)
I_ U8 varena__header_size(void) { return align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); } I_ U8 varena_header_size(void) { return align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); }
I_ U8 varena__make__u(Opts_varena_make_R opts) { I_ U8 varena__make__u(U8 reserve_size, U8 commit_size, U4 flags, U8 base_addr) {
assert(opts != nullptr); if (reserve_size == 0) { reserve_size = mega(64); }
if (opts->reserve_size == 0) { opts->reserve_size = mega(64); } if (commit_size == 0) { commit_size = mega(64); }
if (opts->commit_size == 0) { opts->commit_size = mega(64); }
U8 reg page = os_system_info()->target_page_size; U8 reg page = os_system_info()->target_page_size;
U8 reg reserve_sz = align_pow2(opts->reserve_size, page); U8 reg reserve_sz = align_pow2(reserve_size, page);
U8 reg commit_sz = align_pow2(opts->commit_size, page); U8 reg commit_sz = align_pow2(commit_size, page);
U8 base = os_vmem_reserve(reserve_sz, .base_addr = opts->base_addr, .no_large_pages = no_large); B4 reg no_large = (flags & VArenaFlag_NoLargePages) != 0;
assert(base != 0); U8 base = os_vmem_reserve__u(reserve_sz, no_large, base_addr); assert(base != 0);
B4 reg no_large = (opts->flags & VArenaFlag_NoLargePages) != 0; B4 ok = os_vmem_commit__u(base, commit_sz); assert(ok != 0);
B4 ok = os_vmem_commit(base, commit_sz, .no_large_pages = no_large); U8 header = varena_header_size();
assert(ok != 0);
U8 header = varena__header_size();
U8 data_start = base + header; U8 data_start = base + header;
u8_r(base + offset_of(VArena, reserve_start))[0] = data_start; u8_r(base + offset_of(VArena, reserve_start))[0] = data_start;
u8_r(base + offset_of(VArena, reserve ))[0] = reserve_sz; u8_r(base + offset_of(VArena, reserve ))[0] = reserve_sz;
u8_r(base + offset_of(VArena, commit_size ))[0] = commit_sz; u8_r(base + offset_of(VArena, commit_size ))[0] = commit_sz;
u8_r(base + offset_of(VArena, committed ))[0] = commit_sz; u8_r(base + offset_of(VArena, committed ))[0] = commit_sz;
u8_r(base + offset_of(VArena, commit_used ))[0] = header; u8_r(base + offset_of(VArena, commit_used ))[0] = header;
u4_r(base + offset_of(VArena, flags ))[0] = opts->flags; u4_r(base + offset_of(VArena, flags ))[0] = flags;
return base; return base;
} }
inline
I_ void varena_release__u(U8 arena) { void varena__push__u(U8 vm, U8 amount, U8 type_width, U8 alignment, U8 result) {
if (arena == null) { return; } assert(result != null);
os_vmem_release__u(arena, u8_r(arena + offset_of(VArena, reserve))[0]); assert(vm != null);
}
I_ void varena_reset__u(U8 arena) {
if (arena == null) { return; }
u8_r(arena + offset_of(VArena, commit_used))[0] = 0;
}
I_ void varena_rewind__u(U8 arena, U8 sp_type_sig, U8 sp_slot) {
if (arena == null) { return; }
assert(sp_type_sig == (U8) varena_allocator_proc);
U8 header = varena__header_size();
if (sp_slot < header) { sp_slot = header; }
u8_r(arena + offset_of(VArena, commit_used))[0] = sp_slot;
}
I_ void varena_save__u(U8 arena, U8 sp_addr) {
if (sp_addr == null) { return; }
u8_r(sp_addr + offset_of(AllocatorSP, type_sig))[0] = (U8) varena_allocator_proc;
u8_r(sp_addr + offset_of(AllocatorSP, slot ))[0] = u8_r(arena + offset_of(VArena, commit_used))[0];
}
void varena__push__u(U8 arena, U8 amount, U8 type_width, U8 alignment, U8 result) {
if (result == null || arena == null) { return; }
if (amount == 0) { struct_zero(Slice_Mem, result); return; } if (amount == 0) { struct_zero(Slice_Mem, result); return; }
U8 reg align = alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT; U8 align = alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT;
U8 reg requested_size = amount * type_width; U8 requested_size = amount * type_width;
U8 reg aligned_size = align_pow2(requested_size, align); U8 reg aligned_size = align_pow2(requested_size, align);
U8 reg reserve_start = u8_r(arena + offset_of(VArena, reserve_start))[0]; U8_R reg commit_used = u8_r(vm + offset_of(VArena, commit_used ));
U8_R reg commit_used = u8_r(arena + offset_of(VArena, commit_used)); U8 reg reserve_left = u8_r(vm + offset_of(VArena, reserve ))[0] - commit_used[0];
U8 reg current_offset = reserve_start + commit_used[0];
U8 reg reserve_total = u8_r(arena + offset_of(VArena, reserve))[0];
U8 reg reserve_left = reserve_total - commit_used[0];
if (aligned_size > reserve_left) { struct_zero(Slice_Mem, result); return; } if (aligned_size > reserve_left) { struct_zero(Slice_Mem, result); return; }
U8 reg committed = u8_r(arena + offset_of(VArena, committed))[0]; U8 reg committed = u8_r(vm + offset_of(VArena, committed ))[0];
U8 reg commit_size = u8_r(arena + offset_of(VArena, commit_size))[0]; U8 commit_left = committed - commit_used[0];
U8 reg commit_left = committed - commit_used[0];
if (commit_left < aligned_size) { if (commit_left < aligned_size) {
U8 reg commit_size = u8_r(vm + offset_of(VArena, commit_size))[0];
U8 reg next_commit = reserve_left > aligned_size ? max(commit_size, aligned_size) : reserve_left; U8 reg next_commit = reserve_left > aligned_size ? max(commit_size, aligned_size) : reserve_left;
if (next_commit != 0) { if (next_commit != 0) {
B4 no_large = (u4_r(arena + offset_of(VArena, flags))[0] & VArenaFlag_NoLargePages) != 0; B4 no_large = (u4_r(vm + offset_of(VArena, flags))[0] & VArenaFlag_NoLargePages) != 0;
U8 reg next_commit_start = arena + committed; U8 reg next_commit_start = vm + committed;
if (! os_vmem_commit(next_commit_start, next_commit, .no_large_pages = no_large)) { if (os_vmem_commit__u(next_commit_start, next_commit) == false) {
struct_zero(Slice_Mem, result); struct_zero(Slice_Mem, result);
return; return;
} }
committed += next_commit; committed += next_commit;
u8_r(arena + offset_of(VArena, committed))[0] = committed; u8_r(vm + offset_of(VArena, committed))[0] = committed;
} }
} }
commit_used[0] += aligned_size; commit_used[0] += aligned_size; {
U8 reg current_offset = u8_r(vm + offset_of(VArena, reserve_start))[0] + commit_used[0];
struct_copy(Slice_Mem, result, (U8)& slice_mem(current_offset, requested_size)); struct_copy(Slice_Mem, result, (U8)& slice_mem(current_offset, requested_size));
} }
void varena__grow__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero) {
if (result == null || arena == null) { return; }
if (old_ptr == 0 || requested_size <= old_len) {
struct_copy(Slice_Mem, result, (U8)& slice_mem(old_ptr, requested_size));
return;
}
U8_R reg commit_used = u8_r(arena + offset_of(VArena, commit_used));
U8 reg reserve_start = u8_r(arena + offset_of(VArena, reserve_start))[0];
U8 reg current_offset = reserve_start + commit_used[0];
if (old_ptr + old_len != current_offset) {
struct_zero(Slice_Mem, result);
return;
} }
inline
void varena__grow__u(U8 result, U8 vm, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment, B4 should_zero) {
assert(vm != null);
assert(result != null);
U8 reg grow_amount = requested_size - old_len; U8 reg grow_amount = requested_size - old_len;
uvar(Slice_Mem, extra) = {0}; if (grow_amount == 0) { struct_copy(Slice_Mem, result, (U8)& slice_mem(old_ptr, old_len)); return; }
varena__push__u(arena, grow_amount, 1, alignment, u8_(extra)); U8 reg current_offset = u8_r(vm + offset_of(VArena, reserve_start))[0] + u8_r(vm + offset_of(VArena, commit_used))[0];
U8 extra_ptr = u8_r(extra + offset_of(Slice_Mem, ptr))[0]; // Growing when not the last allocation not allowed
U8 extra_len = u8_r(extra + offset_of(Slice_Mem, len))[0]; assert(old_ptr == current_offset);
if (extra_ptr == 0) { uvar(Slice_Mem, allocation); varena__push__u(vm, grow_amount, 1, alignment, u8_(allocation));
struct_zero(Slice_Mem, result);
return;
} }
U8 reg new_len = old_len + extra_len; void varena__shrink__u(U8 result, U8 vm, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment) {
struct_copy(Slice_Mem, result, (U8)& slice_mem(old_ptr, new_len)); assert(vm != null);
if (should_zero && grow_amount != 0) { assert(result != null);
memory_zero(old_ptr + old_len, grow_amount);
} }
I_ void varena_release__u(U8 vm) {
assert(vm != null);
os_vmem_release__u(vm, u8_r(vm + offset_of(VArena, reserve))[0]);
}
I_ void varena_reset__u(U8 vm) {
assert(vm != null);
u8_r(vm + offset_of(VArena, commit_used))[0] = 0;
}
I_ void varena_rewind__u(U8 vm, U8 sp_type_sig, U8 sp_slot) {
assert(vm != null);
assert(sp_type_sig == (U8) varena_allocator_proc);
U8 reg header = varena_header_size();
if (sp_slot < header) { sp_slot = header; }
u8_r(vm + offset_of(VArena, commit_used))[0] = sp_slot;
}
I_ void varena_save__u(U8 vm, U8 sp_addr) {
assert(vm != null);
assert(sp_addr != null);
u8_r(sp_addr + offset_of(AllocatorSP, type_sig))[0] = (U8) varena_allocator_proc;
u8_r(sp_addr + offset_of(AllocatorSP, slot ))[0] = u8_r(vm + offset_of(VArena, commit_used))[0];
} }
void varena__shrink__u(U8 result, U8 arena, U8 old_ptr, U8 old_len, U8 requested_size, U8 alignment) { I_ VArena* varena__make(Opts_varena_make*R_ opts) {
if (result == null || arena == null) { return; } assert(opts != nullptr);
if (old_ptr == 0 || requested_size >= old_len) { return cast(VArena*, varena__make__u(opts->reserve_size, opts->commit_size, opts->flags, opts->base_addr));
struct_copy(Slice_Mem, result, (U8)& slice_mem(old_ptr, min(requested_size, old_len)));
return;
} }
U8_R reg commit_used = u8_r(arena + offset_of(VArena, commit_used)); I_ Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena* opts) {
U8 reg reserve_start = u8_r(arena + offset_of(VArena, reserve_start))[0];
U8 reg current_offset = reserve_start + commit_used[0];
if (old_ptr + old_len != current_offset) {
struct_copy(Slice_Mem, result, (U8)& slice_mem(old_ptr, requested_size));
return;
}
U8 reg aligned_original = align_pow2(old_len, MEMORY_ALIGNMENT_DEFAULT);
U8 reg aligned_new = align_pow2(requested_size, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
if (aligned_new > aligned_original) { aligned_new = aligned_original; }
commit_used[0] -= (aligned_original - aligned_new);
struct_copy(Slice_Mem, result, (U8)& slice_mem(old_ptr, requested_size));
}
VArena* varena__make(Opts_varena_make* opts) {
return cast(VArena*, varena__make__u(opts));
}
Slice_Mem varena__push(VArena_R arena, U8 amount, U8 type_width, Opts_varena* opts) {
Slice_Mem result; Slice_Mem result;
varena__push__u(u8_(arena), amount, type_width, opts ? opts->alignment : 0, u8_(& result)); varena__push__u(u8_(vm), amount, type_width, opts ? opts->alignment : 0, u8_(& result));
return result;
}
I_ Slice_Mem varena__shrink(VArena_R vm, Slice_Mem old_allocation, U8 requested_size, Opts_varena* opts) {
Slice_Mem result;
varena__shrink__u(u8_(& result), u8_(vm), old_allocation.ptr, old_allocation.len, requested_size, opts ? opts->alignment : 0);
return result; return result;
} }
void varena_release(VArena_R arena) { varena_release__u(u8_(arena)); } I_ void varena_release(VArena_R vm) { varena_release__u(u8_(vm)); }
void varena_reset (VArena_R arena) { varena_reset__u (u8_(arena)); } I_ void varena_reset (VArena_R vm) { varena_reset__u (u8_(vm)); }
void varena_rewind(VArena_R arena, AllocatorSP save_point) { I_ void varena_rewind (VArena_R vm, AllocatorSP save_point) {
varena_rewind__u(u8_(arena), u8_(save_point.type_sig), save_point.slot); varena_rewind__u(u8_(vm), u8_(save_point.type_sig), save_point.slot);
} }
I_ AllocatorSP varena_save(VArena_R vm) { AllocatorSP sp; varena_save__u(u8_(vm), u8_(& sp)); return sp; }
Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size, Opts_varena* opts) { void varena_allocator_proc(U8 vm, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, U8 out_addr)
Slice_Mem result;
varena__shrink__u(u8_(& result), u8_(arena), old_allocation.ptr, old_allocation.len, requested_size, opts ? opts->alignment : 0);
return result;
}
AllocatorSP varena_save(VArena_R arena) {
AllocatorSP sp;
varena_save__u(u8_(arena), u8_(& sp));
return sp;
}
void varena_allocator_proc(U8 arena, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, U8 out_addr)
{ {
AllocatorProc_Out* out = cast(AllocatorProc_Out*, out_addr); assert(vm != null);
U8 allocation_addr = out_addr ? out_addr + offset_of(AllocatorProc_Out, allocation) : 0; assert(out_addr != null);
if (arena == null) { U8 out_allocation = out_addr ? out_addr + offset_of(AllocatorProc_Out, allocation) : 0;
if (allocation_addr) { struct_zero(Slice_Mem, allocation_addr); }
return;
}
switch (op) switch (op)
{ {
case AllocatorOp_Alloc: case AllocatorOp_Alloc:
case AllocatorOp_Alloc_NoZero: case AllocatorOp_Alloc_NoZero:
if (allocation_addr) { varena__push__u(vm, requested_size, 1, alignment, out_allocation);
varena__push__u(arena, requested_size, 1, alignment, allocation_addr);
if (op == AllocatorOp_Alloc) { if (op == AllocatorOp_Alloc) {
U8 ptr = u8_r(allocation_addr + offset_of(Slice_Mem, ptr))[0]; U8 ptr = u8_r(out_allocation + offset_of(Slice_Mem, ptr))[0];
U8 len = u8_r(allocation_addr + offset_of(Slice_Mem, len))[0]; U8 len = u8_r(out_allocation + offset_of(Slice_Mem, len))[0];
if (ptr && len) { memory_zero(ptr, len); } if (ptr && len) { memory_zero(ptr, len); }
} }
}
break; break;
case AllocatorOp_Free: case AllocatorOp_Free: break;
break; case AllocatorOp_Reset: varena_reset__u(vm); break;
case AllocatorOp_Reset:
varena_reset__u(arena);
break;
case AllocatorOp_Grow: case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero: case AllocatorOp_Grow_NoZero:
if (allocation_addr) { varena__grow__u(out_allocation, vm, old_ptr, old_len, requested_size, alignment, op - AllocatorOp_Grow_NoZero);
varena__grow__u(allocation_addr, arena, old_ptr, old_len, requested_size, alignment, op - AllocatorOp_Grow_NoZero);
}
break; break;
case AllocatorOp_Shrink: case AllocatorOp_Shrink:
if (allocation_addr) { varena__shrink__u(out_allocation, vm, old_ptr, old_len, requested_size, alignment);
varena__shrink__u(allocation_addr, arena, old_ptr, old_len, requested_size, alignment);
}
break; break;
case AllocatorOp_Rewind: case AllocatorOp_Rewind: varena_rewind__u(vm, old_ptr, old_len); break;
varena_rewind__u(arena, old_ptr, old_len); case AllocatorOp_SavePoint: varena_save__u (vm, out_addr + offset_of(AllocatorProc_Out, save_point)); break;
break;
case AllocatorOp_SavePoint:
if (out_addr) { varena_save__u(arena, out_addr + offset_of(AllocatorProc_Out, save_point)); }
break;
case AllocatorOp_Query: case AllocatorOp_Query:
if (out_addr) {
u4_r(out_addr + offset_of(AllocatorQueryInfo, features))[0] = u4_r(out_addr + offset_of(AllocatorQueryInfo, features))[0] =
AllocatorQuery_Alloc AllocatorQuery_Alloc
| AllocatorQuery_Reset | AllocatorQuery_Reset
| AllocatorQuery_Resize | AllocatorQuery_Resize
| AllocatorQuery_Rewind; | AllocatorQuery_Rewind;
U8 reserve = u8_r(arena + offset_of(VArena, reserve))[0]; U8 reserve = u8_r(vm + offset_of(VArena, reserve ))[0];
U8 committed = u8_r(arena + offset_of(VArena, committed))[0]; U8 committed = u8_r(vm + offset_of(VArena, committed))[0];
U8 max_alloc = (reserve > committed) ? (reserve - committed) : 0; U8 max_alloc = (reserve > committed) ? (reserve - committed) : 0;
u8_r(out_addr + offset_of(AllocatorQueryInfo, max_alloc))[0] = max_alloc; u8_r(out_addr + offset_of(AllocatorQueryInfo, max_alloc))[0] = max_alloc;
u8_r(out_addr + offset_of(AllocatorQueryInfo, min_alloc))[0] = kilo(4); u8_r(out_addr + offset_of(AllocatorQueryInfo, min_alloc))[0] = kilo(4);
u8_r(out_addr + offset_of(AllocatorQueryInfo, left ))[0] = max_alloc; u8_r(out_addr + offset_of(AllocatorQueryInfo, left ))[0] = max_alloc;
AllocatorSP sp = { .type_sig = varena_allocator_proc, .slot = u8_r(arena + offset_of(VArena, commit_used))[0] }; AllocatorSP sp = { .type_sig = varena_allocator_proc, .slot = u8_r(vm + offset_of(VArena, commit_used))[0] };
struct_copy(AllocatorSP, out_addr + offset_of(AllocatorQueryInfo, save_point), (U8)& sp); struct_copy(AllocatorSP, out_addr + offset_of(AllocatorQueryInfo, save_point), (U8)& sp);
}
break;
default:
break; break;
} }
} }

View File

@@ -117,6 +117,8 @@ enum { false = 0, true = 1, true_overflow, };
#define r_(ptr) cast(typeof_ptr(ptr)*R_, ptr) #define r_(ptr) cast(typeof_ptr(ptr)*R_, ptr)
#define v_(ptr) cast(typeof_ptr(ptr)*V_, ptr) #define v_(ptr) cast(typeof_ptr(ptr)*V_, ptr)
#define tr_(type, ptr) cast(type*R_, ptr)
#define tv_(type, ptr) cast(type*V_, ptr)
#define kilo(n) (cast(U8, n) << 10) #define kilo(n) (cast(U8, n) << 10)
#define mega(n) (cast(U8, n) << 20) #define mega(n) (cast(U8, n) << 20)
@@ -197,7 +199,17 @@ typedef def_farray(B1, 2);
typedef def_farray(B1, 4); typedef def_farray(B1, 4);
typedef def_farray(B1, 8); typedef def_farray(B1, 8);
finline U8 align_pow2(U8 x, U8 b); finline U8 mem_copy (U8 dest, U8 src, U8 len) { return (U8)(__builtin_memcpy ((void*)dest, (void const*)src, len)); }
finline U8 mem_copy_overlapping(U8 dest, U8 src, U8 len) { return (U8)(__builtin_memmove((void*)dest, (void const*)src, len)); }
finline U8 mem_fill (U8 dest, U8 value, U8 len) { return (U8)(__builtin_memset ((void*)dest, (int) value, len)); }
finline B4 mem_zero (U8 dest, U8 len) { if (dest == 0) return false; mem_fill(dest, 0, len); return true; }
finline
U8 align_pow2(U8 x, U8 b) {
assert(b != 0);
assert((b & (b - 1)) == 0); // Check power of 2
return ((x + b - 1) & (~(b - 1)));
}
#define align_struct(type_width) ((U8)(((type_width) + 7) / 8 * 8)) #define align_struct(type_width) ((U8)(((type_width) + 7) / 8 * 8))
@@ -206,10 +218,6 @@ finline U8 align_pow2(U8 x, U8 b);
assert(point <= end); \ assert(point <= end); \
} while(0) } while(0)
U8 mem_copy (U8 dest, U8 src, U8 length);
U8 mem_copy_overlapping(U8 dest, U8 src, U8 length);
B4 mem_zero (U8 dest, U8 length);
#define check_nil(nil, p) ((p) == 0 || (p) == nil) #define check_nil(nil, p) ((p) == 0 || (p) == nil)
#define set_nil(nil, p) ((p) = nil) #define set_nil(nil, p) ((p) = nil)
@@ -243,13 +251,20 @@ typedef def_Slice(B1);
#define slice_to_bytes(slice) ((Slice_B1){cast(B1*, (slice).ptr), (slice).len * size_of_slice_type(slice)}) #define slice_to_bytes(slice) ((Slice_B1){cast(B1*, (slice).ptr), (slice).len * size_of_slice_type(slice)})
#define slice_fmem(mem) slice_mem(u8_(mem), size_of(mem)) #define slice_fmem(mem) slice_mem(u8_(mem), size_of(mem))
finline void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth); finline void slice__zero(Slice_B1 mem, U8 typewidth) { slice_assert(mem); mem_zero(u8_(mem.ptr), mem.len); }
finline void slice__zero(Slice_B1 mem, U8 typewidth); #define slice_zero(slice) slice__zero(slice_mem_s(slice), size_of_slice_type(slice))
finline
void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth) {
assert(dest.len >= src.len);
slice_assert(dest);
slice_assert(src);
mem_copy(u8_(dest.ptr), u8_(src.ptr), src.len);
}
#define slice_copy(dest, src) do { \ #define slice_copy(dest, src) do { \
static_assert(typeof_same(dest, src)); \ static_assert(typeof_same(dest, src)); \
slice__copy(slice_to_bytes(dest), size_of_slice_type(dest), slice_to_bytes(src), size_of_slice_type(src)); \ slice__copy(slice_to_bytes(dest), size_of_slice_type(dest), slice_to_bytes(src), size_of_slice_type(src)); \
} while (0) } while (0)
#define slice_zero(slice) slice__zero(slice_mem_s(slice), size_of_slice_type(slice))
#define slice_iter(container, iter) (typeof((container).ptr) iter = (container).ptr; iter != slice_end(container); ++ iter) #define slice_iter(container, iter) (typeof((container).ptr) iter = (container).ptr; iter != slice_end(container); ++ iter)
#define slice_arg_from_array(type, ...) & (tmpl(Slice,type)) { .ptr = farray_init(type, __VA_ARGS__), .len = farray_len( farray_init(type, __VA_ARGS__)) } #define slice_arg_from_array(type, ...) & (tmpl(Slice,type)) { .ptr = farray_init(type, __VA_ARGS__), .len = farray_len( farray_init(type, __VA_ARGS__)) }
@@ -458,7 +473,7 @@ VArena* varena__make(Opts_varena_make*R_ opts);
finline void varena_release(VArena_R arena); finline void varena_release(VArena_R arena);
finline void varena_rewind (VArena_R arena, AllocatorSP save_point); finline void varena_rewind (VArena_R arena, AllocatorSP save_point);
void varena_reset (VArena_R arena); void varena_reset (VArena_R arena);
Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size, Opts_varena*R_ opts); Slice_Mem varena__shrink(VArena_R arena, Slice_Mem old_allocation, U8 requested_size);
finline AllocatorSP varena_save (VArena_R arena); finline AllocatorSP varena_save (VArena_R arena);
void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out); void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out_R out);
@@ -783,34 +798,6 @@ Str8 watl_dump_listing(AllocatorInfo buffer, Slice_WATL_Line lines);
#pragma region Implementation #pragma region Implementation
#pragma region Memory Operations
void* __cdecl memcpy (void*R_ _Dst, void const*R_ _Src, U8 _Size);
void* __cdecl memmove(void* _Dst, void const* _Src, U8 _Size);
void* __cdecl memset (void*R_ _Dst, int _Val, U8 _Size);
finline
U8 align_pow2(U8 x, U8 b) {
assert(b != 0);
assert((b & (b - 1)) == 0); // Check power of 2
return ((x + b - 1) & (~(b - 1)));
}
U8 memory_copy (U8 dest, U8 src, U8 len) __asm__("memcpy");
U8 memory_copy_overlapping(U8 dest, U8 src, U8 len) __asm__("memmove");
finline
B4 memory_zero(U8 dest, U8 length) {
if (dest == 0) return false;
memset((void*R_)dest, 0, length);
return true;
}
finline void slice__zero(Slice_B1 mem, U8 typewidth) { slice_assert(mem); memory_zero(u8_(mem.ptr), mem.len); }
finline
void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth) {
assert(dest.len >= src.len);
slice_assert(dest);
slice_assert(src);
memory_copy(u8_(dest.ptr), u8_(src.ptr), src.len);
}
#pragma endregion Memory Operations
#pragma region Allocator Interface #pragma region Allocator Interface
finline finline
AllocatorQueryInfo allocator_query(AllocatorInfo ainfo) { AllocatorQueryInfo allocator_query(AllocatorInfo ainfo) {
@@ -916,24 +903,58 @@ Slice_Mem farena__push(FArena_R arena, U8 amount, U8 type_width, Opts_farena*R_
if (amount == 0) { return (Slice_Mem){}; } if (amount == 0) { return (Slice_Mem){}; }
U8 desired = type_width * amount; U8 desired = type_width * amount;
U8 to_commit = align_pow2(desired, opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT); U8 to_commit = align_pow2(desired, opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT);
U8 unused = arena->capacity - arena->used; U8 unused = arena->capacity - arena->used; assert(to_commit <= unused);
assert(to_commit <= unused);
U8 ptr = arena->start + arena->used; U8 ptr = arena->start + arena->used;
arena->used += to_commit; arena->used += to_commit;
return (Slice_Mem){ptr, desired}; return (Slice_Mem){ptr, desired};
} }
inline
Slice_Mem farena__grow(FArena_R arena, Slice_Mem old_allocation, U8 requested_size, U8 alignment, B4 should_zero) {
// Check if the allocation is at the end of the arena
U8 alloc_end = old_allocation.ptr + old_allocation.len;
U8 arena_end = arena->start + arena->used;
if (alloc_end != arena_end) {
// Not at the end, can't grow in place
return (Slice_Mem){0};
}
// Calculate growth
U8 grow_amount = requested_size - old_allocation.len;
U8 aligned_grow = align_pow2(grow_amount, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
U8 unused = arena->capacity - arena->used;
if (aligned_grow > unused) {
// Not enough space
return (Slice_Mem){0};
}
arena->used += aligned_grow;
Slice_Mem result = (Slice_Mem){ old_allocation.ptr, aligned_grow + requested_size };
mem_zero(old_allocation.ptr + old_allocation.len, grow_amount * cast(U8, should_zero));
return result;
}
inline
Slice_Mem farena__shrink(FArena_R arena, Slice_Mem old_allocation, U8 requested_size, U8 alignment)
{
// Check if the allocation is at the end of the arena
U8 alloc_end = old_allocation.ptr + old_allocation.len;
U8 arena_end = arena->start + arena->used;
if (alloc_end != arena_end) {
// Not at the end, can't shrink but return adjusted size
return (Slice_Mem){old_allocation.ptr, requested_size};
}
U8 aligned_original = align_pow2(old_allocation.len, MEMORY_ALIGNMENT_DEFAULT);
U8 aligned_new = align_pow2(requested_size, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
arena->used -= (aligned_original - aligned_new);
return (Slice_Mem){old_allocation.ptr, requested_size};
}
finline void farena_reset(FArena_R arena) { arena->used = 0; } finline void farena_reset(FArena_R arena) { arena->used = 0; }
finline finline
void farena_rewind(FArena_R arena, AllocatorSP save_point) { void farena_rewind(FArena_R arena, AllocatorSP save_point) {
assert(save_point.type_sig == & farena_allocator_proc); assert(save_point.type_sig == & farena_allocator_proc);
U8 end = arena->start + arena->used; U8 end = arena->start + arena->used; assert_bounds(save_point.slot, arena->start, end);
assert_bounds(save_point.slot, arena->start, end);
arena->used -= save_point.slot - arena->start; arena->used -= save_point.slot - arena->start;
} }
finline finline
AllocatorSP farena_save (FArena arena) { AllocatorSP farena_save (FArena arena) {
AllocatorSP sp = { .type_sig = & farena_allocator_proc, .slot = arena.used }; return (AllocatorSP){ .type_sig = & farena_allocator_proc, .slot = arena.used };
return sp;
} }
void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out) void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
{ {
@@ -945,64 +966,22 @@ void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
case AllocatorOp_Alloc: case AllocatorOp_Alloc:
case AllocatorOp_Alloc_NoZero: case AllocatorOp_Alloc_NoZero:
out->allocation = farena_push_mem(arena, in.requested_size, .alignment = in.alignment); out->allocation = farena_push_mem(arena, in.requested_size, .alignment = in.alignment);
memory_zero(out->allocation.ptr, out->allocation.len * in.op); mem_zero(out->allocation.ptr, out->allocation.len * in.op);
break; break;
case AllocatorOp_Free: case AllocatorOp_Free: break;
break; case AllocatorOp_Reset: farena_reset(arena); break;
case AllocatorOp_Reset:
farena_reset(arena);
break;
case AllocatorOp_Grow: case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero: { case AllocatorOp_Grow_NoZero:
// Check if the allocation is at the end of the arena out->allocation = farena__grow(arena, in.old_allocation, in.requested_size, in.alignment, in.op - AllocatorOp_Grow_NoZero);
U8 alloc_end = in.old_allocation.ptr + in.old_allocation.len;
U8 arena_end = arena->start + arena->used;
if (alloc_end != arena_end) {
// Not at the end, can't grow in place
out->allocation = (Slice_Mem){0};
break; break;
} case AllocatorOp_Shrink:
// Calculate growth out->allocation = farena__shrink(arena, in.old_allocation, in.requested_size, in.alignment);
U8 grow_amount = in.requested_size - in.old_allocation.len;
U8 aligned_grow = align_pow2(grow_amount, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
U8 unused = arena->capacity - arena->used;
if (aligned_grow > unused) {
// Not enough space
out->allocation = (Slice_Mem){0};
break;
}
arena->used += aligned_grow;
out->allocation = (Slice_Mem){ in.old_allocation.ptr, aligned_grow + in.requested_size };
memory_zero(in.old_allocation.ptr + in.old_allocation.len, grow_amount * in.op - AllocatorOp_Grow_NoZero);
}
break; break;
case AllocatorOp_Shrink: { case AllocatorOp_Rewind: farena_rewind(arena, in.save_point); break;
// Check if the allocation is at the end of the arena case AllocatorOp_SavePoint: out->save_point = farena_save(arena[0]); break;
U8 alloc_end = in.old_allocation.ptr + in.old_allocation.len;
U8 arena_end = arena->start + arena->used;
if (alloc_end != arena_end) {
// Not at the end, can't shrink but return adjusted size
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
break;
}
// Calculate shrinkage
//SSIZE shrink_amount = in.old_allocation.len - in.requested_size;
U8 aligned_original = align_pow2(in.old_allocation.len, MEMORY_ALIGNMENT_DEFAULT);
U8 aligned_new = align_pow2(in.requested_size, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
arena->used -= (aligned_original - aligned_new);
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
}
break;
case AllocatorOp_Rewind:
farena_rewind(arena, in.save_point);
break;
case AllocatorOp_SavePoint:
out->save_point = farena_save(arena[0]);
break;
case AllocatorOp_Query: case AllocatorOp_Query:
out->features = out->features =
@@ -1073,15 +1052,10 @@ W_ MS_LPVOID VirtualAlloc(MS_LPVOID lpAddress, U8 dwSize, MS_DWORD flAllocationT
W_ MS_BOOL VirtualFree (MS_LPVOID lpAddress, U8 dwSize, MS_DWORD dwFreeType); W_ MS_BOOL VirtualFree (MS_LPVOID lpAddress, U8 dwSize, MS_DWORD dwFreeType);
#pragma warning(pop) #pragma warning(pop)
typedef def_struct(OS_Windows_State) { typedef def_struct(OS_Windows_State) { OS_SystemInfo system_info; };
OS_SystemInfo system_info;
};
global OS_Windows_State os__windows_info; global OS_Windows_State os__windows_info;
finline finline OS_SystemInfo* os_system_info(void) { return & os__windows_info.system_info; }
OS_SystemInfo* os_system_info(void) {
return & os__windows_info.system_info;
}
inline inline
void os__enable_large_pages(void) { void os__enable_large_pages(void) {
MS_HANDLE token; MS_HANDLE token;
@@ -1125,6 +1099,8 @@ inline void os_vmem_release(U8 vm, U8 size) { VirtualFree(cast(MS_LPVOID, vm),
#pragma endregion OS #pragma endregion OS
#pragma region VArena (Virutal Address Space Arena) #pragma region VArena (Virutal Address Space Arena)
finline U8 varena_header_size(void) { return align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); }
inline inline
VArena* varena__make(Opts_varena_make*R_ opts) { VArena* varena__make(Opts_varena_make*R_ opts) {
assert(opts != nullptr); assert(opts != nullptr);
@@ -1136,9 +1112,8 @@ VArena* varena__make(Opts_varena_make*R_ opts) {
U8 base = os_vmem_reserve(reserve_size, .base_addr = opts->base_addr, .no_large_pages = no_large_pages); U8 base = os_vmem_reserve(reserve_size, .base_addr = opts->base_addr, .no_large_pages = no_large_pages);
assert(base != 0); assert(base != 0);
os_vmem_commit(base, commit_size, .no_large_pages = no_large_pages); os_vmem_commit(base, commit_size, .no_large_pages = no_large_pages);
U8 header_size = align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); U8 header_size = varena_header_size();
VArena* vm = cast(VArena*, base); VArena* vm = cast(VArena*, base); r_(vm)[0] = (VArena){
r_(vm)[0] = (VArena){
.reserve_start = base + header_size, .reserve_start = base + header_size,
.reserve = reserve_size, .reserve = reserve_size,
.commit_size = commit_size, .commit_size = commit_size,
@@ -1150,6 +1125,7 @@ VArena* varena__make(Opts_varena_make*R_ opts) {
} }
inline inline
Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena*R_ opts) { Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena*R_ opts) {
assert(vm != nullptr);
assert(amount != 0); assert(amount != 0);
U8 alignment = opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT; U8 alignment = opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT;
U8 requested_size = amount * type_width; U8 requested_size = amount * type_width;
@@ -1158,8 +1134,7 @@ Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena*R_ opt
U8 to_be_used = vm->commit_used + aligned_size; U8 to_be_used = vm->commit_used + aligned_size;
U8 reserve_left = vm->reserve - vm->commit_used; U8 reserve_left = vm->reserve - vm->commit_used;
U8 commit_left = vm->committed - vm->commit_used; U8 commit_left = vm->committed - vm->commit_used;
B4 exhausted = commit_left < to_be_used; B4 exhausted = commit_left < to_be_used; assert(to_be_used < reserve_left);
assert(to_be_used < reserve_left);
if (exhausted) if (exhausted)
{ {
U8 next_commit_size = reserve_left > 0 ? U8 next_commit_size = reserve_left > 0 ?
@@ -1169,30 +1144,31 @@ Slice_Mem varena__push(VArena_R vm, U8 amount, U8 type_width, Opts_varena*R_ opt
U8 next_commit_start = u8_(vm) + vm->committed; U8 next_commit_start = u8_(vm) + vm->committed;
B4 no_large_pages = (vm->flags & VArenaFlag_NoLargePages) != 0; B4 no_large_pages = (vm->flags & VArenaFlag_NoLargePages) != 0;
B4 commit_result = os_vmem_commit(next_commit_start, next_commit_size, .no_large_pages = no_large_pages); B4 commit_result = os_vmem_commit(next_commit_start, next_commit_size, .no_large_pages = no_large_pages);
if (commit_result == false) { if (commit_result == false) { return (Slice_Mem){0}; }
return (Slice_Mem){0};
}
vm->committed += next_commit_size; vm->committed += next_commit_size;
} }
} }
vm->commit_used = to_be_used; vm->commit_used = to_be_used;
return (Slice_Mem){.ptr = current_offset, .len = requested_size}; return (Slice_Mem){.ptr = current_offset, .len = requested_size};
} }
finline void varena_release(VArena_R arena) { os_vmem_release(u8_(arena), arena->reserve); }
inline inline
Slice_Mem varena__shrink(VArena_R vm, Slice_Mem old_allocation, U8 requested_size, Opts_varena*R_ opts) { Slice_Mem varena__grow(VArena_R vm, Slice_Mem old_allocation, U8 requested_size, U8 alignment, B4 no_zero) {
assert(opts != nullptr); U8 grow_amount = requested_size - old_allocation.len;
Slice_Mem result = {0}; if (grow_amount == 0) { return old_allocation; } // Growing when not the last allocation not allowed
U8 current_offset = vm->reserve_start + vm->commit_used; U8 current_offset = vm->reserve_start + vm->commit_used; assert(old_allocation.ptr == current_offset);
U8 shrink_amount = old_allocation.len - requested_size; Slice_Mem allocation = varena_push_mem(vm, grow_amount, alignment); assert(allocation.ptr != 0);
if (lt_s(shrink_amount, 0)) { Slice_Mem result = (Slice_Mem){ old_allocation.ptr, requested_size + allocation.len };
result = old_allocation; mem_zero(result.ptr, result.len * no_zero);
return result; return result;
} }
assert(old_allocation.ptr == current_offset); finline void varena_release(VArena_R arena) { os_vmem_release(u8_(arena), arena->reserve); }
inline
Slice_Mem varena__shrink(VArena_R vm, Slice_Mem old_allocation, U8 requested_size) {
U8 shrink_amount = old_allocation.len - requested_size;
if (lt_s(shrink_amount, 0)) { return old_allocation; }
U8 current_offset = vm->reserve_start + vm->commit_used; assert(old_allocation.ptr == current_offset);
vm->commit_used -= shrink_amount; vm->commit_used -= shrink_amount;
result = (Slice_Mem){ old_allocation.ptr, requested_size }; return (Slice_Mem){ old_allocation.ptr, requested_size };
return result;
} }
finline finline
void varena_rewind(VArena_R vm, AllocatorSP sp) { void varena_rewind(VArena_R vm, AllocatorSP sp) {
@@ -1209,50 +1185,22 @@ void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
case AllocatorOp_Alloc: case AllocatorOp_Alloc:
case AllocatorOp_Alloc_NoZero: case AllocatorOp_Alloc_NoZero:
out->allocation = varena_push_mem(vm, in.requested_size, .alignment = in.alignment); out->allocation = varena_push_mem(vm, in.requested_size, .alignment = in.alignment);
memory_zero(out->allocation.ptr, out->allocation.len * in.op); mem_zero(out->allocation.ptr, out->allocation.len * in.op);
break; break;
case AllocatorOp_Free: case AllocatorOp_Free: break;
break; case AllocatorOp_Reset: vm->commit_used = 0; break;
case AllocatorOp_Reset:
vm->commit_used = 0;
break;
case AllocatorOp_Grow_NoZero: case AllocatorOp_Grow_NoZero:
case AllocatorOp_Grow: { case AllocatorOp_Grow:
U8 grow_amount = in.requested_size - in.old_allocation.len; out->allocation = varena__grow(vm, in.old_allocation, in.requested_size, in.alignment, in.op - AllocatorOp_Grow_NoZero);
if (grow_amount == 0) {
out->allocation = in.old_allocation;
return;
}
U8 current_offset = vm->reserve_start + vm->commit_used;
// Growing when not the last allocation not allowed
assert(in.old_allocation.ptr == current_offset);
Slice_Mem allocation = varena_push_mem(vm, grow_amount, .alignment = in.alignment);
assert(allocation.ptr != 0);
out->allocation = (Slice_Mem){ in.old_allocation.ptr, in.requested_size + allocation.len };
memory_zero(out->allocation.ptr, out->allocation.len * (in.op - AllocatorOp_Grow_NoZero));
}
break; break;
case AllocatorOp_Shrink: { case AllocatorOp_Shrink:
U8 current_offset = vm->reserve_start + vm->commit_used; out->allocation = varena__shrink(vm, in.old_allocation, in.requested_size);
U8 shrink_amount = in.old_allocation.len - in.requested_size;
if (lt_s(shrink_amount, 0)) {
out->allocation = in.old_allocation;
return;
}
assert(in.old_allocation.ptr == current_offset);
vm->commit_used -= shrink_amount;
out->allocation = (Slice_Mem){ in.old_allocation.ptr, in.requested_size };
}
break; break;
case AllocatorOp_Rewind: case AllocatorOp_Rewind: vm->commit_used = in.save_point.slot; break;
vm->commit_used = in.save_point.slot; case AllocatorOp_SavePoint: out->save_point = varena_save(vm); break;
break;
case AllocatorOp_SavePoint:
out->save_point = varena_save(vm);
break;
case AllocatorOp_Query: case AllocatorOp_Query:
out->features = out->features =
@@ -1277,8 +1225,7 @@ Arena* arena__make(Opts_arena_make*R_ opts) {
U8 header_size = align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT); U8 header_size = align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT);
VArena_R current = varena__make(opts); VArena_R current = varena__make(opts);
assert(current != nullptr); assert(current != nullptr);
Arena* arena = varena_push(current, Arena); Arena* arena = varena_push(current, Arena); r_(arena)[0] = (Arena){
r_(arena)[0] = (Arena){
.backing = current, .backing = current,
.prev = nullptr, .prev = nullptr,
.current = arena, .current = arena,
@@ -1357,14 +1304,12 @@ void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
case AllocatorOp_Alloc: case AllocatorOp_Alloc:
case AllocatorOp_Alloc_NoZero: case AllocatorOp_Alloc_NoZero:
out->allocation = arena_push_mem(arena, in.requested_size, .alignment = in.alignment); out->allocation = arena_push_mem(arena, in.requested_size, .alignment = in.alignment);
memory_zero(out->allocation.ptr, out->allocation.len * in.op); mem_zero(out->allocation.ptr, out->allocation.len * in.op);
break;
case AllocatorOp_Free:
break;
case AllocatorOp_Reset:
arena_reset(arena);
break; break;
case AllocatorOp_Free: break;
case AllocatorOp_Reset: arena_reset(arena); break;
case AllocatorOp_Grow: case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero: { case AllocatorOp_Grow_NoZero: {
Arena_R active = arena->current; Arena_R active = arena->current;
@@ -1381,7 +1326,7 @@ void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
{ {
active->pos += aligned_grow; active->pos += aligned_grow;
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size}; out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
memory_zero(in.old_allocation.ptr + in.old_allocation.len, grow_amount * in.op - AllocatorOp_Grow_NoZero); mem_zero(in.old_allocation.ptr + in.old_allocation.len, grow_amount * in.op - AllocatorOp_Grow_NoZero);
break; break;
} }
} }
@@ -1391,8 +1336,8 @@ void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
out->allocation = (Slice_Mem){0}; out->allocation = (Slice_Mem){0};
break; break;
} }
memory_copy(new_alloc.ptr, in.old_allocation.ptr, in.old_allocation.len); mem_copy(new_alloc.ptr, in.old_allocation.ptr, in.old_allocation.len);
memory_zero(new_alloc.ptr + in.old_allocation.len, (in.requested_size - in.old_allocation.len) * in.op - AllocatorOp_Grow_NoZero); mem_zero(new_alloc.ptr + in.old_allocation.len, (in.requested_size - in.old_allocation.len) * in.op - AllocatorOp_Grow_NoZero);
out->allocation = new_alloc; out->allocation = new_alloc;
} }
break; break;
@@ -1410,18 +1355,14 @@ void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out*R_ out)
U8 aligned_new = align_pow2(in.requested_size, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT); U8 aligned_new = align_pow2(in.requested_size, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
U8 pos_reduction = aligned_original - aligned_new; U8 pos_reduction = aligned_original - aligned_new;
active->pos -= pos_reduction; active->pos -= pos_reduction;
varena__shrink(active->backing, in.old_allocation, in.requested_size, &(Opts_varena){.alignment = in.alignment}); varena__shrink(active->backing, in.old_allocation, in.requested_size);
out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size}; out->allocation = (Slice_Mem){in.old_allocation.ptr, in.requested_size};
} }
break; break;
case AllocatorOp_Rewind: case AllocatorOp_Rewind: arena_rewind(arena, in.save_point); break;
arena_rewind(arena, in.save_point); case AllocatorOp_SavePoint: out->save_point = arena_save(arena); break;
break;
case AllocatorOp_SavePoint:
out->save_point = arena_save(arena);
break;
case AllocatorOp_Query: case AllocatorOp_Query:
out->features = out->features =
AllocatorQuery_Alloc AllocatorQuery_Alloc
@@ -1445,7 +1386,7 @@ void ktl_populate_slice_a2_str8(KTL_Str8*R_ kt, AllocatorInfo backing, Slice_A2_
if (values.len == 0) return; if (values.len == 0) return;
* kt = alloc_slice(backing, KTL_Slot_Str8, values.len); * kt = alloc_slice(backing, KTL_Slot_Str8, values.len);
for span_iter(U8, id, 0, <, values.len) { for span_iter(U8, id, 0, <, values.len) {
memory_copy(u8_(& kt->ptr[id.cursor].value), u8_(& values.ptr[id.cursor][1]), size_of(Str8)); mem_copy(u8_(& kt->ptr[id.cursor].value), u8_(& values.ptr[id.cursor][1]), size_of(Str8));
hash64_fnv1a(& kt->ptr[id.cursor].key, slice_mem_s(values.ptr[id.cursor][0])); hash64_fnv1a(& kt->ptr[id.cursor].key, slice_mem_s(values.ptr[id.cursor][0]));
} }
} }
@@ -1475,7 +1416,7 @@ void kt1cx_clear(KT1CX_Byte kt, KT1CX_ByteMeta m) {
for (; slot_cursor < slice_end(slots); slot_cursor += m.slot_size) { for (; slot_cursor < slice_end(slots); slot_cursor += m.slot_size) {
process_slots: process_slots:
Slice_Mem slot = {slot_cursor, m.slot_size}; // slot = slots[id] Slice_Mem slot = {slot_cursor, m.slot_size}; // slot = slots[id]
memory_zero(slot.ptr, slot.len); // clear(slot) mem_zero(slot.ptr, slot.len); // clear(slot)
} }
U8 next = slot_cursor + m.cell_next_offset; // next = slots + next_cell_offset U8 next = slot_cursor + m.cell_next_offset; // next = slots + next_cell_offset
if (next != null) { if (next != null) {
@@ -1562,7 +1503,7 @@ U8 kt1cx_set(KT1CX_Byte kt, U8 key, Slice_Mem value, AllocatorInfo backing_cells
finline finline
char* str8_to_cstr_capped(Str8 content, Slice_Mem mem) { char* str8_to_cstr_capped(Str8 content, Slice_Mem mem) {
U8 copy_len = min(content.len, mem.len - 1); U8 copy_len = min(content.len, mem.len - 1);
memory_copy(mem.ptr, u8_(content.ptr), copy_len); mem_copy(mem.ptr, u8_(content.ptr), copy_len);
u1_r(mem.ptr)[copy_len] = '\0'; u1_r(mem.ptr)[copy_len] = '\0';
return cast(char*, mem.ptr); return cast(char*, mem.ptr);
} }
@@ -1662,7 +1603,7 @@ Str8 str8__fmt_ktl(AllocatorInfo ainfo, Slice_Mem*R_ _buffer, KTL_Str8 table, St
while (cursor_fmt[copy_offset] != '<' && (cursor_fmt + copy_offset) < slice_end(fmt_template)) { while (cursor_fmt[copy_offset] != '<' && (cursor_fmt + copy_offset) < slice_end(fmt_template)) {
++ copy_offset; ++ copy_offset;
} }
memory_copy(u8_(cursor_buffer), u8_(cursor_fmt), copy_offset); mem_copy(u8_(cursor_buffer), u8_(cursor_fmt), copy_offset);
buffer_remaining -= copy_offset; buffer_remaining -= copy_offset;
left_fmt -= copy_offset; left_fmt -= copy_offset;
cursor_buffer += copy_offset; cursor_buffer += copy_offset;
@@ -1700,7 +1641,7 @@ Str8 str8__fmt_ktl(AllocatorInfo ainfo, Slice_Mem*R_ _buffer, KTL_Str8 table, St
buffer_remaining += potential_token_len; buffer_remaining += potential_token_len;
} }
assert((buffer_remaining - potential_token_len) > 0); assert((buffer_remaining - potential_token_len) > 0);
memory_copy(u8_(cursor_buffer), u8_(value->ptr), value->len); mem_copy(u8_(cursor_buffer), u8_(value->ptr), value->len);
// Sync cursor format to after the processed token // Sync cursor format to after the processed token
cursor_buffer += value->len; cursor_buffer += value->len;
buffer_remaining -= value->len; buffer_remaining -= value->len;
@@ -1939,7 +1880,7 @@ void api_file_read_contents(FileOpInfo_R result, Str8 path, Opts_read_file_conte
return; return;
} }
if (opts.zero_backing) { if (opts.zero_backing) {
memory_zero(buffer.ptr, buffer.len); mem_zero(buffer.ptr, buffer.len);
} }
MS_DWORD amount_read = 0; MS_DWORD amount_read = 0;
MS_BOOL read_result = ReadFile( MS_BOOL read_result = ReadFile(

View File

@@ -25,6 +25,7 @@ Toolchain: MSVC 19.43, C-Stanard: 11
#define local_persist static #define local_persist static
#define global static #define global static
#define internal static #define internal static
#define finline __forceinline
#define static_assert _Static_assert #define static_assert _Static_assert
#define typeof __typeof__ #define typeof __typeof__
@@ -57,6 +58,13 @@ enum { false = 0, true = 1, true_overflow, };
#define offset_of(type, member) cast(SSIZE, & (((type*) 0)->member)) #define offset_of(type, member) cast(SSIZE, & (((type*) 0)->member))
#define size_of(data) cast(SSIZE, sizeof(data)) #define size_of(data) cast(SSIZE, sizeof(data))
// Not using this since its lottes related.
// #define R_ __restrict
// #define V_ volatile
// #define r_(ptr) cast(typeof_ptr(ptr)*R_, ptr)
// #define v_(ptr) cast(typeof_ptr(ptr)*V_, ptr)
#define ssize(value) cast(SSIZE, value)
#define kilo(n) (cast(SSIZE, n) << 10) #define kilo(n) (cast(SSIZE, n) << 10)
#define mega(n) (cast(SSIZE, n) << 20) #define mega(n) (cast(SSIZE, n) << 20)
#define giga(n) (cast(SSIZE, n) << 30) #define giga(n) (cast(SSIZE, n) << 30)
@@ -106,11 +114,8 @@ inline SSIZE align_pow2(SSIZE x, SSIZE b);
#define align_struct(type_width) ((SSIZE)(((type_width) + 7) / 8 * 8)) #define align_struct(type_width) ((SSIZE)(((type_width) + 7) / 8 * 8))
#define assert_bounds(point, start, end) do { \ #define assert_bounds(point, start, end) do { \
SSIZE pos_point = cast(SSIZE, point); \ assert(ssize(start) <= ssize(point)); \
SSIZE pos_start = cast(SSIZE, start); \ assert(ssize(point) <= ssize(end)); \
SSIZE pos_end = cast(SSIZE, end); \
assert(pos_start <= pos_point); \
assert(pos_point <= pos_end); \
} while(0) } while(0)
void* memory_copy (void* restrict dest, void const* restrict src, USIZE length); void* memory_copy (void* restrict dest, void const* restrict src, USIZE length);
@@ -365,7 +370,7 @@ Slice_Byte varena__push (VArena* arena, SSIZE amount, SSIZE type_width, Opts_v
void varena_release(VArena* arena); void varena_release(VArena* arena);
void varena_rewind (VArena* arena, AllocatorSP save_point); void varena_rewind (VArena* arena, AllocatorSP save_point);
void varena_reset (VArena* arena); void varena_reset (VArena* arena);
Slice_Byte varena__shrink(VArena* arena, Slice_Byte old_allocation, SSIZE requested_size, Opts_varena* opts); Slice_Byte varena__shrink(VArena* arena, Slice_Byte old_allocation, SSIZE requested_size);
AllocatorSP varena_save (VArena* arena); AllocatorSP varena_save (VArena* arena);
void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out); void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out);
@@ -833,18 +838,54 @@ Slice_Byte farena__push(FArena* arena, SSIZE amount, SSIZE type_width, Opts_fare
} }
SSIZE desired = type_width * amount; SSIZE desired = type_width * amount;
SSIZE to_commit = align_pow2(desired, opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT); SSIZE to_commit = align_pow2(desired, opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT);
SSIZE unused = arena->capacity - arena->used; SSIZE unused = arena->capacity - arena->used; assert(to_commit <= unused);
assert(to_commit <= unused);
Byte* ptr = cast(Byte*, cast(SSIZE, arena->start) + arena->used); Byte* ptr = cast(Byte*, cast(SSIZE, arena->start) + arena->used);
arena->used += to_commit; arena->used += to_commit;
return (Slice_Byte){ptr, desired}; return (Slice_Byte){ptr, desired};
} }
inline
Slice_Byte farena__grow(FArena* arena, SSIZE requested_size, Slice_Byte old_allocation, SSIZE alignment, B32 no_zero) {
// Check if the allocation is at the end of the arena
Byte* alloc_end = old_allocation.ptr + old_allocation.len;
Byte* arena_end = cast(Byte*, cast(SSIZE, arena->start) + arena->used);
if (alloc_end != arena_end) {
// Not at the end, can't grow in place
return (Slice_Byte){0};
}
// Calculate growth
SSIZE grow_amount = requested_size - old_allocation.len;
SSIZE aligned_grow = align_pow2(grow_amount, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
SSIZE unused = arena->capacity - arena->used;
if (aligned_grow > unused) {
// Not enough space
return (Slice_Byte){0};
}
arena->used += aligned_grow;
Slice_Byte result = (Slice_Byte){old_allocation.ptr, requested_size};
memory_zero(old_allocation.ptr + old_allocation.len, grow_amount * cast(SSIZE, no_zero));
return result;
}
inline
Slice_Byte farena__shrink(FArena* arena, Slice_Byte old_allocation, SSIZE requested_size, SSIZE alignment) {
// Check if the allocation is at the end of the arena
Byte* alloc_end = old_allocation.ptr + old_allocation.len;
Byte* arena_end = cast(Byte*, cast(SSIZE, arena->start) + arena->used);
if (alloc_end != arena_end) {
// Not at the end, can't shrink but return adjusted size
return (Slice_Byte){old_allocation.ptr, requested_size};
}
// Calculate shrinkage
//SSIZE shrink_amount = in.old_allocation.len - in.requested_size;
SSIZE aligned_original = align_pow2(old_allocation.len, MEMORY_ALIGNMENT_DEFAULT);
SSIZE aligned_new = align_pow2(requested_size, alignment ? alignment : MEMORY_ALIGNMENT_DEFAULT);
arena->used -= (aligned_original - aligned_new);
return (Slice_Byte){old_allocation.ptr, requested_size};
}
inline void farena_reset(FArena* arena) { arena->used = 0; } inline void farena_reset(FArena* arena) { arena->used = 0; }
inline inline
void farena_rewind(FArena* arena, AllocatorSP save_point) { void farena_rewind(FArena* arena, AllocatorSP save_point) {
assert(save_point.type_sig == & farena_allocator_proc); assert(save_point.type_sig == & farena_allocator_proc);
Byte* end = cast(Byte*, cast(SSIZE, arena->start) + arena->used); Byte* end = cast(Byte*, cast(SSIZE, arena->start) + arena->used); assert_bounds(save_point.slot, arena->start, end);
assert_bounds(save_point.slot, arena->start, end);
arena->used -= save_point.slot - cast(SSIZE, arena->start); arena->used -= save_point.slot - cast(SSIZE, arena->start);
} }
inline inline
@@ -865,61 +906,19 @@ void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
memory_zero(out->allocation.ptr, out->allocation.len * cast(SSIZE, in.op)); memory_zero(out->allocation.ptr, out->allocation.len * cast(SSIZE, in.op));
break; break;
case AllocatorOp_Free: case AllocatorOp_Free: break;
break; case AllocatorOp_Reset: farena_reset(arena); break;
case AllocatorOp_Reset:
farena_reset(arena);
break;
case AllocatorOp_Grow: case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero: { case AllocatorOp_Grow_NoZero:
// Check if the allocation is at the end of the arena out->allocation = farena__grow(arena, in.requested_size, in.old_allocation, in.alignment, in.op - AllocatorOp_Grow_NoZero);
Byte* alloc_end = in.old_allocation.ptr + in.old_allocation.len;
Byte* arena_end = cast(Byte*, cast(SSIZE, arena->start) + arena->used);
if (alloc_end != arena_end) {
// Not at the end, can't grow in place
out->allocation = (Slice_Byte){0};
break; break;
} case AllocatorOp_Shrink:
// Calculate growth out->allocation = farena__shrink(arena, in.old_allocation, in.requested_size, in.alignment);
SSIZE grow_amount = in.requested_size - in.old_allocation.len;
SSIZE aligned_grow = align_pow2(grow_amount, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
SSIZE unused = arena->capacity - arena->used;
if (aligned_grow > unused) {
// Not enough space
out->allocation = (Slice_Byte){0};
break;
}
arena->used += aligned_grow;
out->allocation = (Slice_Byte){in.old_allocation.ptr, in.requested_size};
memory_zero(in.old_allocation.ptr + in.old_allocation.len, grow_amount * cast(SSIZE, in.op - AllocatorOp_Grow_NoZero));
}
break; break;
case AllocatorOp_Shrink: { case AllocatorOp_Rewind: farena_rewind(arena, in.save_point); break;
// Check if the allocation is at the end of the arena case AllocatorOp_SavePoint: out->save_point = farena_save(* arena); break;
Byte* alloc_end = in.old_allocation.ptr + in.old_allocation.len;
Byte* arena_end = cast(Byte*, cast(SSIZE, arena->start) + arena->used);
if (alloc_end != arena_end) {
// Not at the end, can't shrink but return adjusted size
out->allocation = (Slice_Byte){in.old_allocation.ptr, in.requested_size};
break;
}
// Calculate shrinkage
//SSIZE shrink_amount = in.old_allocation.len - in.requested_size;
SSIZE aligned_original = align_pow2(in.old_allocation.len, MEMORY_ALIGNMENT_DEFAULT);
SSIZE aligned_new = align_pow2(in.requested_size, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
arena->used -= (aligned_original - aligned_new);
out->allocation = (Slice_Byte){in.old_allocation.ptr, in.requested_size};
}
break;
case AllocatorOp_Rewind:
farena_rewind(arena, in.save_point);
break;
case AllocatorOp_SavePoint:
out->save_point = farena_save(* arena);
break;
case AllocatorOp_Query: case AllocatorOp_Query:
out->features = out->features =
@@ -1042,6 +1041,7 @@ inline void os_vmem_release(void* vm, SSIZE size) { VirtualFree(vm, 0, MS_MEM_R
#pragma endregion OS #pragma endregion OS
#pragma region VArena (Virutal Address Space Arena) #pragma region VArena (Virutal Address Space Arena)
finline SSIZE varena_header_size(void) { return align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); }
inline inline
VArena* varena__make(Opts_varena_make* opts) { VArena* varena__make(Opts_varena_make* opts) {
assert(opts != nullptr); assert(opts != nullptr);
@@ -1050,12 +1050,11 @@ VArena* varena__make(Opts_varena_make* opts) {
SSIZE reserve_size = align_pow2(opts->reserve_size, os_system_info()->target_page_size); SSIZE reserve_size = align_pow2(opts->reserve_size, os_system_info()->target_page_size);
SSIZE commit_size = align_pow2(opts->commit_size, os_system_info()->target_page_size); SSIZE commit_size = align_pow2(opts->commit_size, os_system_info()->target_page_size);
B32 no_large_pages = (opts->flags & VArenaFlag_NoLargePages) != 0; B32 no_large_pages = (opts->flags & VArenaFlag_NoLargePages) != 0;
Byte* base = os__vmem_reserve(reserve_size, &(Opts_vmem){.base_addr = opts->base_addr, .no_large_pages = no_large_pages}); Byte* base = os_vmem_reserve(reserve_size, .base_addr = opts->base_addr, .no_large_pages = no_large_pages);
assert(base != nullptr); assert(base != nullptr);
os_vmem_commit(base, commit_size, .no_large_pages = no_large_pages); os_vmem_commit(base, commit_size, .no_large_pages = no_large_pages);
SSIZE header_size = align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT); SSIZE header_size = align_pow2(size_of(VArena), MEMORY_ALIGNMENT_DEFAULT);
VArena* vm = cast(VArena*, base); VArena* vm = cast(VArena*, base); * vm = (VArena){
* vm = (VArena){
.reserve_start = cast(SSIZE, base) + header_size, .reserve_start = cast(SSIZE, base) + header_size,
.reserve = reserve_size, .reserve = reserve_size,
.commit_size = commit_size, .commit_size = commit_size,
@@ -1067,6 +1066,7 @@ VArena* varena__make(Opts_varena_make* opts) {
} }
inline inline
Slice_Byte varena__push(VArena* vm, SSIZE amount, SSIZE type_width, Opts_varena* opts) { Slice_Byte varena__push(VArena* vm, SSIZE amount, SSIZE type_width, Opts_varena* opts) {
assert(vm != nullptr);
assert(amount != 0); assert(amount != 0);
SSIZE alignment = opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT; SSIZE alignment = opts->alignment ? opts->alignment : MEMORY_ALIGNMENT_DEFAULT;
SSIZE requested_size = amount * type_width; SSIZE requested_size = amount * type_width;
@@ -1075,10 +1075,8 @@ Slice_Byte varena__push(VArena* vm, SSIZE amount, SSIZE type_width, Opts_varena*
SSIZE to_be_used = vm->commit_used + aligned_size; SSIZE to_be_used = vm->commit_used + aligned_size;
SSIZE reserve_left = vm->reserve - vm->commit_used; SSIZE reserve_left = vm->reserve - vm->commit_used;
SSIZE commit_left = vm->committed - vm->commit_used; SSIZE commit_left = vm->committed - vm->commit_used;
B32 exhausted = commit_left < to_be_used; B32 exhausted = commit_left < to_be_used; assert(to_be_used < reserve_left);
assert(to_be_used < reserve_left); if (exhausted) {
if (exhausted)
{
SSIZE next_commit_size = reserve_left > 0 ? SSIZE next_commit_size = reserve_left > 0 ?
max(vm->commit_size, to_be_used) max(vm->commit_size, to_be_used)
: cast(SSIZE, align_pow2( reserve_left, os_system_info()->target_page_size)); : cast(SSIZE, align_pow2( reserve_left, os_system_info()->target_page_size));
@@ -1086,30 +1084,33 @@ Slice_Byte varena__push(VArena* vm, SSIZE amount, SSIZE type_width, Opts_varena*
Byte* next_commit_start = cast(Byte*, cast(SSIZE, vm) + vm->committed); Byte* next_commit_start = cast(Byte*, cast(SSIZE, vm) + vm->committed);
B32 no_large_pages = (vm->flags & VArenaFlag_NoLargePages) != 0; B32 no_large_pages = (vm->flags & VArenaFlag_NoLargePages) != 0;
B32 commit_result = os_vmem_commit(next_commit_start, next_commit_size, .no_large_pages = no_large_pages); B32 commit_result = os_vmem_commit(next_commit_start, next_commit_size, .no_large_pages = no_large_pages);
if (commit_result == false) { if (commit_result == false) { return (Slice_Byte){0}; }
return (Slice_Byte){0};
}
vm->committed += next_commit_size; vm->committed += next_commit_size;
} }
} }
vm->commit_used = to_be_used; vm->commit_used = to_be_used;
return (Slice_Byte){.ptr = cast(Byte*, current_offset), .len = requested_size}; return (Slice_Byte){.ptr = cast(Byte*, current_offset), .len = requested_size};
} }
inline void varena_release(VArena* arena) { os_vmem_release(arena, arena->reserve); } inline
inline Slice_Byte varena__shrink(VArena* vm, Slice_Byte old_allocation, SSIZE requested_size, Opts_varena* opts) { Slice_Byte varena__grow(VArena* vm, SSIZE requested_size, Slice_Byte old_allocation, SSIZE alignment, B32 no_zero) {
assert(opts != nullptr); assert(vm != nullptr);
Slice_Byte result = {0}; SSIZE grow_amount = requested_size - old_allocation.len;
if (grow_amount == 0) { return old_allocation; } // Growing when not the last allocation not allowed
SSIZE current_offset = vm->reserve_start + vm->commit_used; assert(old_allocation.ptr == cast(Byte*, current_offset));
Slice_Byte allocation = varena_push_array(vm, Byte, grow_amount, alignment); assert(allocation.ptr != nullptr);
Slice_Byte result = (Slice_Byte){ old_allocation.ptr, requested_size };
memory_zero(allocation.ptr, allocation.len * no_zero);
return result;
}
inline Slice_Byte varena__shrink(VArena* vm, Slice_Byte old_allocation, SSIZE requested_size) {
SSIZE current_offset = vm->reserve_start + vm->commit_used; SSIZE current_offset = vm->reserve_start + vm->commit_used;
SSIZE shrink_amount = old_allocation.len - requested_size; SSIZE shrink_amount = old_allocation.len - requested_size;
if (shrink_amount < 0) { if (shrink_amount < 0) { return old_allocation; }
result = old_allocation;
return result;
}
assert(old_allocation.ptr == cast(Byte*, current_offset)); assert(old_allocation.ptr == cast(Byte*, current_offset));
vm->commit_used -= shrink_amount; vm->commit_used -= shrink_amount;
result = (Slice_Byte){ old_allocation.ptr, requested_size }; return (Slice_Byte){ old_allocation.ptr, requested_size };
return result;
} }
inline void varena_release(VArena* arena) { os_vmem_release(arena, arena->reserve); }
inline inline
void varena_rewind(VArena* vm, AllocatorSP sp) { void varena_rewind(VArena* vm, AllocatorSP sp) {
assert(vm != nullptr); assert(vm != nullptr);
@@ -1128,47 +1129,19 @@ void varena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
memory_zero(out->allocation.ptr, out->allocation.len * cast(SSIZE, in.op)); memory_zero(out->allocation.ptr, out->allocation.len * cast(SSIZE, in.op));
break; break;
case AllocatorOp_Free: case AllocatorOp_Free: break;
break; case AllocatorOp_Reset: vm->commit_used = 0; break;
case AllocatorOp_Reset:
vm->commit_used = 0;
break;
case AllocatorOp_Grow_NoZero: case AllocatorOp_Grow_NoZero:
case AllocatorOp_Grow: { case AllocatorOp_Grow:
SSIZE grow_amount = in.requested_size - in.old_allocation.len; out->allocation = varena__grow(vm, in.requested_size, in.old_allocation, in.alignment, in.op - AllocatorOp_Grow_NoZero);
if (grow_amount == 0) {
out->allocation = in.old_allocation;
return;
}
SSIZE current_offset = vm->reserve_start + vm->commit_used;
// Growing when not the last allocation not allowed
assert(in.old_allocation.ptr == cast(Byte*, current_offset));
Slice_Byte allocation = varena_push_array(vm, Byte, grow_amount, .alignment = in.alignment);
assert(allocation.ptr != nullptr);
out->allocation = (Slice_Byte){ in.old_allocation.ptr, in.requested_size };
memory_zero(out->allocation.ptr, out->allocation.len * (in.op - AllocatorOp_Grow_NoZero));
}
break; break;
case AllocatorOp_Shrink: { case AllocatorOp_Shrink:
SSIZE current_offset = vm->reserve_start + vm->commit_used; out->allocation = varena__shrink(vm, in.old_allocation, in.requested_size);
SSIZE shrink_amount = in.old_allocation.len - in.requested_size;
if (shrink_amount < 0) {
out->allocation = in.old_allocation;
return;
}
assert(in.old_allocation.ptr == cast(Byte*, current_offset));
vm->commit_used -= shrink_amount;
out->allocation = (Slice_Byte){ in.old_allocation.ptr, in.requested_size };
}
break; break;
case AllocatorOp_Rewind: case AllocatorOp_Rewind: vm->commit_used = in.save_point.slot; break;
vm->commit_used = in.save_point.slot; case AllocatorOp_SavePoint: out->save_point = varena_save(vm); break;
break;
case AllocatorOp_SavePoint:
out->save_point = varena_save(vm);
break;
case AllocatorOp_Query: case AllocatorOp_Query:
out->features = out->features =
@@ -1191,10 +1164,8 @@ inline
Arena* arena__make(Opts_arena_make* opts) { Arena* arena__make(Opts_arena_make* opts) {
assert(opts != nullptr); assert(opts != nullptr);
SSIZE header_size = align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT); SSIZE header_size = align_pow2(size_of(Arena), MEMORY_ALIGNMENT_DEFAULT);
VArena* current = varena__make(opts); VArena* current = varena__make(opts); assert(current != nullptr);
assert(current != nullptr); Arena* arena = varena_push(current, Arena); * arena = (Arena){
Arena* arena = varena_push(current, Arena);
* arena = (Arena){
.backing = current, .backing = current,
.prev = nullptr, .prev = nullptr,
.current = arena, .current = arena,
@@ -1275,11 +1246,9 @@ void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
out->allocation = arena_push_array(arena, Byte, in.requested_size, .alignment = in.alignment); out->allocation = arena_push_array(arena, Byte, in.requested_size, .alignment = in.alignment);
memory_zero(out->allocation.ptr, out->allocation.len * cast(SSIZE, in.op)); memory_zero(out->allocation.ptr, out->allocation.len * cast(SSIZE, in.op));
break; break;
case AllocatorOp_Free:
break; case AllocatorOp_Free: break;
case AllocatorOp_Reset: case AllocatorOp_Reset: arena_reset(arena); break;
arena_reset(arena);
break;
case AllocatorOp_Grow: case AllocatorOp_Grow:
case AllocatorOp_Grow_NoZero: { case AllocatorOp_Grow_NoZero: {
@@ -1326,18 +1295,13 @@ void arena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out)
SSIZE aligned_new = align_pow2(in.requested_size, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT); SSIZE aligned_new = align_pow2(in.requested_size, in.alignment ? in.alignment : MEMORY_ALIGNMENT_DEFAULT);
SSIZE pos_reduction = aligned_original - aligned_new; SSIZE pos_reduction = aligned_original - aligned_new;
active->pos -= pos_reduction; active->pos -= pos_reduction;
varena__shrink(active->backing, in.old_allocation, in.requested_size, &(Opts_varena){.alignment = in.alignment}); out->allocation = varena__shrink(active->backing, in.old_allocation, in.requested_size);
out->allocation = (Slice_Byte){in.old_allocation.ptr, in.requested_size};
} }
break; break;
case AllocatorOp_Rewind: case AllocatorOp_Rewind: arena_rewind(arena, in.save_point); break;
arena_rewind(arena, in.save_point); case AllocatorOp_SavePoint: out->save_point = arena_save(arena); break;
break;
case AllocatorOp_SavePoint:
out->save_point = arena_save(arena);
break;
case AllocatorOp_Query: case AllocatorOp_Query:
out->features = out->features =
AllocatorQuery_Alloc AllocatorQuery_Alloc