WIP: watl.v0.llvm.lottes.c fleshing out

This commit is contained in:
2025-11-03 23:14:40 -05:00
parent 2ff49a188d
commit f437be32e2

View File

@@ -4,8 +4,11 @@ Version: 0 (From Scratch, 1-Stage Compilation, LLVM & WinAPI Only, Win CRT Mul
Host: Windows 11 (x86-64) Host: Windows 11 (x86-64)
Toolchain: LLVM (2025-08-30), C-Stanard: 11 Toolchain: LLVM (2025-08-30), C-Stanard: 11
Following strictly: Neokineogfx - Fixing C Following strictly (mostly): Neokineogfx - Fixing C
https://youtu.be/RrL7121MOeA https://youtu.be/RrL7121MOeA
Unlike lottes_hybrid this file will be entirely untyped for any pointer addressing.
Win CRT imports will also be typeless signatures.
*/ */
#pragma clang diagnostic ignored "-Wunused-const-variable" #pragma clang diagnostic ignored "-Wunused-const-variable"
@@ -46,11 +49,474 @@ https://youtu.be/RrL7121MOeA
#define R_ __restrict #define R_ __restrict
#define V_ volatile #define V_ volatile
#define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__)) #define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__))
#define reg register
#define glue_impl(A, B) A ## B
#define glue(A, B) glue_impl(A, B)
#define stringify_impl(S) #S
#define stringify(S) stringify_impl(S)
#define tmpl(prefix, type) prefix ## _ ## type
#define local_persist static
#define global static
#define internal static
#define static_assert _Static_assert
#define typeof __typeof__
#define typeof_ptr(ptr) typeof(ptr[0])
#define typeof_same(a, b) _Generic((a), typeof((b)): 1, default: 0)
#define def_R_(type) type*restrict type ## _R
#define def_V_(type) type*volatile type ## _V
#define def_ptr_set(type) def_R_(type); typedef def_V_(type)
#define def_tset(type) type; typedef def_ptr_set(type)
/* Deviation from Lottes's Convention: Using byte-width for the with a single letter to indicating underlying type or intent.
U1: B1
U2: W1
U4: I1
U8: L1
S1: SB1
S2: SW1
S4: SI1
S8: SL1
F4: F1
F8: D1
F4_4: F4
*/
typedef __UINT8_TYPE__ def_tset(U1); typedef __UINT16_TYPE__ def_tset(U2); typedef __UINT32_TYPE__ def_tset(U4); typedef __UINT64_TYPE__ def_tset(U8);
typedef __INT8_TYPE__ def_tset(S1); typedef __INT16_TYPE__ def_tset(S2); typedef __INT32_TYPE__ def_tset(S4); typedef __INT64_TYPE__ def_tset(S8);
typedef unsigned char def_tset(B1); typedef __UINT16_TYPE__ def_tset(B2); typedef __UINT32_TYPE__ def_tset(B4); typedef __UINT64_TYPE__ def_tset(B8);
typedef float def_tset(F4);
typedef double def_tset(F8);
typedef float F4_4 __attribute__((vector_size(16))); typedef def_ptr_set(F4_4);
enum { false = 0, true = 1, true_overflow, };
#define u1_r(value) cast(U1_R, value)
#define u2_r(value) cast(U2_R, value)
#define u4_r(value) cast(U4_R, value)
#define u8_r(value) cast(U8_R, value)
#define u1_v(value) cast(U1_V, value)
#define u2_v(value) cast(U2_V, value)
#define u4_v(value) cast(U4_V, value)
#define u8_v(value) cast(U8_V, value)
#define u1_(value) cast(U1, value)
#define u2_(value) cast(U2, value)
#define u4_(value) cast(U4, value)
#define u8_(value) cast(U8, value)
#define s1_(value) cast(S1, value)
#define s2_(value) cast(S2, value)
#define s4_(value) cast(S4, value)
#define s8_(value) cast(S8, value)
#define f4_(value) cast(F4, value)
#define f8_(value) cast(F8, value)
#define uvar(Type, sym) B1 sym[sizeof(Type)]
#define farray_len(array) (U8)sizeof(array) / size_of( typeof((array)[0]))
#define farray_init(type, ...) (type[]){__VA_ARGS__}
#define def_farray_sym(_type, _len) A ## _len ## _ ## _type
#define def_farray_impl(_type, _len) _type def_farray_sym(_type, _len)[_len]; typedef def_ptr_set(def_farray_sym(_type, _len))
#define def_farray(type, len) def_farray_impl(type, len)
#define def_enum(underlying_type, symbol) underlying_type def_tset(symbol); enum symbol
#define def_struct(symbol) struct symbol def_tset(symbol); struct symbol
#define def_union(symbol) union symbol def_tset(symbol); union symbol
#define def_proc(symbol) symbol
#define opt_args(symbol, ...) &(symbol){__VA_ARGS__}
#define alignas _Alignas
#define alignof _Alignof
#define cast(type, data) ((type)(data))
#define pcast(type, data) cast(type*, & (data))[0]
#define nullptr cast(void*, 0)
#define null cast(U8, 0)
#define offset_of(type, member) cast(U8, & (((type*) 0)->member))
#define size_of(data) cast(U8, sizeof(data))
#define r_(ptr) cast(typeof_ptr(ptr)*R_, ptr)
#define v_(ptr) cast(typeof_ptr(ptr)*V_, ptr)
#define kilo(n) (cast(U8, n) << 10)
#define mega(n) (cast(U8, n) << 20)
#define giga(n) (cast(U8, n) << 30)
#define tera(n) (cast(U8, n) << 40)
// Deviation from Lottes's Convention: Using lower snake case for the naming.
#define sop_1(op, a, b) cast(U1, s1_(a) op s1_(b))
#define sop_2(op, a, b) cast(U2, s2_(a) op s2_(b))
#define sop_4(op, a, b) cast(U4, s4_(a) op s4_(b))
#define sop_8(op, a, b) cast(U8, s8_(a) op s8_(b))
#define def_signed_op(id, op, width) I_ U ## width id ## _s ## width(U ## width a, U ## width b) {return sop_ ## width(op, a, b); }
#define def_signed_ops(id, op) def_signed_op(id, op, 1) def_signed_op(id, op, 2) def_signed_op(id, op, 4) def_signed_op(id, op, 8)
def_signed_ops(add, +) def_signed_ops(sub, -)
def_signed_ops(mut, *) def_signed_ops(div, /)
def_signed_ops(gt, >) def_signed_ops(lt, <)
def_signed_ops(ge, >=) def_signed_ops(le, <=)
#define def_generic_sop(op, a, ...) _Generic((a), U1: op ## _s1, U2: op ## _s2, U4: op ## _s4, U8: op ## _s8) (a, __VA_ARGS__)
#define add_s(a,b) def_generic_sop(add,a,b)
#define sub_s(a,b) def_generic_sop(sub,a,b)
#define mut_s(a,b) def_generic_sop(mut,a,b)
#define gt_s(a,b) def_generic_sop(gt, a,b)
#define lt_s(a,b) def_generic_sop(lt, a,b)
#define ge_s(a,b) def_generic_sop(ge, a,b)
#define le_s(a,b) def_generic_sop(le, a,b)
I_ U4 atm_add_u4 (U4_R a, U4 v){__asm__ volatile("lock xaddl %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
I_ U8 atm_add_u8 (U8_R a, U8 v){__asm__ volatile("lock xaddq %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
I_ U4 atm_swap_u4(U4_R a, U4 v){__asm__ volatile("lock xchgl %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
I_ U8 atm_swap_u8(U8_R a, U8 v){__asm__ volatile("lock xchgq %0,%1":"=r"(v),"=m"(*a):"0"(v),"m"(*a):"memory","cc");return v;}
I_ void barrier_compiler(void){__asm__ volatile("::""memory");} // Compiler Barrier
I_ void barrier_memory (void){__builtin_ia32_mfence();} // Memory Barrier
I_ void barrier_read (void){__builtin_ia32_lfence();} // Read Barrier
I_ void barrier_write (void){__builtin_ia32_sfence();} // Write Barrier
I_ U8 clock(void){U8 aa,dd;__asm__ volatile("rdtsc":"=a"(aa),"=d"(dd));return aa;}
I_ void pause(void){__asm__ volatile("pause":::"memory");}
#pragma endregion DSL #pragma endregion DSL
#pragma region Strings
typedef unsigned char def_tset(UTF8);
typedef def_struct(Str8) { U8 ptr; U8 len; }; typedef Str8 def_tset(Slice_UTF8);
typedef def_struct(Slice_Str8) { U8 ptr; U8 len; };
#define lit(string_literal) (Str8){ u8_(string_literal), size_of(string_literal) - 1 }
#pragma endregion Strings
#pragma region Debug
#ifdef BUILD_DEBUG
#define debug_trap() __debugbreak()
#define assert_trap(cond) do { if (cond) __debug_trap(); } while(0)
#define assert(cond) assert_msg(cond, nullptr)
#define assert_msg(cond, msg, ...) do { \
if (! (cond)) \
{ \
assert_handler( \
stringify(cond), \
__FILE__, \
__func__, \
cast(S4, __LINE__), \
msg, \
## __VA_ARGS__); \
debug_trap(); \
} \
} while(0)
// Deviation from Lottes's Convention: Don't want to mess with passing in typeless strings to the assert handler.
void assert_handler(UTF8*R_ condition, UTF8*R_ file, UTF8*R_ function, S4 line, UTF8*R_ msg, ... );
#else
#define debug_trap()
#define assert_trap(cond)
#define assert(cond)
#define assert_msg(cond, msg, ...)
#endif
#pragma endregion Debug
#pragma region Memory
typedef def_farray(B1, 1);
typedef def_farray(B1, 2);
typedef def_farray(B1, 4);
typedef def_farray(B1, 8);
I_ U8 mem_copy (U8 dest, U8 src, U8 len) __asm__("memcpy");
I_ U8 mem_copy_overlapping(U8 dest, U8 src, U8 len) __asm__("memmove");
I_ B4 mem_zero (U8 dest, U8 len) __asm__("memset");
#define struct_copy(type, dest, src) mem_copy(dest, src, sizeof(type))
I_ U8 align_pow2(U8 x, U8 b) {
assert(b != 0);
assert((b & (b - 1)) == 0); // Check power of 2
return ((x + b - 1) & (~(b - 1)));
}
#define align_struct(type_width) ((U8)(((type_width) + 7) / 8 * 8))
#define assert_bounds(point, start, end) do { \
assert(start <= point); \
assert(point <= end); \
} while(0)
#define check_nil(nil, p) ((p) == 0 || (p) == nil)
#define set_nil(nil, p) ((p) = nil)
#define sll_stack_push_n(f, n, next) do { (n)->next = (f); (f) = (n); } while(0)
#define sll_queue_push_nz(nil, f, l, n, next) \
( \
check_nil(nil, f) ? ( \
(f) = (l) = (n), \
set_nil(nil, (n)->next) \
) \
: ( \
(l)->next=(n), \
(l) = (n), \
set_nil(nil,(n)->next) \
) \
)
#define sll_queue_push_n(f, l, n, next) sll_queue_push_nz(0, f, l, n, next)
#define def_Slice(type) def_struct(tmpl(Slice,type)) { type* ptr; U8 len; }; typedef def_ptr_set(tmpl(Slice,type))
#define slice_assert(slice) do { assert((slice).ptr != 0); assert((slice).len > 0); } while(0)
#define slice_end(slice) ((slice).ptr + (slice).len)
#define size_of_slice_type(slice) size_of( (slice).ptr[0] )
typedef def_struct(Slice_Mem) { U8 ptr; U8 len; };
#define slice_mem(ptr, len) ((Slice_Mem){u8_(ptr), u8_(len)})
#define slice_mem_s(slice) ((Slice_Mem){u8_((slice).ptr), (slice).len * size_of_slice_type(slice) })
typedef def_Slice(void);
typedef def_Slice(B1);
#define slice_to_bytes(slice) ((Slice_B1){cast(B1*, (slice).ptr), (slice).len * size_of_slice_type(slice)})
#define slice_fmem(mem) slice_mem(u8_(mem), size_of(mem))
I_ void slice__zero(Slice_B1 mem, U8 typewidth) { slice_assert(mem); memory_zero(u8_(mem.ptr), mem.len); }
#define slice_zero(slice) slice__zero(slice_mem_s(slice), size_of_slice_type(slice))
I_ void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth) {
assert(dest.len >= src.len);
slice_assert(dest);
slice_assert(src);
mem_copy(u8_(dest.ptr), u8_(src.ptr), src.len);
}
#define slice_copy(dest, src) do { \
static_assert(typeof_same(dest, src)); \
slice__copy(slice_to_bytes(dest), size_of_slice_type(dest), slice_to_bytes(src), size_of_slice_type(src)); \
} while (0)
#define slice_iter(container, iter) (typeof((container).ptr) iter = (container).ptr; iter != slice_end(container); ++ iter)
#define slice_arg_from_array(type, ...) & (tmpl(Slice,type)) { .ptr = farray_init(type, __VA_ARGS__), .len = farray_len( farray_init(type, __VA_ARGS__)) }
#define span_iter(type, iter, m_begin, op, m_end) \
( \
tmpl(Iter_Span,type) iter = { \
.r = {(m_begin), (m_end)}, \
.cursor = (m_begin) }; \
iter.cursor op iter.r.end; \
++ iter.cursor \
)
#define def_span(type) \
def_struct(tmpl( Span,type)) { type begin; type end; }; \
typedef def_struct(tmpl(Iter_Span,type)) { tmpl(Span,type) r; type cursor; }
typedef def_span(B1);
typedef def_span(U4);
typedef def_span(U8);
#pragma endregion Memory
#pragma region Math
#define min(A, B) (((A) < (B)) ? (A) : (B))
#define max(A, B) (((A) > (B)) ? (A) : (B))
#define clamp_bot(X, B) max(X, B)
#pragma endregion Math
#pragma region Allocator Interface
typedef def_enum(U4, AllocatorOp) {
AllocatorOp_Alloc_NoZero = 0, // If Alloc exist, so must No_Zero
AllocatorOp_Alloc,
AllocatorOp_Free,
AllocatorOp_Reset,
AllocatorOp_Grow_NoZero,
AllocatorOp_Grow,
AllocatorOp_Shrink,
AllocatorOp_Rewind,
AllocatorOp_SavePoint,
AllocatorOp_Query, // Must always be implemented
};
typedef def_enum(U4, AllocatorQueryFlags) {
AllocatorQuery_Alloc = (1 << 0),
AllocatorQuery_Free = (1 << 1),
// Wipe the allocator's state
AllocatorQuery_Reset = (1 << 2),
// Supports both grow and shrink
AllocatorQuery_Shrink = (1 << 4),
AllocatorQuery_Grow = (1 << 5),
AllocatorQuery_Resize = AllocatorQuery_Grow | AllocatorQuery_Shrink,
// Ability to rewind to a save point (ex: arenas, stack), must also be able to save such a point
AllocatorQuery_Rewind = (1 << 6),
};
typedef struct AllocatorProc_In def_tset(AllocatorProc_In);
typedef struct AllocatorProc_Out def_tset(AllocatorProc_Out);
typedef struct AllocatorSP AllocatorSP;
typedef void def_proc(AllocatorProc) (U8 data, U8 requested_size, U8 alignment, U8 old_ptr, U8 old_len, U4 op, /*AllocatorProc_Out*/U8 out);
struct AllocatorSP {
AllocatorProc* type_sig;
U8 slot;
};
struct AllocatorProc_In {
U8 data;
U8 requested_size;
U8 alignment;
union {
Slice_Mem old_allocation;
AllocatorSP save_point;
};
AllocatorOp op;
A4_B1 _PAD_;
};
struct AllocatorProc_Out {
union {
Slice_Mem allocation;
AllocatorSP save_point;
};
AllocatorQueryFlags features;
A4_B1 _PAD_;
U8 left; // Contiguous memory left
U8 max_alloc;
U8 min_alloc;
A4_B1 _PAD_2;
};
typedef def_struct(AllocatorInfo) {
AllocatorProc* proc;
U8 data;
};
static_assert(size_of(AllocatorSP) <= size_of(Slice_Mem));
typedef def_struct(AllocatorQueryInfo) {
AllocatorSP save_point;
AllocatorQueryFlags features;
A4_B1 _PAD_;
U8 left; // Contiguous memory left
U8 max_alloc;
U8 min_alloc;
A4_B1 _PAD_2;
};
static_assert(size_of(AllocatorProc_Out) == size_of(AllocatorQueryInfo));
#define MEMORY_ALIGNMENT_DEFAULT (2 * size_of(void*))
I_ void allocator_query__u(U8 ainfo_proc, U8 ainfo_data, U8 allocator_query_info);
I_ void mem_free__u (U8 proc, U8 data, U8 mem_ptr, U8 mem_len);
I_ void mem_reset__u (U8 proc, U8 data);
I_ void mem_rewind__u (U8 proc, U8 data, U8 sp_type_sig, U8 sp_slot);
I_ void mem_save_point__u(U8 proc, U8 data, U8 sp);
I_ AllocatorQueryInfo allocator_query(AllocatorInfo ainfo);
I_ void mem_free (AllocatorInfo ainfo, Slice_Mem mem);
I_ void mem_reset (AllocatorInfo ainfo);
I_ void mem_rewind (AllocatorInfo ainfo, AllocatorSP save_point);
I_ AllocatorSP mem_save_point(AllocatorInfo ainfo);
I_ void mem__alloc__u (U8 out_mem, U8 proc, U8 data, U8 size, U8 alignemnt, B4 no_zero);
I_ void mem__grow__u (U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_actual);
I_ void mem__resize__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_actual);
I_ void mem__shrink__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment);
typedef def_struct(Opts_mem_alloc) { U8 alignment; B4 no_zero; A4_B1 _PAD_; };
typedef def_struct(Opts_mem_grow) { U8 alignment; B4 no_zero; B4 give_actual; };
typedef def_struct(Opts_mem_resize) { U8 alignment; B4 no_zero; B4 give_actual; };
typedef def_struct(Opts_mem_shrink) { U8 alignment; };
I_ Slice_Mem mem__alloc (AllocatorInfo ainfo, U8 size, Opts_mem_alloc_R opts);
I_ Slice_Mem mem__grow (AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow_R opts);
I_ Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resize_R opts);
I_ Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shrink_R opts);
#define mem_alloc(ainfo, size, ...) mem__alloc (ainfo, size, opt_args(Opts_mem_alloc, __VA_ARGS__))
#define mem_grow(ainfo, mem, size, ...) mem__grow (ainfo, mem, size, opt_args(Opts_mem_grow, __VA_ARGS__))
#define mem_resize(ainfo, mem, size, ...) mem__resize(ainfo, mem, size, opt_args(Opts_mem_resize, __VA_ARGS__))
#define mem_shrink(ainfo, mem, size, ...) mem__shrink(ainfo, mem, size, opt_args(Opts_mem_shrink, __VA_ARGS__))
#define alloc_type(ainfo, type, ...) (type*) mem__alloc(ainfo, size_of(type), opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr
#define alloc_slice(ainfo, type, num, ...) (tmpl(Slice,type)){ (type*)mem__alloc(ainfo, size_of(type) * num, opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr, num }
#pragma endregion Allocator Interface
#pragma region FArena (Fixed-Sized Arena)
#pragma endregion FArena
#pragma endregion Header #pragma endregion Header
#pragma region Implementation #pragma region Implementation
#pragma region Allocator Interface
I_ void allocator_query__u(U8 ainfo_proc, U8 ainfo_data, U8 allocator_query_info) {
assert(ainfo_proc != nullptr);
cast(AllocatorProc*, ainfo_proc)(ainfo_data, 0, 0, 0, 0, AllocatorOp_Query, allocator_query_info);
}
I_ void mem_free__u(U8 proc, U8 data, U8 mem_ptr, U8 mem_len) {
assert(proc != nullptr);
cast(AllocatorProc*, proc)(data, 0, 0, mem_ptr, mem_len, AllocatorOp_Free, 0);
}
I_ void mem_reset__u(U8 proc, U8 data) {
assert(proc != nullptr);
cast(AllocatorProc*, proc)(data, 0, 0, 0, 0, AllocatorOp_Reset, 0);
}
I_ void mem_rewind__u(U8 proc, U8 data, U8 sp_type_sig, U8 sp_slot) {
assert(proc != nullptr);
cast(AllocatorProc*, proc)(data, 0, 0, sp_type_sig, sp_slot, AllocatorOp_Rewind, 0);
}
I_ void mem_save_point__u(U8 proc, U8 data, U8 sp) {
assert(proc != nullptr);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, 0, 0, 0, 0, AllocatorOp_SavePoint, u8(out));
struct_copy(AllocatorSP, sp, & out[offset_of(AllocatorProc_Out, save_point)]);
}
I_ void mem__alloc__u(U8 out_mem, U8 proc, U8 data, U8 size, U8 alignment, B4 no_zero) {
assert(proc != nullptr);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, size, alignment, 0, 0, no_zero ? AllocatorOp_Alloc_NoZero : AllocatorOp_Alloc, u8_(out));
struct_copy(Slice_Mem, out_mem, & out[offset_of(AllocatorProc_Out, allocation)]);
}
I_ void mem__grow__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_actual) {
assert(proc != nullptr);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, size, alignment, old_ptr, old_len, no_zero ? AllocatorOp_Grow_NoZero : AllocatorOp_Grow, u8_(out));
if (give_actual == false) { u8_r(out)[offset_of(AllocatorProc_Out, allocation) + offset_of(Slice_Mem, len)] = size; }
struct_copy(Slice_Mem, out_mem, & out[offset_of(AllocatorProc_Out, allocation)]);
}
I_ void mem__shrink__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment) {
assert(proc != nullptr);
uvar(AllocatorProc_Out, out) = {0};
cast(AllocatorProc*, proc)(data, size, alignment, old_ptr, old_len, AllocatorOp_Shrink, u8_(out));
struct_copy(Slice_Mem, out_mem, & out[offset_of(AllocatorProc_Out, allocation)]);
}
I_ void mem__resize__u(U8 out_mem, U8 proc, U8 data, U8 old_ptr, U8 old_len, U8 size, U8 alignment, B4 no_zero, B4 give_acutal) {
Slice_Mem result;
if (old_len == size) { result = (Slice_Mem){old_ptr, old_len}; }
if (old_len < size) { mem__grow__u (u8_(& result), proc, data, old_ptr, old_len, size, alignment, no_zero, give_acutal); }
else { mem__shrink__u(u8_(& result), proc, data, old_ptr, old_len, size, alignment); }
struct_copy(Slice_Mem, out_mem, & result);
}
I_ AllocatorQueryInfo allocator_query(AllocatorInfo ainfo) { AllocatorQueryInfo out; allocator_query__u(ainfo.proc, ainfo.data, & out); return out; }
I_ void mem_free (AllocatorInfo ainfo, Slice_Mem mem) { mem_free__u (u8_(ainfo.proc), ainfo.data, mem.ptr, mem.len); }
I_ void mem_reset (AllocatorInfo ainfo) { mem_reset__u (u8_(ainfo.proc), ainfo.data); }
I_ void mem_rewind(AllocatorInfo ainfo, AllocatorSP save_point) { mem_rewind__u(u8_(ainfo.proc), ainfo.data, u8_(save_point.type_sig), save_point.slot); }
I_ AllocatorSP mem_save_point(AllocatorInfo ainfo) { AllocatorSP sp; mem_save_point__u(u8_(ainfo.proc), ainfo.data, u8(& sp)); return sp; }
I_ Slice_Mem mem__alloc(AllocatorInfo ainfo, U8 size, Opts_mem_alloc_R opts) {
assert(opts != nullptr); Slice_Mem result;
mem__alloc__u(u8_(& result), u8_(ainfo.proc), ainfo.data, size, opts->alignment, opts->no_zero);
return result;
}
I_ Slice_Mem mem__grow(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow_R opts) {
assert(opts != nullptr);
Slice_Mem out; mem__grow__u(u8_(& out), u8_(ainfo.proc), ainfo.data, mem.ptr, mem.len, size, opts->alignment, opts->no_zero, opts->give_actual);
if (!opts->give_actual) { out.len = size; }
return out;
}
I_ Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resize_R opts) {
assert(opts != nullptr);
Slice_Mem out; mem__resize__u(& out, ainfo.proc, ainfo.data, mem.ptr, mem.len, size, opts->alignment, opts->no_zero, opts->give_actual);
return out;
}
I_ Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shrink_R opts) {
assert(opts != nullptr);
Slice_Mem out; mem__shrink__u(u8_(& out), u8_(ainfo.proc), ainfo.data, mem.ptr, mem.len, size, opts->alignment);
return out;
}
#pragma endregion Allocator Interface
#pragma region FArena (Fixed-Sized Arena)
#pragma endregion FArena
#pragma endregion Implementation #pragma endregion Implementation
int main(void) int main(void)