improvements while working Sectr Prototype

This commit is contained in:
2024-06-28 07:52:48 -04:00
parent 7e34131884
commit d454778fd6
9 changed files with 668 additions and 434 deletions

View File

@@ -28,11 +28,11 @@ PoolList :: struct {
pool_list_init :: proc( pool : ^PoolList, capacity : u32, dbg_name : string = "" )
{
error : AllocatorError
pool.items, error = make( [dynamic]PoolListItem, u64(capacity) )
pool.items, error = make( [dynamic]PoolListItem, int(capacity) )
assert( error == .None, "VEFontCache.pool_list_init : Failed to allocate items array")
resize( & pool.items, capacity )
pool.free_list, error = make( [dynamic]PoolListIter, u64(capacity) )
pool.free_list, error = make( [dynamic]PoolListIter, len = 0, cap = int(capacity) )
assert( error == .None, "VEFontCache.pool_list_init : Failed to allocate free_list array")
resize( & pool.free_list, capacity )
@@ -120,6 +120,23 @@ pool_list_erase :: proc( pool : ^PoolList, iter : PoolListIter )
}
}
pool_list_move_to_front :: #force_inline proc( pool : ^PoolList, iter : PoolListIter )
{
using pool
if front == iter do return
item := & items[iter]
if item.prev != -1 do items[ item.prev ].next = item.next
if item.next != -1 do items[ item.next ].prev = item.prev
if back == iter do back = item.prev
item.prev = -1
item.next = front
items[ front ].prev = iter
front = iter
}
pool_list_peek_back :: #force_inline proc ( pool : ^PoolList ) -> PoolListValue {
assert( pool.back != - 1 )
value := pool.items[ pool.back ].value
@@ -181,12 +198,11 @@ LRU_find :: #force_inline proc "contextless" ( cache : ^LRU_Cache, key : u64, mu
}
LRU_get :: #force_inline proc( cache: ^LRU_Cache, key : u64 ) -> i32 {
iter, success := LRU_find( cache, key )
if success == false {
return -1
if link, ok := &cache.table[ key ]; ok {
pool_list_move_to_front(&cache.key_queue, link.ptr)
return link.value
}
LRU_refresh( cache, key )
return iter.value
return -1
}
LRU_get_next_evicted :: #force_inline proc ( cache : ^LRU_Cache ) -> u64
@@ -208,10 +224,9 @@ LRU_peek :: #force_inline proc ( cache : ^LRU_Cache, key : u64, must_find := fal
LRU_put :: #force_inline proc( cache : ^LRU_Cache, key : u64, value : i32 ) -> u64
{
iter, success := cache.table[key]
if success {
LRU_refresh( cache, key )
iter.value = value
if link, ok := & cache.table[ key ]; ok {
pool_list_move_to_front( & cache.key_queue, link.ptr )
link.value = value
return key
}
@@ -225,7 +240,7 @@ LRU_put :: #force_inline proc ( cache : ^LRU_Cache, key : u64, value : i32 ) ->
pool_list_push_front(&cache.key_queue, key)
cache.table[key] = LRU_Link{
value = value,
ptr = cache.key_queue.front
ptr = cache.key_queue.front,
}
cache.num += 1
return evict

View File

@@ -1,29 +1,51 @@
# VE Font Cache : Odin Port
This is a port of the library base on the [original](https://github.com/hypernewbie/VEFontCache).
This is a port of the library based on [fork](https://github.com/hypernewbie/VEFontCache)
Its original purpose was for use in game engines, however its rendeirng quality and performance is more than adequate for many other applications.
See: [docs/Readme.md](docs/Readme.md) for the library's interface
TODO (Making it a more idiomatic library):
## TODOs
### (Making it a more idiomatic library):
* Setup freetype, harfbuzz, depedency management within the library
TODO Documentation:
### Documentation:
* Pureref outline of draw_text exectuion
* Markdown general documentation
TODO Content:
### Content:
* Port over the original demo utilizing sokol libraries instead
* Provide a sokol_gfx backend package
TODO Additional Features:
### Additional Features:
* Support for freetype
* Support for harfbuzz
* Ability to set a draw transform, viewport and projection
* By default the library's position is in unsigned normalized render space
* Allow curve_quality to be set on a per-font basis
### Optimization:
* Look into setting up multi-threading by giving each thread a context
* There is a heavy performance bottleneck in iterating the text/shape/glyphs on the cpu (single-thread) vs the actual rendering
* draw_text can provide in the context a job list per thread for the user to thenk hookup to their own threading solution to handle.
* Context would need to be segregated into staged data structures for each thread to utilize
* Each should have their own?
* draw_list
* draw_layer
* atlas.next_idx
* glyph_draw_buffer
* shape_cache
* This would need to converge to the singlar draw_list on a per layer basis (then user reqeusts a draw_list layer there could a yield to wait for the jobs to finish); if the interface expects the user to issue the commands single-threaded unless, we just assume the user is going to feed the gpu the commands & data through separate threads as well (not ideal ux).
Failed Attempts:
* Attempted to chunk the text to more granular 'shapes' from `draw_list` before doing the actual call to `draw_text_shape`. This lead to a larger performance cost due to the additional iteration across the text string.
* Attempted to cache the shape draw_list for future calls. Led to larger performance cost due to additional iteration in the `merge_draw_list`.
* The shapes glyphs must still be traversed to identify if the glyph is cached. This arguably could be handled in `shape_text_uncached`, however that would require a significan't amount of refactoring to identify... (and would be more unergonomic when shapers libs are processing the text)

View File

@@ -44,7 +44,7 @@ Context :: struct {
entries : [dynamic]Entry,
temp_path : [dynamic]Vec2,
temp_path : [dynamic]Vertex,
temp_codepoint_seen : map[u64]bool,
temp_codepoint_seen_num : u32,
@@ -133,8 +133,8 @@ InitShapeCacheParams :: struct {
}
InitShapeCacheParams_Default :: InitShapeCacheParams {
capacity = 1024,
reserve_length = 1024,
capacity = 2048,
reserve_length = 2048,
}
// ve_fontcache_init
@@ -145,8 +145,8 @@ startup :: proc( ctx : ^Context, parser_kind : ParserKind,
shape_cache_params := InitShapeCacheParams_Default,
curve_quality : u32 = 3,
entires_reserve : u32 = 512,
temp_path_reserve : u32 = 512,
temp_codepoint_seen_reserve : u32 = 512,
temp_path_reserve : u32 = 1024,
temp_codepoint_seen_reserve : u32 = 2048,
)
{
assert( ctx != nil, "Must provide a valid context" )
@@ -161,25 +161,26 @@ startup :: proc( ctx : ^Context, parser_kind : ParserKind,
ctx.curve_quality = curve_quality
error : AllocatorError
entries, error = make( [dynamic]Entry, entires_reserve )
entries, error = make( [dynamic]Entry, len = 0, cap = entires_reserve )
assert(error == .None, "VEFontCache.init : Failed to allocate entries")
temp_path, error = make( [dynamic]Vec2, temp_path_reserve )
temp_path, error = make( [dynamic]Vertex, len = 0, cap = temp_path_reserve )
assert(error == .None, "VEFontCache.init : Failed to allocate temp_path")
temp_codepoint_seen, error = make( map[u64]bool, uint(temp_codepoint_seen_reserve) )
assert(error == .None, "VEFontCache.init : Failed to allocate temp_path")
draw_list.vertices, error = make( [dynamic]Vertex, 4 * Kilobyte )
draw_list.vertices, error = make( [dynamic]Vertex, len = 0, cap = 4 * Kilobyte )
assert(error == .None, "VEFontCache.init : Failed to allocate draw_list.vertices")
draw_list.indices, error = make( [dynamic]u32, 8 * Kilobyte )
draw_list.indices, error = make( [dynamic]u32, len = 0, cap = 8 * Kilobyte )
assert(error == .None, "VEFontCache.init : Failed to allocate draw_list.indices")
draw_list.calls, error = make( [dynamic]DrawCall, 512 )
draw_list.calls, error = make( [dynamic]DrawCall, len = 0, cap = 512 )
assert(error == .None, "VEFontCache.init : Failed to allocate draw_list.calls")
init_atlas_region :: proc( region : ^AtlasRegion, params : InitAtlasParams, region_params : InitAtlasRegionParams, factor : Vec2i, expected_cap : i32 ) {
init_atlas_region :: proc( region : ^AtlasRegion, params : InitAtlasParams, region_params : InitAtlasRegionParams, factor : Vec2i, expected_cap : i32 )
{
using region
next_idx = 0;
@@ -225,11 +226,20 @@ startup :: proc( ctx : ^Context, parser_kind : ParserKind,
for idx : u32 = 0; idx < shape_cache_params.capacity; idx += 1 {
stroage_entry := & shape_cache.storage[idx]
using stroage_entry
glyphs, error = make( [dynamic]Glyph, shape_cache_params.reserve_length )
glyphs, error = make( [dynamic]Glyph, len = 0, cap = shape_cache_params.reserve_length )
assert( error == .None, "VEFontCache.init : Failed to allocate glyphs array for shape cache storage" )
positions, error = make( [dynamic]Vec2, shape_cache_params.reserve_length )
positions, error = make( [dynamic]Vec2, len = 0, cap = shape_cache_params.reserve_length )
assert( error == .None, "VEFontCache.init : Failed to allocate positions array for shape cache storage" )
draw_list.calls, error = make( [dynamic]DrawCall, len = 0, cap = glyph_draw_params.buffer_batch * 2 )
assert( error == .None, "VEFontCache.init : Failed to allocate calls for draw_list" )
draw_list.indices, error = make( [dynamic]u32, len = 0, cap = glyph_draw_params.buffer_batch * 2 * 6 )
assert( error == .None, "VEFontCache.init : Failed to allocate indices array for draw_list" )
draw_list.vertices, error = make( [dynamic]Vertex, len = 0, cap = glyph_draw_params.buffer_batch * 2 * 4 )
assert( error == .None, "VEFontCache.init : Failed to allocate vertices array for draw_list" )
}
// Note(From original author): We can actually go over VE_FONTCACHE_GLYPHDRAW_BUFFER_BATCH batches due to smart packing!
@@ -241,22 +251,22 @@ startup :: proc( ctx : ^Context, parser_kind : ParserKind,
height = atlas.region_d.height * u32(over_sample.y)
draw_padding = glyph_draw_params.draw_padding
draw_list.calls, error = make( [dynamic]DrawCall, cast(u64) glyph_draw_params.buffer_batch * 2 )
draw_list.calls, error = make( [dynamic]DrawCall, len = 0, cap = glyph_draw_params.buffer_batch * 2 )
assert( error == .None, "VEFontCache.init : Failed to allocate calls for draw_list" )
draw_list.indices, error = make( [dynamic]u32, cast(u64) glyph_draw_params.buffer_batch * 2 * 6 )
draw_list.indices, error = make( [dynamic]u32, len = 0, cap = glyph_draw_params.buffer_batch * 2 * 6 )
assert( error == .None, "VEFontCache.init : Failed to allocate indices array for draw_list" )
draw_list.vertices, error = make( [dynamic]Vertex, glyph_draw_params.buffer_batch * 2 * 4 )
draw_list.vertices, error = make( [dynamic]Vertex, len = 0, cap = glyph_draw_params.buffer_batch * 2 * 4 )
assert( error == .None, "VEFontCache.init : Failed to allocate vertices array for draw_list" )
clear_draw_list.calls, error = make( [dynamic]DrawCall, cast(u64) glyph_draw_params.buffer_batch * 2 )
clear_draw_list.calls, error = make( [dynamic]DrawCall, len = 0, cap = glyph_draw_params.buffer_batch * 2 )
assert( error == .None, "VEFontCache.init : Failed to allocate calls for calls for clear_draw_list" )
clear_draw_list.indices, error = make( [dynamic]u32, cast(u64) glyph_draw_params.buffer_batch * 2 * 4 )
clear_draw_list.indices, error = make( [dynamic]u32, len = 0, cap = glyph_draw_params.buffer_batch * 2 * 4 )
assert( error == .None, "VEFontCache.init : Failed to allocate calls for indices array for clear_draw_list" )
clear_draw_list.vertices, error = make( [dynamic]Vertex, glyph_draw_params.buffer_batch * 2 * 4 )
clear_draw_list.vertices, error = make( [dynamic]Vertex, len = 0, cap = glyph_draw_params.buffer_batch * 2 * 4 )
assert( error == .None, "VEFontCache.init : Failed to allocate vertices array for clear_draw_list" )
}
@@ -395,7 +405,7 @@ configure_snap :: #force_inline proc( ctx : ^Context, snap_width, snap_height :
get_cursor_pos :: #force_inline proc "contextless" ( ctx : ^Context ) -> Vec2 { return ctx.cursor_pos }
set_colour :: #force_inline proc "contextless" ( ctx : ^Context, colour : Colour ) { ctx.colour = colour }
draw_text :: proc( ctx : ^Context, font : FontID, text_utf8 : string, position : Vec2, scale : Vec2 ) -> b32
draw_text :: proc( ctx : ^Context, font : FontID, text_utf8 : string, position, scale : Vec2 ) -> b32
{
// profile(#procedure)
assert( ctx != nil )
@@ -471,24 +481,9 @@ measure_text_size :: proc( ctx : ^Context, font : FontID, text_utf8 : string ) -
assert( ctx != nil )
assert( font >= 0 && int(font) < len(ctx.entries) )
atlas := ctx.atlas
entry := &ctx.entries[font]
shaped := shape_text_cached(ctx, font, text_utf8, entry)
padding := cast(f32) atlas.glyph_padding
for index : i32 = 0; index < i32(len(shaped.glyphs)); index += 1
{
glyph_index := shaped.glyphs[ index ]
if is_empty( ctx, entry, glyph_index ) do continue
bounds_0, bounds_1 := parser_get_glyph_box( & entry.parser_info, glyph_index )
bounds_size := bounds_1 - bounds_0
glyph_size := Vec2 { f32(bounds_size.x), f32(bounds_size.y) } * entry.size_scale
measured.y = max(measured.y, glyph_size.y)
}
measured.x = shaped.end_cursor_pos.x
return measured
return shaped.size
}
get_font_vertical_metrics :: #force_inline proc ( ctx : ^Context, font : FontID ) -> ( ascent, descent, line_gap : i32 )

View File

@@ -86,11 +86,77 @@ atlas_bbox :: proc( atlas : ^Atlas, region : AtlasRegionKind, local_idx : i32 )
return
}
// decide_codepoint_region :: proc( ctx : ^Context, entry : ^Entry, glyph_index : Glyph
// ) -> (region_kind : AtlasRegionKind, region : ^AtlasRegion, over_sample : Vec2)
// {
// if parser_is_glyph_empty( & entry.parser_info, glyph_index ) {
// region_kind = .None
// }
// bounds_0, bounds_1 := parser_get_glyph_box( & entry.parser_info, glyph_index )
// bounds_width := f32(bounds_1.x - bounds_0.x)
// bounds_height := f32(bounds_1.y - bounds_0.y)
// atlas := & ctx.atlas
// glyph_buffer := & ctx.glyph_buffer
// glyph_padding := f32(atlas.glyph_padding) * 2
// bounds_width_scaled := cast(u32) (bounds_width * entry.size_scale + glyph_padding)
// bounds_height_scaled := cast(u32) (bounds_height * entry.size_scale + glyph_padding)
// if bounds_width_scaled <= atlas.region_a.width && bounds_height_scaled <= atlas.region_a.height
// {
// // Region A for small glyphs. These are good for things such as punctuation.
// region_kind = .A
// region = & atlas.region_a
// }
// else if bounds_width_scaled <= atlas.region_b.width && bounds_height_scaled <= atlas.region_b.height
// {
// // Region B for tall glyphs. These are good for things such as european alphabets.
// region_kind = .B
// region = & atlas.region_b
// }
// else if bounds_width_scaled <= atlas.region_c.width && bounds_height_scaled <= atlas.region_c.height
// {
// // Region C for big glyphs. These are good for things such as asian typography.
// region_kind = .C
// region = & atlas.region_c
// }
// else if bounds_width_scaled <= atlas.region_d.width && bounds_height_scaled <= atlas.region_d.height
// {
// // Region D for huge glyphs. These are good for things such as titles and 4k.
// region_kind = .D
// region = & atlas.region_d
// }
// else if bounds_width_scaled <= glyph_buffer.width && bounds_height_scaled <= glyph_buffer.height
// {
// // Region 'E' for massive glyphs. These are rendered uncached and un-oversampled.
// region_kind = .E
// region = nil
// if bounds_width_scaled <= glyph_buffer.width / 2 && bounds_height_scaled <= glyph_buffer.height / 2 {
// over_sample = { 2.0, 2.0 }
// }
// else {
// over_sample = { 1.0, 1.0 }
// }
// return
// }
// else {
// region_kind = .None
// return
// }
// over_sample = glyph_buffer.over_sample
// assert(region != nil)
// return
// }
decide_codepoint_region :: proc(ctx : ^Context, entry : ^Entry, glyph_index : Glyph
) -> (region_kind : AtlasRegionKind, region : ^AtlasRegion, over_sample : Vec2)
{
if parser_is_glyph_empty(&entry.parser_info, glyph_index) {
region_kind = .None
return .None, nil, {}
}
bounds_0, bounds_1 := parser_get_glyph_box(&entry.parser_info, glyph_index)
@@ -99,55 +165,31 @@ decide_codepoint_region :: proc( ctx : ^Context, entry : ^Entry, glyph_index : G
atlas := & ctx.atlas
glyph_buffer := & ctx.glyph_buffer
glyph_padding := f32( atlas.glyph_padding ) * 2
bounds_width_scaled := cast(u32) (bounds_width * entry.size_scale + glyph_padding)
bounds_height_scaled := cast(u32) (bounds_height * entry.size_scale + glyph_padding)
bounds_width_scaled := u32(bounds_width * entry.size_scale + glyph_padding)
bounds_height_scaled := u32(bounds_height * entry.size_scale + glyph_padding)
if bounds_width_scaled <= atlas.region_a.width && bounds_height_scaled <= atlas.region_a.height
{
// Region A for small glyphs. These are good for things such as punctuation.
region_kind = .A
region = & atlas.region_a
}
else if bounds_width_scaled <= atlas.region_b.width && bounds_height_scaled <= atlas.region_b.height
{
// Region B for tall glyphs. These are good for things such as european alphabets.
region_kind = .B
region = & atlas.region_b
}
else if bounds_width_scaled <= atlas.region_c.width && bounds_height_scaled <= atlas.region_c.height
{
// Region C for big glyphs. These are good for things such as asian typography.
region_kind = .C
region = & atlas.region_c
}
else if bounds_width_scaled <= atlas.region_d.width && bounds_height_scaled <= atlas.region_d.height
{
// Region D for huge glyphs. These are good for things such as titles and 4k.
region_kind = .D
region = & atlas.region_d
}
else if bounds_width_scaled <= glyph_buffer.width && bounds_height_scaled <= glyph_buffer.height
{
// Region 'E' for massive glyphs. These are rendered uncached and un-oversampled.
region_kind = .E
region = nil
if bounds_width_scaled <= glyph_buffer.width / 2 && bounds_height_scaled <= glyph_buffer.height / 2 {
over_sample = { 2.0, 2.0 }
}
else {
over_sample = { 1.0, 1.0 }
}
return
}
else {
region_kind = .None
return
// Use a lookup table for faster region selection
region_lookup := [4]struct { kind: AtlasRegionKind, region: ^AtlasRegion } {
{ .A, & atlas.region_a },
{ .B, & atlas.region_b },
{ .C, & atlas.region_c },
{ .D, & atlas.region_d },
}
over_sample = glyph_buffer.over_sample
assert(region != nil)
return
for region in region_lookup do if bounds_width_scaled <= region.region.width && bounds_height_scaled <= region.region.height {
return region.kind, region.region, glyph_buffer.over_sample
}
if bounds_width_scaled <= glyph_buffer.width \
&& bounds_height_scaled <= glyph_buffer.height {
over_sample = \
bounds_width_scaled <= glyph_buffer.width / 2 &&
bounds_height_scaled <= glyph_buffer.height / 2 ? \
{2.0, 2.0} \
: {1.0, 1.0}
return .E, nil, over_sample
}
return .None, nil, {}
}

Binary file not shown.

346
draw.odin
View File

@@ -56,37 +56,31 @@ blit_quad :: proc( draw_list : ^DrawList, p0 : Vec2 = {0, 0}, p1 : Vec2 = {1, 1}
// p0.x, p0.y, p1.x, p1.y, uv0.x, uv0.y, uv1.x, uv1.y);
v_offset := cast(u32) len(draw_list.vertices)
vertex := Vertex {
quadv : [4]Vertex = {
{
{p0.x, p0.y},
uv0.x, uv0.y
}
append_elem( & draw_list.vertices, vertex )
vertex = Vertex {
},
{
{p0.x, p1.y},
uv0.x, uv1.y
}
append_elem( & draw_list.vertices, vertex )
vertex = Vertex {
},
{
{p1.x, p0.y},
uv1.x, uv0.y
}
append_elem( & draw_list.vertices, vertex )
vertex = Vertex {
},
{
{p1.x, p1.y},
uv1.x, uv1.y
}
append_elem( & draw_list.vertices, vertex )
}
append( & draw_list.vertices, ..quadv[:] )
quad_indices : []u32 = {
0, 1, 2,
2, 1, 3
}
for index : i32 = 0; index < 6; index += 1 {
append( & draw_list.indices, v_offset + quad_indices[ index ] )
0 + v_offset, 1 + v_offset, 2 + v_offset,
2 + v_offset, 1 + v_offset, 3 + v_offset
}
append( & draw_list.indices, ..quad_indices[:] )
return
}
@@ -94,108 +88,72 @@ cache_glyph :: proc( ctx : ^Context, font : FontID, glyph_index : Glyph, entry :
{
// profile(#procedure)
if glyph_index == Glyph(0) {
// Note(Original Author): Glyph not in current hb_font
return false
}
// Retrieve the shape definition from the parser.
shape, error := parser_get_glyph_shape(&entry.parser_info, glyph_index)
assert(error == .None)
if len(shape) == 0 {
return false
}
if ctx.debug_print_verbose
{
log( "shape:")
for vertex in shape
{
if vertex.type == .Move {
logf("move_to %d %d", vertex.x, vertex.y )
}
else if vertex.type == .Line {
logf("line_to %d %d", vertex.x, vertex.y )
}
else if vertex.type == .Curve {
logf("curve_to %d %d through %d %d", vertex.x, vertex.y, vertex.contour_x0, vertex.contour_y0 )
}
else if vertex.type == .Cubic {
logf("cubic_to %d %d through %d %d and %d %d",
vertex.x, vertex.y,
vertex.contour_x0, vertex.contour_y0,
vertex.contour_x1, vertex.contour_y1 )
}
}
}
outside := Vec2{bounds_0.x - 21, bounds_0.y - 33}
/*
Note(Original Author):
We need a random point that is outside our shape. We simply pick something diagonally across from top-left bound corner.
Note that this outside point is scaled alongside the glyph in ve_fontcache_draw_filled_path, so we don't need to handle that here.
*/
outside := Vec2 {
bounds_0.x - 21,
bounds_0.y - 33,
}
// Note(Original Author): Figure out scaling so it fits within our box.
draw := DrawCall_Default
draw.pass = FrameBufferPass.Glyph
draw.start_index = u32(len(ctx.draw_list.indices))
// Note(Original Author);
// Draw the path using simplified version of https://medium.com/@evanwallace/easy-scalable-text-rendering-on-the-gpu-c3f4d782c5ac.
// Instead of involving fragment shader code we simply make use of modern GPU ability to crunch triangles and brute force curve definitions.
path := ctx.temp_path
clear( & path)
for edge in shape do switch edge.type
{
path := &ctx.temp_path
clear(path)
append_bezier_curve :: #force_inline proc(path: ^[dynamic]Vertex, p0, p1, p2: Vec2, quality: u32) {
step := 1.0 / f32(quality)
for index := u32(1); index <= quality; index += 1 {
alpha := f32(index) * step
append( path, Vertex { pos = eval_point_on_bezier3(p0, p1, p2, alpha) } )
}
}
append_bezier_curve_cubic :: #force_inline proc(path: ^[dynamic]Vertex, p0, p1, p2, p3: Vec2, quality: u32) {
step := 1.0 / f32(quality)
for index := u32(1); index <= quality; index += 1 {
alpha := f32(index) * step
append( path, Vertex { pos = eval_point_on_bezier4(p0, p1, p2, p3, alpha) } )
}
}
for edge in shape do #partial switch edge.type {
case .Move:
if len(path) > 0 {
draw_filled_path(&ctx.draw_list, outside, path[:], scale, translate, ctx.debug_print_verbose)
clear(path)
}
clear( & path)
fallthrough
case .Line:
append( & path, Vec2{ f32(edge.x), f32(edge.y) })
append( path, Vertex { pos = Vec2 { f32(edge.x), f32(edge.y)} } )
case .Curve:
assert(len(path) > 0)
p0 := path[ len(path) - 1 ]
p0 := path[ len(path) - 1].pos
p1 := Vec2{ f32(edge.contour_x0), f32(edge.contour_y0) }
p2 := Vec2{ f32(edge.x), f32(edge.y) }
step := 1.0 / f32(ctx.curve_quality)
alpha := step
for index := i32(0); index < i32(ctx.curve_quality); index += 1 {
append( & path, eval_point_on_bezier3( p0, p1, p2, alpha ))
alpha += step
}
append_bezier_curve( path, p0, p1, p2, ctx.curve_quality )
case .Cubic:
assert( len(path) > 0)
p0 := path[ len(path) - 1]
p0 := path[ len(path) - 1].pos
p1 := Vec2{ f32(edge.contour_x0), f32(edge.contour_y0) }
p2 := Vec2{ f32(edge.contour_x1), f32(edge.contour_y1) }
p3 := Vec2{ f32(edge.x), f32(edge.y) }
step := 1.0 / f32(ctx.curve_quality)
alpha := step
for index := i32(0); index < i32(ctx.curve_quality); index += 1 {
append( & path, eval_point_on_bezier4( p0, p1, p2, p3, alpha ))
alpha += step
append_bezier_curve_cubic( path, p0, p1, p2, p3, ctx.curve_quality )
}
case .None:
assert(false, "Unknown edge type or invalid")
}
if len(path) > 0 {
draw_filled_path(&ctx.draw_list, outside, path[:], scale, translate, ctx.debug_print_verbose)
}
// Note(Original Author): Apend the draw call
draw.end_index = cast(u32) len(ctx.draw_list.indices)
draw.end_index = u32(len(ctx.draw_list.indices))
if draw.end_index > draw.start_index {
append(&ctx.draw_list.calls, draw)
}
@@ -301,10 +259,9 @@ cache_glyph_to_atlas :: proc( ctx : ^Context,
glyph_buffer.batch_x += i32(gwidth_scaled_px)
screenspace_x_form( & glyph_draw_translate, & glyph_draw_scale, glyph_buffer_size )
call : DrawCall
clear_target_region : DrawCall
{
// Queue up clear on target region on atlas
using call
using clear_target_region
pass = .Atlas
region = .Ignore
start_index = cast(u32) len(glyph_buffer.clear_draw_list.indices)
@@ -314,9 +271,12 @@ cache_glyph_to_atlas :: proc( ctx : ^Context,
{ 1.0, 1.0 }, { 1.0, 1.0 } )
end_index = cast(u32) len(glyph_buffer.clear_draw_list.indices)
append( & glyph_buffer.clear_draw_list.calls, call )
}
// Queue up a blit from glyph_update_FBO to the atlas
blit_to_atlas : DrawCall
{
using blit_to_atlas
pass = .Atlas
region = .None
start_index = cast(u32) len(glyph_buffer.draw_list.indices)
@@ -325,14 +285,17 @@ cache_glyph_to_atlas :: proc( ctx : ^Context,
src_position, src_position + src_size )
end_index = cast(u32) len(glyph_buffer.draw_list.indices)
append( & glyph_buffer.draw_list.calls, call )
}
append( & glyph_buffer.clear_draw_list.calls, clear_target_region )
append( & glyph_buffer.draw_list.calls, blit_to_atlas )
// Render glyph to glyph_update_FBO
cache_glyph( ctx, font, glyph_index, entry, vec2(bounds_0), vec2(bounds_1), glyph_draw_scale, glyph_draw_translate )
}
can_batch_glyph :: #force_inline proc( ctx : ^Context, font : FontID, entry : ^Entry, glyph_index : Glyph,
// If the glyuph is found in the atlas, nothing occurs, otherwise, the glyph call is setup to catch it to the atlas
check_glyph_in_atlas :: #force_inline proc( ctx : ^Context, font : FontID, entry : ^Entry, glyph_index : Glyph,
lru_code : u64,
atlas_index : i32,
region_kind : AtlasRegionKind,
@@ -415,9 +378,11 @@ directly_draw_massive_glyph :: proc( ctx : ^Context,
textspace_x_form( & glyph_position, & glyph_size, glyph_buffer_size )
// Add the glyph drawcall.
call : DrawCall
calls : [2]DrawCall
draw_to_target := & calls[0]
{
using call
using draw_to_target
pass = .Target_Uncached
colour = ctx.colour
start_index = u32(len(ctx.draw_list.indices))
@@ -427,18 +392,20 @@ directly_draw_massive_glyph :: proc( ctx : ^Context,
glyph_position, glyph_position + glyph_size )
end_index = u32(len(ctx.draw_list.indices))
append( & ctx.draw_list.calls, call )
}
clear_glyph_update := & calls[1]
{
// Clear glyph_update_FBO.
call.pass = .Glyph
call.start_index = 0
call.end_index = 0
call.clear_before_draw = true
append( & ctx.draw_list.calls, call )
clear_glyph_update.pass = .Glyph
clear_glyph_update.start_index = 0
clear_glyph_update.end_index = 0
clear_glyph_update.clear_before_draw = true
}
append( & ctx.draw_list.calls, ..calls[:] )
}
draw_cached_glyph :: proc( ctx : ^Context,
draw_cached_glyph :: proc( ctx : ^Context, shaped : ^ShapedText,
entry : ^Entry,
glyph_index : Glyph,
lru_code : u64,
@@ -480,12 +447,30 @@ draw_cached_glyph :: proc( ctx : ^Context,
bounds_0_scaled := bounds_0 * entry.size_scale //- { 0.5, 0.5 }
bounds_0_scaled = ceil(bounds_0_scaled)
dst := position + bounds_0_scaled * scale
dst -= glyph_padding * scale
dst := position + (bounds_0_scaled - glyph_padding) * scale
dst_scale := glyph_scale * scale
textspace_x_form( & slot_position, & glyph_scale, atlas_size )
// Shape call setup
when false
{
call := DrawCall_Default
{
using call
pass = .Target
colour = ctx.colour
start_index = cast(u32) len(shaped.draw_list.indices)
blit_quad( & shaped.draw_list,
dst, dst + dst_scale,
slot_position, slot_position + glyph_scale )
end_index = cast(u32) len(shaped.draw_list.indices)
}
append( & shaped.draw_list.calls, call )
}
else
{
// Add the glyph drawcall
call := DrawCall_Default
{
@@ -500,6 +485,7 @@ draw_cached_glyph :: proc( ctx : ^Context,
end_index = cast(u32) len(ctx.draw_list.indices)
}
append( & ctx.draw_list.calls, call )
}
return true
}
@@ -509,7 +495,7 @@ draw_cached_glyph :: proc( ctx : ^Context,
// Note(Original Author):
// WARNING: doesn't actually append drawcall; caller is responsible for actually appending the drawcall.
// ve_fontcache_draw_filled_path
draw_filled_path :: proc( draw_list : ^DrawList, outside_point : Vec2, path : []Vec2,
draw_filled_path :: proc( draw_list : ^DrawList, outside_point : Vec2, path : []Vertex,
scale := Vec2 { 1, 1 },
translate := Vec2 { 0, 0 },
debug_print_verbose : b32 = false
@@ -519,19 +505,16 @@ draw_filled_path :: proc( draw_list : ^DrawList, outside_point : Vec2, path : []
{
log("outline_path:")
for point in path {
vec := point * scale + translate
vec := point.pos * scale + translate
logf(" %0.2f %0.2f", vec.x, vec.y )
}
}
v_offset := cast(u32) len(draw_list.vertices)
for point in path {
vertex := Vertex {
pos = point * scale + translate,
u = 0,
v = 0,
}
append( & draw_list.vertices, vertex )
point := point
point.pos = point.pos * scale + translate
append( & draw_list.vertices, point )
}
outside_vertex := cast(u32) len(draw_list.vertices)
@@ -546,9 +529,12 @@ draw_filled_path :: proc( draw_list : ^DrawList, outside_point : Vec2, path : []
for index : u32 = 1; index < cast(u32) len(path); index += 1 {
indices := & draw_list.indices
append( indices, outside_vertex )
append( indices, v_offset + index - 1 )
append( indices, v_offset + index )
to_add := [3]u32 {
outside_vertex,
v_offset + index - 1,
v_offset + index
}
append( indices, ..to_add[:] )
}
}
@@ -558,30 +544,56 @@ draw_text_batch :: proc( ctx : ^Context, entry : ^Entry, shaped : ^ShapedText,
snap_width, snap_height : f32 )
{
flush_glyph_buffer_to_atlas(ctx)
atlas := & ctx.atlas
atlas_size := Vec2{ f32(atlas.width), f32(atlas.height) }
glyph_padding := f32(atlas.glyph_padding)
for index := batch_start_idx; index < batch_end_idx; index += 1
{
glyph_index := shaped.glyphs[index]
if glyph_index == 0 do continue
if parser_is_glyph_empty( & entry.parser_info, glyph_index ) do continue
if glyph_index == 0 || parser_is_glyph_empty( & entry.parser_info, glyph_index) do continue
region_kind, region, over_sample := decide_codepoint_region( ctx, entry, glyph_index )
lru_code := font_glyph_lru_code( entry.id, glyph_index )
atlas_index := cast(i32) -1
if region_kind != .E do atlas_index = LRU_get( & region.state, lru_code )
atlas_index := region_kind != .E ? LRU_get( & region.state, lru_code ) : -1
bounds_0, bounds_1 := parser_get_glyph_box( & entry.parser_info, glyph_index )
vbounds_0 := vec2(bounds_0)
vbounds_1 := vec2(bounds_1)
bounds_size := Vec2 { vbounds_1.x - vbounds_0.x, vbounds_1.y - vbounds_0.y }
shaped_position := shaped.positions[index]
glyph_translate := position + shaped_position * scale
glyph_cached := draw_cached_glyph( ctx,
entry, glyph_index,
lru_code, atlas_index,
vec2(bounds_0), vec2(bounds_1),
region_kind, region, over_sample,
glyph_translate, scale)
assert( glyph_cached == true )
if region_kind == .E
{
directly_draw_massive_glyph(ctx, entry, glyph_index,
vbounds_0, vbounds_1,
bounds_size,
over_sample, glyph_translate, scale )
}
else if atlas_index != -1
{
slot_position, _ := atlas_bbox( atlas, region_kind, atlas_index )
glyph_scale := bounds_size * entry.size_scale + glyph_padding
bounds_0_scaled := ceil( vbounds_0 * entry.size_scale )
dst := glyph_translate + (bounds_0_scaled - glyph_padding) * scale
dst_scale := glyph_scale * scale
textspace_x_form( & slot_position, & glyph_scale, atlas_size )
call := DrawCall_Default
call.pass = .Target
call.colour = ctx.colour
call.start_index = u32(len(ctx.draw_list.indices))
blit_quad(&ctx.draw_list,
dst, dst + dst_scale,
slot_position, slot_position + glyph_scale )
call.end_index = u32(len(ctx.draw_list.indices))
append(&ctx.draw_list.calls, call)
}
}
}
@@ -594,7 +606,6 @@ draw_text_shape :: proc( ctx : ^Context,
snap_width, snap_height : f32
) -> (cursor_pos : Vec2)
{
// position := position //+ ctx.cursor_pos * scale
// profile(#procedure)
batch_start_idx : i32 = 0
for index : i32 = 0; index < cast(i32) len(shaped.glyphs); index += 1
@@ -607,9 +618,9 @@ draw_text_shape :: proc( ctx : ^Context,
atlas_index := cast(i32) -1
if region_kind != .E do atlas_index = LRU_get( & region.state, lru_code )
if can_batch_glyph( ctx, font, entry, glyph_index, lru_code, atlas_index, region_kind, region, over_sample ) do continue
if check_glyph_in_atlas( ctx, font, entry, glyph_index, lru_code, atlas_index, region_kind, region, over_sample ) do continue
// Glyph has not been catched, needs to be directly drawn.
// We can no longer directly append the shape as it has missing glyphs in the atlas
// First batch the other cached glyphs
// flush_glyph_buffer_to_atlas(ctx)
@@ -621,10 +632,10 @@ draw_text_shape :: proc( ctx : ^Context,
batch_start_idx = index
}
// flush_glyph_buffer_to_atlas(ctx)
draw_text_batch( ctx, entry, shaped, batch_start_idx, cast(i32) len(shaped.glyphs), position, scale, snap_width , snap_height )
reset_batch_codepoint_state( ctx )
cursor_pos = shaped.end_cursor_pos
cursor_pos = position + shaped.end_cursor_pos * scale
return
}
@@ -650,6 +661,34 @@ flush_glyph_buffer_to_atlas :: proc( ctx : ^Context )
}
}
// flush_glyph_buffer_to_atlas :: proc( ctx : ^Context )
// {
// // profile(#procedure)
// // Flush drawcalls to draw list
// if len(ctx.glyph_buffer.clear_draw_list.calls) > 0 {
// merge_draw_list( & ctx.draw_list, & ctx.glyph_buffer.clear_draw_list)
// clear_draw_list( & ctx.glyph_buffer.clear_draw_list)
// }
// if len(ctx.glyph_buffer.draw_list.calls) > 0 {
// merge_draw_list( & ctx.draw_list, & ctx.glyph_buffer.draw_list)
// clear_draw_list( & ctx.glyph_buffer.draw_list)
// }
// // Clear glyph_update_FBO
// if ctx.glyph_buffer.batch_x != 0
// {
// call := DrawCall {
// pass = .Glyph,
// start_index = 0,
// end_index = 0,
// clear_before_draw = true,
// }
// append( & ctx.draw_list.calls, call)
// ctx.glyph_buffer.batch_x = 0
// }
// }
// ve_fontcache_merge_drawlist
merge_draw_list :: proc( dst, src : ^DrawList )
{
@@ -677,39 +716,34 @@ merge_draw_list :: proc( dst, src : ^DrawList )
}
}
optimize_draw_list :: proc( draw_list : ^DrawList, call_offset : int )
{
optimize_draw_list :: proc(draw_list: ^DrawList, call_offset: int) {
// profile(#procedure)
assert(draw_list != nil)
write_index : int = call_offset
for index : int = 1 + call_offset; index < len(draw_list.calls); index += 1
{
assert( write_index <= index )
draw_0 := & draw_list.calls[ write_index ]
draw_1 := & draw_list.calls[ index ]
merge : b32 = true
if draw_0.pass != draw_1.pass do merge = false
if draw_0.end_index != draw_1.start_index do merge = false
if draw_0.region != draw_1.region do merge = false
if draw_1.clear_before_draw do merge = false
if draw_0.colour != draw_1.colour do merge = false
if merge
{
// logf("merging %v : %v %v", draw_0.pass, write_index, index )
draw_0.end_index = draw_1.end_index
draw_1.start_index = 0
draw_1.end_index = 0
can_merge_draw_calls :: #force_inline proc "contextless" ( a, b : ^DrawCall ) -> bool {
result := \
a.pass == b.pass &&
a.end_index == b.start_index &&
a.region == b.region &&
a.colour == b.colour &&
! b.clear_before_draw
return result
}
else
write_index := call_offset
for read_index := call_offset + 1; read_index < len(draw_list.calls); read_index += 1
{
// logf("can't merge %v : %v %v", draw_0.pass, write_index, index )
draw_current := & draw_list.calls[write_index]
draw_next := & draw_list.calls[read_index]
if can_merge_draw_calls(draw_current, draw_next) {
draw_current.end_index = draw_next.end_index
}
else {
// Move to the next write position and copy the draw call
write_index += 1
if write_index != index {
draw_2 := & draw_list.calls[ write_index ]
draw_2^ = draw_1^
if write_index != read_index {
draw_list.calls[write_index] = (draw_next^)
}
}
}

View File

@@ -23,10 +23,10 @@ import "core:mem"
Arena :: mem.Arena
arena_allocator :: mem.arena_allocator
arena_init :: mem.arena_init
// import "codebase:grime"
// log :: grime.log
// logf :: grime.logf
// profile :: grime.profile
import "codebase:grime"
log :: grime.log
logf :: grime.logf
profile :: grime.profile
//#region("Proc overload mappings")

257
misc.odin
View File

@@ -1,7 +1,10 @@
package VEFontCache
import "base:runtime"
import core_log "core:log"
import "core:simd"
import "core:math"
// import core_log "core:log"
Colour :: [4]f32
Vec2 :: [2]f32
@@ -17,23 +20,23 @@ vec2i_from_vec2 :: #force_inline proc "contextless" ( v2 : Vec2 ) -> Vec2
// This buffer is used below excluisvely to prevent any allocator recusion when verbose logging from allocators.
// This means a single line is limited to 32k buffer (increase naturally if this SOMEHOW becomes a bottleneck...)
Logger_Allocator_Buffer : [32 * Kilobyte]u8
// Logger_Allocator_Buffer : [32 * Kilobyte]u8
log :: proc( msg : string, level := core_log.Level.Info, loc := #caller_location ) {
temp_arena : Arena; arena_init(& temp_arena, Logger_Allocator_Buffer[:])
context.allocator = arena_allocator(& temp_arena)
context.temp_allocator = arena_allocator(& temp_arena)
// log :: proc( msg : string, level := core_log.Level.Info, loc := #caller_location ) {
// temp_arena : Arena; arena_init(& temp_arena, Logger_Allocator_Buffer[:])
// context.allocator = arena_allocator(& temp_arena)
// context.temp_allocator = arena_allocator(& temp_arena)
core_log.log( level, msg, location = loc )
}
// core_log.log( level, msg, location = loc )
// }
logf :: proc( fmt : string, args : ..any, level := core_log.Level.Info, loc := #caller_location ) {
temp_arena : Arena; arena_init(& temp_arena, Logger_Allocator_Buffer[:])
context.allocator = arena_allocator(& temp_arena)
context.temp_allocator = arena_allocator(& temp_arena)
// logf :: proc( fmt : string, args : ..any, level := core_log.Level.Info, loc := #caller_location ) {
// temp_arena : Arena; arena_init(& temp_arena, Logger_Allocator_Buffer[:])
// context.allocator = arena_allocator(& temp_arena)
// context.temp_allocator = arena_allocator(& temp_arena)
core_log.logf( level, fmt, ..args, location = loc )
}
// core_log.logf( level, fmt, ..args, location = loc )
// }
reload_array :: proc( self : ^[dynamic]$Type, allocator : Allocator ) {
raw := transmute( ^runtime.Raw_Dynamic_Array) self
@@ -50,14 +53,77 @@ font_glyph_lru_code :: #force_inline proc "contextless" ( font : FontID, glyph_i
return
}
shape_lru_hash :: #force_inline proc "contextless" ( label : string ) -> u64 {
hash : u64
for str_byte in transmute([]byte) label {
hash = ((hash << 8) + hash) + u64(str_byte)
}
return hash
is_empty :: #force_inline proc ( ctx : ^Context, entry : ^Entry, glyph_index : Glyph ) -> b32
{
if glyph_index == 0 do return true
if parser_is_glyph_empty( & entry.parser_info, glyph_index ) do return true
return false
}
mark_batch_codepoint_seen :: #force_inline proc ( ctx : ^Context, lru_code : u64 ) {
ctx.temp_codepoint_seen[lru_code] = true
ctx.temp_codepoint_seen_num += 1
}
reset_batch_codepoint_state :: #force_inline proc( ctx : ^Context ) {
clear_map( & ctx.temp_codepoint_seen )
ctx.temp_codepoint_seen_num = 0
}
screenspace_x_form :: #force_inline proc "contextless" ( position, scale : ^Vec2, size : Vec2 )
{
if true
{
pos_64 := vec2_64_from_vec2(position^)
scale_64 := vec2_64_from_vec2(scale^)
quotient : Vec2_64 = 1.0 / vec2_64(size)
pos_64 = pos_64 * quotient * 2.0 - 1.0
scale_64 = scale_64 * quotient * 2.0
(position^) = { f32(pos_64.x), f32(pos_64.y) }
(scale^) = { f32(scale_64.x), f32(scale_64.y) }
}
else
{
pos := position^
scale_32 := scale^
quotient : Vec2 = 1.0 / size
pos = pos * quotient * 2.0 - 1.0
scale_32 = scale_32 * quotient * 2.0
(position^) = pos
(scale^) = scale_32
}
}
textspace_x_form :: #force_inline proc "contextless" ( position, scale : ^Vec2, size : Vec2 )
{
if true
{
pos_64 := vec2_64_from_vec2(position^)
scale_64 := vec2_64_from_vec2(scale^)
quotient : Vec2_64 = 1.0 / vec2_64(size)
pos_64 *= quotient
scale_64 *= quotient
(position^) = { f32(pos_64.x), f32(pos_64.y) }
(scale^) = { f32(scale_64.x), f32(scale_64.y) }
}
else
{
quotient : Vec2 = 1.0 / size
(position^) *= quotient
(scale^) *= quotient
}
}
Use_SIMD_For_Bezier_Ops :: true
when ! Use_SIMD_For_Bezier_Ops
{
// For a provided alpha value,
// allows the function to calculate the position of a point along the curve at any given fraction of its total length
// ve_fontcache_eval_bezier (quadratic)
@@ -104,62 +170,119 @@ eval_point_on_bezier4 :: #force_inline proc "contextless" ( p0, p1, p2, p3 : Vec
point := start_point + control_a + control_b + end_point
return { f32(point.x), f32(point.y) }
}
is_empty :: #force_inline proc ( ctx : ^Context, entry : ^Entry, glyph_index : Glyph ) -> b32
{
if glyph_index == 0 do return true
if parser_is_glyph_empty( & entry.parser_info, glyph_index ) do return true
return false
}
mark_batch_codepoint_seen :: #force_inline proc ( ctx : ^Context, lru_code : u64 ) {
ctx.temp_codepoint_seen[lru_code] = true
ctx.temp_codepoint_seen_num += 1
}
reset_batch_codepoint_state :: #force_inline proc( ctx : ^Context ) {
clear_map( & ctx.temp_codepoint_seen )
ctx.temp_codepoint_seen_num = 0
}
screenspace_x_form :: #force_inline proc "contextless" ( position, scale : ^Vec2, size : Vec2 ) {
when true
{
pos_64 := vec2_64_from_vec2(position^)
scale_64 := vec2_64_from_vec2(scale^)
quotient : Vec2_64 = 1.0 / vec2_64(size)
pos_64 = pos_64 * quotient * 2.0 - 1.0
scale_64 = scale_64 * quotient * 2.0
(position^) = { f32(pos_64.x), f32(pos_64.y) }
(scale^) = { f32(scale_64.x), f32(scale_64.y) }
}
else
{
quotient : Vec2 = 1.0 / size
(position^) *= quotient * 2.0 - 1.0
(scale^) *= quotient * 2.0
}
Vec2_SIMD :: simd.f32x4
vec2_to_simd :: #force_inline proc "contextless" (v: Vec2) -> Vec2_SIMD {
return Vec2_SIMD{v.x, v.y, 0, 0}
}
textspace_x_form :: #force_inline proc "contextless" ( position, scale : ^Vec2, size : Vec2 ) {
when true
simd_to_vec2 :: #force_inline proc "contextless" (v: Vec2_SIMD) -> Vec2 {
return Vec2{ simd.extract(v, 0), simd.extract(v, 1) }
}
vec2_add_simd :: #force_inline proc "contextless" (a, b: Vec2) -> Vec2 {
simd_a := vec2_to_simd(a)
simd_b := vec2_to_simd(b)
result := simd.add(simd_a, simd_b)
return simd_to_vec2(result)
}
vec2_sub_simd :: #force_inline proc "contextless" (a, b: Vec2) -> Vec2 {
simd_a := vec2_to_simd(a)
simd_b := vec2_to_simd(b)
result := simd.sub(simd_a, simd_b)
return simd_to_vec2(result)
}
vec2_mul_simd :: #force_inline proc "contextless" (a: Vec2, s: f32) -> Vec2 {
simd_a := vec2_to_simd(a)
simd_s := Vec2_SIMD{s, s, s, s}
result := simd.mul(simd_a, simd_s)
return simd_to_vec2(result)
}
vec2_div_simd :: #force_inline proc "contextless" (a: Vec2, s: f32) -> Vec2 {
simd_a := vec2_to_simd(a)
simd_s := Vec2_SIMD{s, s, s, s}
result := simd.div(simd_a, simd_s)
return simd_to_vec2(result)
}
vec2_dot_simd :: #force_inline proc "contextless" (a, b: Vec2) -> f32 {
simd_a := vec2_to_simd(a)
simd_b := vec2_to_simd(b)
result := simd.mul(simd_a, simd_b)
return simd.reduce_add_ordered(result)
}
vec2_length_sqr_simd :: #force_inline proc "contextless" (a: Vec2) -> f32 {
return vec2_dot_simd(a, a)
}
vec2_length_simd :: #force_inline proc "contextless" (a: Vec2) -> f32 {
return math.sqrt(vec2_length_sqr_simd(a))
}
vec2_normalize_simd :: #force_inline proc "contextless" (a: Vec2) -> Vec2 {
len := vec2_length_simd(a)
if len > 0 {
inv_len := 1.0 / len
return vec2_mul_simd(a, inv_len)
}
return a
}
// SIMD-optimized version of eval_point_on_bezier3
eval_point_on_bezier3 :: #force_inline proc "contextless" (p0, p1, p2: Vec2, alpha: f32) -> Vec2
{
pos_64 := vec2_64_from_vec2(position^)
scale_64 := vec2_64_from_vec2(scale^)
simd_p0 := vec2_to_simd(p0)
simd_p1 := vec2_to_simd(p1)
simd_p2 := vec2_to_simd(p2)
quotient : Vec2_64 = 1.0 / vec2_64(size)
pos_64 *= quotient
scale_64 *= quotient
one_minus_alpha := 1.0 - alpha
weight_start := one_minus_alpha * one_minus_alpha
weight_control := 2.0 * one_minus_alpha * alpha
weight_end := alpha * alpha
(position^) = { f32(pos_64.x), f32(pos_64.y) }
(scale^) = { f32(scale_64.x), f32(scale_64.y) }
simd_weights := Vec2_SIMD{weight_start, weight_control, weight_end, 0}
result := simd.add(
simd.add(
simd.mul( simd_p0, simd.swizzle( simd_weights, 0, 0, 0, 0) ),
simd.mul( simd_p1, simd.swizzle( simd_weights, 1, 1, 1, 1) )
),
simd.mul( simd_p2, simd.swizzle(simd_weights, 2, 2, 2, 2) )
)
return simd_to_vec2(result)
}
else
eval_point_on_bezier4 :: #force_inline proc "contextless" (p0, p1, p2, p3: Vec2, alpha: f32) -> Vec2
{
quotient : Vec2 = 1.0 / size
(position^) *= quotient
(scale^) *= quotient
simd_p0 := vec2_to_simd(p0)
simd_p1 := vec2_to_simd(p1)
simd_p2 := vec2_to_simd(p2)
simd_p3 := vec2_to_simd(p3)
one_minus_alpha := 1.0 - alpha
weight_start := one_minus_alpha * one_minus_alpha * one_minus_alpha
weight_c_a := 3 * one_minus_alpha * one_minus_alpha * alpha
weight_c_b := 3 * one_minus_alpha * alpha * alpha
weight_end := alpha * alpha * alpha
simd_weights := Vec2_SIMD { weight_start, weight_c_a, weight_c_b, weight_end }
result := simd.add(
simd.add(
simd.mul( simd_p0, simd.swizzle(simd_weights, 0, 0, 0, 0) ),
simd.mul( simd_p1, simd.swizzle(simd_weights, 1, 1, 1, 1) )
),
simd.add(
simd.mul( simd_p2, simd.swizzle(simd_weights, 2, 2, 2, 2) ),
simd.mul( simd_p3, simd.swizzle(simd_weights, 3, 3, 3, 3) )
)
)
return simd_to_vec2(result)
}
}

View File

@@ -1,11 +1,10 @@
package VEFontCache
import "core:math"
ShapedText :: struct {
glyphs : [dynamic]Glyph,
positions : [dynamic]Vec2,
end_cursor_pos : Vec2,
size : Vec2,
}
ShapedTextCache :: struct {
@@ -14,36 +13,33 @@ ShapedTextCache :: struct {
next_cache_id : i32,
}
shape_lru_hash :: #force_inline proc "contextless" ( hash : ^u64, bytes : []byte ) {
for value in bytes {
(hash^) = (( (hash^) << 8) + (hash^) ) + u64(value)
}
}
shape_text_cached :: proc( ctx : ^Context, font : FontID, text_utf8 : string, entry : ^Entry ) -> ^ShapedText
{
// profile(#procedure)
@static buffer : [64 * Kilobyte]byte
font := font
text_size := len(text_utf8)
sice_end_offset := size_of(FontID) + len(text_utf8)
buffer_slice := buffer[:]
font_bytes := slice_ptr( transmute(^byte) & font, size_of(FontID) )
copy( buffer_slice, font_bytes )
text_bytes := transmute( []byte) text_utf8
buffer_slice_post_font := buffer[ size_of(FontID) : sice_end_offset ]
copy( buffer_slice_post_font, text_bytes )
hash := shape_lru_hash( transmute(string) buffer[: sice_end_offset ] )
lru_code : u64
shape_lru_hash( & lru_code, font_bytes )
shape_lru_hash( & lru_code, text_bytes )
shape_cache := & ctx.shape_cache
state := & ctx.shape_cache.state
shape_cache_idx := LRU_get( state, hash )
shape_cache_idx := LRU_get( state, lru_code )
if shape_cache_idx == -1
{
if shape_cache.next_cache_id < i32(state.capacity) {
shape_cache_idx = shape_cache.next_cache_id
shape_cache.next_cache_id += 1
evicted := LRU_put( state, hash, shape_cache_idx )
assert( evicted == hash )
evicted := LRU_put( state, lru_code, shape_cache_idx )
}
else
{
@@ -53,16 +49,16 @@ shape_text_cached :: proc( ctx : ^Context, font : FontID, text_utf8 : string, en
shape_cache_idx = LRU_peek( state, next_evict_idx, must_find = true )
assert( shape_cache_idx != - 1 )
LRU_put( state, hash, shape_cache_idx )
LRU_put( state, lru_code, shape_cache_idx )
}
shape_text_uncached( ctx, font, text_utf8, entry, & shape_cache.storage[ shape_cache_idx ] )
shape_entry := & shape_cache.storage[ shape_cache_idx ]
shape_text_uncached( ctx, font, text_utf8, entry, shape_entry )
}
return & shape_cache.storage[ shape_cache_idx ]
}
// TODO(Ed): Make position rounding an option
shape_text_uncached :: proc( ctx : ^Context, font : FontID, text_utf8 : string, entry : ^Entry, output : ^ShapedText )
{
// profile(#procedure)
@@ -74,12 +70,17 @@ shape_text_uncached :: proc( ctx : ^Context, font : FontID, text_utf8 : string,
clear( & output.glyphs )
clear( & output.positions )
ascent, descent, line_gap := parser_get_font_vertical_metrics( & entry.parser_info )
ascent_i32, descent_i32, line_gap_i32 := parser_get_font_vertical_metrics( & entry.parser_info )
ascent := f32(ascent_i32)
descent := f32(descent_i32)
line_gap := f32(line_gap_i32)
line_height := (ascent - descent + line_gap) * entry.size_scale
if use_full_text_shape
{
// assert( entry.shaper_info != nil )
shaper_shape_from_text( & ctx.shaper_ctx, & entry.shaper_info, output, text_utf8, ascent, descent, line_gap, entry.size, entry.size_scale )
shaper_shape_from_text( & ctx.shaper_ctx, & entry.shaper_info, output, text_utf8, ascent_i32, descent_i32, line_gap_i32, entry.size, entry.size_scale )
// TODO(Ed): Need to be able to provide the text height as well
return
}
else
@@ -87,13 +88,10 @@ shape_text_uncached :: proc( ctx : ^Context, font : FontID, text_utf8 : string,
// Note(Original Author):
// We use our own fallback dumbass text shaping.
// WARNING: PLEASE USE HARFBUZZ. GOOD TEXT SHAPING IS IMPORTANT FOR INTERNATIONALISATION.
ascent := f32(ascent)
descent := f32(descent)
line_gap := f32(line_gap)
line_count : int = 1
max_line_width : f32 = 0
position : Vec2
advance : i32 = 0
to_left_side_glyph : i32 = 0
prev_codepoint : rune
for codepoint in text_utf8
@@ -104,29 +102,34 @@ shape_text_uncached :: proc( ctx : ^Context, font : FontID, text_utf8 : string,
}
if codepoint == '\n'
{
line_count += 1
max_line_width = max(max_line_width, position.x)
position.x = 0.0
position.y -= (ascent - descent + line_gap) * entry.size_scale
position.y -= line_height
position.y = ceil(position.y)
prev_codepoint = rune(0)
continue
}
if abs( entry.size ) <= Advance_Snap_Smallfont_Size {
position.x = math.ceil( position.x )
position.x = ceil( position.x )
}
append( & output.glyphs, parser_find_glyph_index( & entry.parser_info, codepoint ))
advance, to_left_side_glyph = parser_get_codepoint_horizontal_metrics( & entry.parser_info, codepoint )
advance, _ := parser_get_codepoint_horizontal_metrics( & entry.parser_info, codepoint )
append( & output.positions, Vec2 {
ceil(position.x),
position.y
})
// append( & output.positions, position )
position.x += f32(advance) * entry.size_scale
prev_codepoint = codepoint
}
output.end_cursor_pos = position
max_line_width = max(max_line_width, position.x)
output.size.x = max_line_width
output.size.y = f32(line_count) * line_height
}
}