300 lines
14 KiB
Odin
300 lines
14 KiB
Odin
package sectr
|
||
|
||
/*
|
||
This is heavy work-in-progress personalized math definitions.
|
||
|
||
Desire is for the definitions to be from a geo alg / clifford alg lens instead of linear alg.
|
||
Want to maximize use of optimal linear alg operations in the defs though already defined by odin's linear alg library.
|
||
|
||
I apologize if this looks terrible my intuiton for math is very sub-par symbolically.
|
||
*/
|
||
|
||
import "base:intrinsics"
|
||
import "core:math"
|
||
import la "core:math/linalg"
|
||
|
||
@private IS_NUMERIC :: intrinsics.type_is_numeric
|
||
|
||
Axis2 :: enum i32 {
|
||
Invalid = -1,
|
||
X = 0,
|
||
Y = 1,
|
||
Count,
|
||
}
|
||
|
||
f32_Infinity :: 0x7F800000
|
||
f32_Min :: 0x00800000
|
||
|
||
// Note(Ed) : I don't see an intrinsict available anywhere for this. So I'll be using the Terathon non-sse impl
|
||
// Inverse Square Root
|
||
// C++ Source https://github.com/EricLengyel/Terathon-Math-Library/blob/main/TSMath.cpp#L191
|
||
inverse_sqrt_f32 :: proc "contextless" ( value: f32 ) -> f32
|
||
{
|
||
if ( value < f32_Min) { return f32_Infinity }
|
||
value_u32 := transmute(u32) value
|
||
|
||
initial_approx := 0x5F375A86 - (value_u32 >> 1)
|
||
refined_approx := transmute(f32) initial_approx
|
||
|
||
// Newton–Raphson method for getting better approximations of square roots
|
||
// Done twice for greater accuracy.
|
||
refined_approx = refined_approx * (1.5 - value * 0.5 * refined_approx * refined_approx )
|
||
refined_approx = refined_approx * (1.5 - value * 0.5 * refined_approx * refined_approx )
|
||
// refined_approx = (0.5 * refined_approx) * (3.0 - value * refined_approx * refined_approx)
|
||
// refined_approx = (0.5 * refined_approx) * (3.0 - value * refined_approx * refined_approx)
|
||
return refined_approx
|
||
}
|
||
|
||
is_power_of_two_u32 :: #force_inline proc "contextless" (value: u32) -> b32 { return value != 0 && ( value & ( value - 1 )) == 0 }
|
||
|
||
mov_avg_exp_f32 := #force_inline proc "contextless" (alpha, delta_interval, last_value: f32) -> f32 { return (delta_interval * alpha) + (delta_interval * (1.0 - alpha)) }
|
||
mov_avg_exp_f64 := #force_inline proc "contextless" (alpha, delta_interval, last_value: f64) -> f64 { return (delta_interval * alpha) + (delta_interval * (1.0 - alpha)) }
|
||
|
||
Quat_F4 :: quaternion128
|
||
V2_S4 :: [2]i32
|
||
V3_S4 :: [3]i32
|
||
|
||
M2_F4 :: matrix [2, 2] f32 // Column Major
|
||
R2_F4 :: struct { p0, p1: V2_F4 } // Column Major (they are equivalnet)
|
||
UR2_F4 :: distinct R2_F4
|
||
|
||
r2f4_zero :: R2_F4 {}
|
||
|
||
r2f4 :: #force_inline proc "contextless" (a, b: V2_F4) -> R2_F4 { return R2_F4{a, b} }
|
||
|
||
m2f4_from_r2f4 :: #force_inline proc "contextless" (range: R2_F4) -> M2_F4 { return transmute(M2_F4)range }
|
||
r2f4_from_m2f4 :: #force_inline proc "contextless" (m: M2_F4) -> R2_F4 { return transmute(R2_F4)m }
|
||
|
||
add_r2f4 :: #force_inline proc "contextless" (a, b: R2_F4) -> R2_F4 { return r2f4_from_m2f4(m2f4_from_r2f4(a) + m2f4_from_r2f4(b)) }
|
||
sub_r2f4 :: #force_inline proc "contextless" (a, b: R2_F4) -> R2_F4 { return r2f4_from_m2f4(m2f4_from_r2f4(a) - m2f4_from_r2f4(b)) }
|
||
equal_r2f4 :: #force_inline proc "contextless" (a, b: R2_F4) -> b32 { result := a.p0 == b.p0 && a.p1 == b.p1; return b32(result) }
|
||
|
||
// Will resolve the largest range possible given a & b.
|
||
join_r2f4 :: #force_inline proc "contextless" (a, b: R2_F4) -> (joined : R2_F4) { joined.p0 = min(a.p0, b.p0); joined.p1 = max(a.p1, b.p1); return }
|
||
size_r2f4 :: #force_inline proc "contextless" (value: R2_F4) -> V2_F4 { return {abs(value.p1.x - value.p0.x), abs(value.p0.y - value.p1.y) }}
|
||
|
||
min :: la.min
|
||
max :: la.max
|
||
|
||
sqrt :: la.sqrt
|
||
|
||
sdot :: la.scalar_dot
|
||
vdot :: la.vector_dot
|
||
qdot_f2 :: la.quaternion64_dot
|
||
qdot_f4 :: la.quaternion128_dot
|
||
qdot_f8 :: la.quaternion256_dot
|
||
inner_product :: dot
|
||
outer_product :: intrinsics.outer_product
|
||
|
||
cross_s :: la.scalar_cross
|
||
cross_v2 :: la.vector_cross2
|
||
cross_v3 :: la.vector_cross3
|
||
|
||
/*
|
||
V2_F2: 2D Vector (4-Byte Float) 4D Extension (x, y, z : 0, w : 0)
|
||
BV2_F2: 2D Bivector (4-Byte Float)
|
||
T2_F2: 3x3 Matrix (4-Byte Float) where 3rd row is always (0, 0, 1)
|
||
Rotor2_F4: Rotor 2D (4-Byte Float) s is scalar.
|
||
*/
|
||
V2_F4 :: [2]f32
|
||
BiV2_F4 :: distinct f32
|
||
T2_F4 :: matrix [3, 3] f32
|
||
UV2_F4 :: distinct V2_F4
|
||
Rotor2_F4 :: struct { bv: BiV2_F4, s: f32 }
|
||
|
||
rotor2f4_to_complex64 :: #force_inline proc "contextless" (rotor: Rotor2_F4) -> complex64 { return transmute(complex64) rotor; }
|
||
|
||
v2f4_from_f32s :: #force_inline proc "contextless" (x, y: f32 ) -> V2_F4 { return {x, y} }
|
||
v2f4_from_scalar :: #force_inline proc "contextless" (scalar: f32 ) -> V2_F4 { return {scalar, scalar}}
|
||
v2f4_from_v2s4 :: #force_inline proc "contextless" (v2i: V2_S4) -> V2_F4 { return {f32(v2i.x), f32(v2i.y)}}
|
||
v2s4_from_v2f4 :: #force_inline proc "contextless" (v2: V2_F4) -> V2_S4 { return {i32(v2.x), i32(v2.y) }}
|
||
|
||
/*
|
||
PointFlat2 : CGA: 2D flat point (x, y, z)
|
||
Line : PGA: 2D line (x, y, z)
|
||
*/
|
||
|
||
P2_F4 :: distinct V2_F4
|
||
PF2_F4 :: distinct V3_F4
|
||
L2_F4 :: distinct V3_F4
|
||
|
||
/*
|
||
V3_F4: 3D Vector (x, y, z) (3x1) 4D Expression : (x, y, z, 0)
|
||
BiV3_F4: 3D Bivector (yz, zx, xy) (3x1)
|
||
TriV3_F4: 3D Trivector (xyz) (1x1)
|
||
Rotor3: 3D Rotation Versor-Transform (4x1)
|
||
Motor3: 3D Rotation & Translation Transform (4x2)
|
||
*/
|
||
|
||
V3_F4 :: [3]f32
|
||
V4_F4 :: [4]f32
|
||
|
||
BiV3_F4 :: struct #raw_union {
|
||
using _ : struct { yz, zx, xy : f32 },
|
||
using xyz : V3_F4,
|
||
}
|
||
|
||
TriV3_F4 :: distinct f32
|
||
|
||
Rotor3_F4 :: struct {
|
||
using bv: BiV3_F4,
|
||
s: f32, // Scalar
|
||
}
|
||
|
||
Shifter3_F4 :: struct {
|
||
using bv: BiV3_F4,
|
||
s: f32, // Scalar
|
||
}
|
||
|
||
Motor3 :: struct {
|
||
rotor: Rotor3_F4,
|
||
md: Shifter3_F4,
|
||
}
|
||
|
||
UV3_F4 :: distinct V3_F4
|
||
UV4_F4 :: distinct V4_F4
|
||
UBiV3_F4 :: distinct BiV3_F4
|
||
|
||
//region Vec3
|
||
|
||
v3f4_via_f32s :: #force_inline proc "contextless" (x, y, z: f32) -> V3_F4 { return {x, y, z} }
|
||
|
||
// complement_vec3 :: #force_inline proc "contextless" ( v : Vec3 ) -> Bivec3 {return transmute(Bivec3) v}
|
||
|
||
inverse_mag_v3f4 :: #force_inline proc "contextless" (v: V3_F4) -> (result : f32) { square := pow2_v3f4(v); result = inverse_sqrt_f32( square ); return }
|
||
magnitude_v3f4 :: #force_inline proc "contextless" (v: V3_F4) -> (mag: f32) { square := pow2_v3f4(v); mag = sqrt(square); return }
|
||
normalize_v3f4 :: #force_inline proc "contextless" (v: V3_F4) -> (unit_v: UV3_F4) { unit_v = transmute(UV3_F4) (v * inverse_mag_v3f4(v)); return }
|
||
|
||
pow2_v3f4 :: #force_inline proc "contextless" (v: V3_F4) -> (s: f32) { return vdot(v, v) }
|
||
|
||
project_v3f4 :: proc "contextless" (a, b: V3_F4) -> (a_to_b: V3_F4) { panic_contextless("not implemented") }
|
||
reject_v3f4 :: proc "contextless" (a, b: V3_F4 ) -> (a_from_b: V3_F4) { panic_contextless("not implemented") }
|
||
|
||
project_v3f4_uv3f4 :: #force_inline proc "contextless" (v: V3_F4, u: UV3_F4) -> (v_to_u: V3_F4) { inner := vdot(v, v3(u)); v_to_u = v3(u) * inner; return }
|
||
project_uv3f4_v3f4 :: #force_inline proc "contextless" (u: UV3_F4, v: V3_F4) -> (u_to_v: V3_F4) { inner := vdot(v3(u), v); u_to_v = v * inner; return }
|
||
|
||
// Anti-wedge of vectors
|
||
regress_v3f4 :: #force_inline proc "contextless" (a, b : V3_F4) -> f32 { return a.x * b.y - a.y * b.x }
|
||
|
||
reject_v3f4_uv3f4 :: #force_inline proc "contextless" (v: V3_F4, u: UV3_F4) -> ( v_from_u: V3_F4) { inner := vdot(v, v3(u)); v_from_u = (v - v3(u)) * inner; return }
|
||
reject_uv3f4_v3f4 :: #force_inline proc "contextless" (v: V3_F4, u: UV3_F4) -> ( u_from_v: V3_F4) { inner := vdot(v3(u), v); u_from_v = (v3(u) - v) * inner; return }
|
||
|
||
// Combines the deimensions that are present in a & b
|
||
wedge_v3f4 :: #force_inline proc "contextless" (a, b: V3_F4) -> (bv : BiV3_F4) {
|
||
yzx_zxy := a.yzx * b.zxy
|
||
zxy_yzx := a.zxy * b.yzx
|
||
bv = transmute(BiV3_F4) (yzx_zxy - zxy_yzx)
|
||
return
|
||
}
|
||
|
||
//endregion Vec3
|
||
|
||
//region Bivec3
|
||
biv3f4_via_f32s :: #force_inline proc "contextless" (yz, zx, xy : f32) -> BiV3_F4 {return { xyz = {yz, zx, xy} }}
|
||
|
||
complement_biv3f4 :: #force_inline proc "contextless" (b : BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) b.xyz} // TODO(Ed): Review this.
|
||
|
||
//region Operations isomoprhic to vectors
|
||
negate_biv3f4 :: #force_inline proc "contextless" (b : BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) -b.xyz}
|
||
add_biv3f4 :: #force_inline proc "contextless" (a, b: BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) (a.xyz + b.xyz)}
|
||
sub_biv3f4 :: #force_inline proc "contextless" (a, b: BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) (a.xyz - b.xyz)}
|
||
mul_biv3f4 :: #force_inline proc "contextless" (a, b: BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) (a.xyz * b.xyz)}
|
||
mul_biv3f4_f32 :: #force_inline proc "contextless" (b: BiV3_F4, s: f32) -> BiV3_F4 {return transmute(BiV3_F4) (b.xyz * s)}
|
||
mul_f32_biv3f4 :: #force_inline proc "contextless" (s: f32, b: BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) (s * b.xyz)}
|
||
div_biv3f4_f32 :: #force_inline proc "contextless" (b: BiV3_F4, s: f32) -> BiV3_F4 {return transmute(BiV3_F4) (b.xyz / s)}
|
||
inverse_mag_biv3f4 :: #force_inline proc "contextless" (b: BiV3_F4) -> f32 {return inverse_mag_v3f4(b.xyz)}
|
||
magnitude_biv3f4 :: #force_inline proc "contextless" (b: BiV3_F4) -> f32 {return magnitude_v3f4 (b.xyz)}
|
||
normalize_biv3f4 :: #force_inline proc "contextless" (b: BiV3_F4) -> UBiV3_F4 {return transmute(UBiV3_F4) normalize_v3f4(b.xyz)}
|
||
squared_mag_biv3f4 :: #force_inline proc "contextless" (b: BiV3_F4) -> f32 {return pow2_v3f4(b.xyz)}
|
||
//endregion Operations isomoprhic to vectors
|
||
|
||
// The wedge of a bi-vector in 3D vector space results in a Trivector represented as a scalar.
|
||
// This scalar usually resolves to zero with six possible exceptions that lead to the negative volume element.
|
||
wedge_biv3f4 :: #force_inline proc "contextless" (a, b: BiV3_F4) -> f32 { s := a.yz + b.yz + a.zx + b.zx + a.xy + b.xy; return s }
|
||
|
||
// anti-wedge (Combines dimensions that are absent from a & b)
|
||
regress_biv3f4 :: #force_inline proc "contextless" (a, b: BiV3_F4) -> V3_F4 {return wedge_v3f4(v3(a), v3(b))}
|
||
regress_biv3f4_v3f4 :: #force_inline proc "contextless" (b: BiV3_F4, v: V3_F4) -> f32 {return regress_v3f4(b.xyz, v)}
|
||
regress_v3_biv3f4 :: #force_inline proc "contextless" (v: V3_F4, b: BiV3_F4) -> f32 {return regress_v3f4(b.xyz, v)}
|
||
|
||
//endregion biv3f4
|
||
|
||
//region Rotor3
|
||
|
||
rotor3f4_via_comps_f4 :: proc "contextless" (yz, zx, xy, scalar : f32) -> Rotor3_F4 { return Rotor3_F4 {biv3f4_via_f32s(yz, zx, xy), scalar} }
|
||
|
||
rotor3f4_via_bv_s_f4 :: #force_inline proc "contextless" (bv: BiV3_F4, scalar: f32) -> (rotor : Rotor3_F4) { return Rotor3_F4 {bv, scalar} }
|
||
// rotor3f4_via_from_to_v3f4 :: #force_inline proc "contextless" (from, to: V3_F4) -> (rotor : Rotor3_F4) { rotor.scalar := 1 + dot( from, to ); return }
|
||
|
||
inverse_mag_rotor3f4 :: #force_inline proc "contextless" (rotor : Rotor3_F4) -> (s : f32) { panic_contextless("not implemented") }
|
||
magnitude_rotor3f4 :: #force_inline proc "contextless" (rotor : Rotor3_F4) -> (s : f32) { panic_contextless("not implemented") }
|
||
squared_mag_f4 :: #force_inline proc "contextless" (rotor : Rotor3_F4) -> (s : f32) { panic_contextless("not implemented") }
|
||
reverse_rotor3_f4 :: #force_inline proc "contextless" (rotor : Rotor3_F4) -> (reversed : Rotor3_F4) { reversed = { negate_biv3f4(rotor.bv), rotor.s }; return }
|
||
|
||
//endregion Rotor3
|
||
|
||
//region Flat Projective Geometry
|
||
|
||
Point3_F4 :: distinct V3_F4
|
||
PointFlat3_F4 :: distinct V4_F4
|
||
Line3_F4 :: struct {
|
||
weight: V3_F4,
|
||
bulk: BiV3_F4,
|
||
}
|
||
Plane3_F4 :: distinct V4_F4 // 4D Anti-vector
|
||
|
||
// aka: wedge operation for points
|
||
join_point3_f4 :: proc "contextless" (p, q : Point3_F4) -> (l : Line3_F4) {
|
||
weight := v3(q) - v3(p)
|
||
bulk := wedge(v3(p), v3(q))
|
||
l = {weight, bulk}
|
||
return
|
||
}
|
||
join_pointflat3_f4 :: proc "contextless" (p, q : PointFlat3_F4) -> (l : Line3_F4) {
|
||
weight := v3f4(
|
||
p.w * q.x - p.x * q.w,
|
||
p.w * q.y - p.y * q.w,
|
||
p.w * q.z - p.z * q.w
|
||
)
|
||
bulk := wedge(v3(p), v3(q))
|
||
l = { weight, bulk}
|
||
return
|
||
}
|
||
sub_point3_f4 :: #force_inline proc "contextless" (a, b : Point3_F4) -> (v : V3_F4) { v = v3f4(a) - v3f4(b); return }
|
||
|
||
//endregion Flat Projective Geometry
|
||
|
||
//region Rational Trig
|
||
|
||
quadrance :: #force_inline proc "contextless" (a, b: Point3_F4) -> (q : f32) { q = pow2_v3f4(v3(a) - v3(b)); return }
|
||
|
||
// Assumes the weight component is normalized.
|
||
spread :: #force_inline proc "contextless" (l, m: Line3_F4) -> (s : f32) { s = vdot(l.weight, m.weight); return }
|
||
|
||
//endregion Rational Trig
|
||
|
||
//region Grime
|
||
// A dump of equivalent symbol generatioon (because the toolchain can't do it yet)
|
||
// Symbol alias tables are in grim.odin
|
||
|
||
v3f4_to_biv3f4 :: #force_inline proc "contextless" (v: V3_F4) -> BiV3_F4 {return transmute(BiV3_F4) v }
|
||
biv3f4_to_v3f4 :: #force_inline proc "contextless" (bv: BiV3_F4) -> V3_F4 {return transmute(V3_F4) bv }
|
||
quatf4_from_rotor3f4 :: #force_inline proc "contextless" (rotor: Rotor3_F4) -> Quat_F4 {return transmute(Quat_F4) rotor }
|
||
uv3f4_to_v3f4 :: #force_inline proc "contextless" (v: UV3_F4) -> V3_F4 {return transmute(V3_F4) v }
|
||
uv4f4_to_v4f4 :: #force_inline proc "contextless" (v: UV4_F4) -> V4_F4 {return transmute(V4_F4) v }
|
||
|
||
// plane_to_v4f4 :: #force_inline proc "contextless" (p : Plane3_F4) -> V4_F4 {return transmute(V4_F4) p}
|
||
point3f4_to_v3f4 :: #force_inline proc "contextless" (p: Point3_F4) -> V3_F4 {return {p.x, p.y, p.z} }
|
||
pointflat3f4_to_v3f4 :: #force_inline proc "contextless" (p: PointFlat3_F4) -> V3_F4 {return {p.x, p.y, p.z} }
|
||
v3f4_to_point3f4 :: #force_inline proc "contextless" (v: V3_F4) -> Point3_F4 {return {v.x, v.y, v.z} }
|
||
|
||
cross_v3f4_uv3f4 :: #force_inline proc "contextless" (v: V3_F4, u: UV3_F4) -> V3_F4 {return cross_v3(v, transmute(V3_F4) u)}
|
||
cross_u3f4_v3f4 :: #force_inline proc "contextless" (u: UV3_F4, v: V3_F4) -> V3_F4 {return cross_v3(transmute(V3_F4) u, v)}
|
||
|
||
dot_v3f4_uv3f4 :: #force_inline proc "contextless" (v: V3_F4, unit_v: UV3_F4) -> f32 {return vdot(v, transmute(V3_F4) unit_v)}
|
||
dot_uv3f4_v3f4 :: #force_inline proc "contextless" (unit_v: UV3_F4, v: V3_F4) -> f32 {return vdot(v, transmute(V3_F4) unit_v)}
|
||
|
||
wedge_v3f4_uv3f4 :: #force_inline proc "contextless" (v : V3_F4, unit_v: UV3_F4) -> BiV3_F4 {return wedge_v3f4(v, v3(unit_v))}
|
||
wedge_uv3f4_vs :: #force_inline proc "contextless" (unit_v: UV3_F4, v: V3_F4) -> BiV3_F4 {return wedge_v3f4(v3(unit_v), v)}
|
||
//endregion Grime
|