General refactors to various files

* Moved all mapped procedure overloads to grime.odin
* Removed extraneous entity_box related procedures
* Major refactor to grime_array its header is now allocated as part of its initialization
*
This commit is contained in:
Edward R. Gonzalez 2024-03-05 10:40:28 -05:00
parent 3ee5dd7d65
commit 43a1c20d73
8 changed files with 129 additions and 106 deletions

View File

@ -8,42 +8,6 @@ pos_within_range2 :: proc( pos : Vec2, range : Range2 ) -> b32 {
return b32(within_x && within_y)
}
box_is_within :: proc( box : ^ Box2, pos : Vec2 ) -> b32 {
bounds := box_get_bounds( box )
within_x_bounds : b32 = pos.x >= bounds.top_left.x && pos.x <= bounds.bottom_right.x
within_y_bounds : b32 = pos.y >= bounds.bottom_right.y && pos.y <= bounds.top_left.y
return within_x_bounds && within_y_bounds
}
// Not sure if I should in the future not do the radius check,
// As it maybe be better off as a general proc used in an iteration...
box_is_within_view :: proc( box : ^ Box2 ) -> b32
{
state := get_state(); using state
screen_extent := app_window.extent
screen_bounds_radius := max(screen_extent.x, screen_extent.y)
box_bounds_radius := max(box.extent.x, box.extent.y)
cam := project.workspace.cam
cam_box_distance := linalg.distance(cam.target, box.position)
acceptable_distance := box_bounds_radius + screen_bounds_radius
if cam_box_distance > acceptable_distance {
return false
}
screen_bounds := view_get_bounds()
bounds := box_get_bounds( box )
within_bounds : b32 = false
// within_x_bounds : b32 = pos.x >= bounds.top_left.x && pos.x <= bounds.bottom_right.x
// within_y_bounds : b32 = pos.y >= bounds.bottom_right.y && pos.y <= bounds.top_left.y
return within_bounds
}
is_within_screenspace :: proc( pos : Vec2 ) -> b32 {
state := get_state(); using state
screen_extent := state.app_window.extent

View File

@ -29,18 +29,24 @@ import fmt_io "core:fmt"
import "core:mem"
Allocator :: mem.Allocator
AllocatorError :: mem.Allocator_Error
AllocatorMode :: mem.Allocator_Mode
AllocatorModeSet :: mem.Allocator_Mode_Set
alloc :: mem.alloc
alloc_bytes :: mem.alloc_bytes
Arena :: mem.Arena
arena_allocator :: mem.arena_allocator
arena_init :: mem.arena_init
byte_slice :: mem.byte_slice
free :: mem.free
ptr_offset :: mem.ptr_offset
resize :: mem.resize
slice_ptr :: mem.slice_ptr
TrackingAllocator :: mem.Tracking_Allocator
tracking_allocator :: mem.tracking_allocator
tracking_allocator_init :: mem.tracking_allocator_init
import "core:mem/virtual"
import "core:odin"
SourceCodeLocation :: runtime.Source_Code_Location
import "core:os"
FileFlag_Create :: os.O_CREATE
FileFlag_ReadWrite :: os.O_RDWR
@ -67,10 +73,20 @@ import "core:unicode/utf8"
OS_Type :: type_of(ODIN_OS)
// Alias Tables
context_ext :: proc( $ Type : typeid ) -> (^Type) {
return cast(^Type) context.user_ptr
}
// Proc Name Overloads Alias table
// This has to be done on a per-module basis. Most likely can be automated
cm_to_pixels :: proc {
f32_cm_to_pixels,
vec2_cm_to_pixels,
range2_cm_to_pixels,
}
get_bounds :: proc {
box_get_bounds,
view_get_bounds,
}
@ -78,6 +94,24 @@ is_power_of_two :: proc {
is_power_of_two_u32,
}
pop :: proc {
stack_pop,
stack_allocator_pop,
}
pressed :: proc {
btn_pressed,
}
push :: proc {
stack_push,
stack_allocator_push,
}
released :: proc {
btn_released,
}
to_runes :: proc {
string_to_runes,
}
@ -87,6 +121,18 @@ to_string :: proc {
str_builder_to_string,
}
context_ext :: proc( $ Type : typeid ) -> (^Type) {
return cast(^Type) context.user_ptr
pixels_to_cm :: proc {
f32_pixels_to_cm,
vec2_pixels_to_cm,
range2_pixels_to_cm,
}
points_to_pixels :: proc {
f32_points_to_pixels,
vec2_points_to_pixels,
}
ui_set_layout :: proc {
ui_style_set_layout,
ui_style_theme_set_layout,
}

View File

@ -8,14 +8,26 @@ import "core:c/libc"
import "core:mem"
import "core:slice"
Array :: struct ( $ Type : typeid ) {
// Array :: struct ( $ Type : typeid ) {
// allocator : Allocator,
// capacity : u64,
// num : u64,
// data : [^]Type,
// }
ArrayHeader :: struct ( $ Type : typeid ) {
allocator : Allocator,
capacity : u64,
num : u64,
data : [^]Type,
}
array_underlying_slice :: proc(slice: []($ Type)) -> Array(Type) {
Array :: struct ( $ Type : typeid ) {
using header : ^ArrayHeader(Type),
}
array_underlying_slice :: proc(slice: []($ Type)) -> Array(Type)
{
if len(slice) == 0 {
return nil
}
@ -41,17 +53,23 @@ array_init :: proc( $ Type : typeid, allocator : Allocator ) -> ( Array(Type), A
return array_init_reserve( Type, allocator, array_grow_formula(0) )
}
array_init_reserve :: proc( $ Type : typeid, allocator : Allocator, capacity : u64 ) -> ( Array(Type), AllocatorError )
array_init_reserve :: proc
( $ Type : typeid, allocator : Allocator, capacity : u64 ) -> ( result : Array(Type), alloc_error : AllocatorError )
{
raw_data, result_code := alloc( size_of(Array) + int(capacity) * size_of(Type), allocator = allocator )
result := cast(^Array(Type)) raw_data;
result.data = cast( [^]Type ) (cast( [^]Array(Type)) result)[ 1:]
header_size :: size_of(ArrayHeader)
raw_mem : rawptr
raw_mem, alloc_error = alloc( header_size + int(capacity) * size_of(Type), allocator = allocator )
if alloc_error != AllocatorError.None do return
result.header = cast( ^ArrayHeader(Type)) raw_mem;
result.allocator = allocator
result.capacity = capacity
return (result ^), result_code
result.data = cast( [^]Type ) (cast( [^]ArrayHeader(Type)) result.header)[ 1:]
return
}
array_append :: proc( using self : ^ Array( $ Type), value : Type ) -> AllocatorError
array_append :: proc( using self : ^Array( $ Type), value : Type ) -> AllocatorError
{
if num == capacity
{
@ -66,7 +84,7 @@ array_append :: proc( using self : ^ Array( $ Type), value : Type ) -> Allocator
return AllocatorError.None
}
array_append_slice :: proc( using self : ^ Array( $ Type ), items : []Type ) -> AllocatorError
array_append_slice :: proc( using self : ^Array( $ Type ), items : []Type ) -> AllocatorError
{
if num + len(items) > capacity
{
@ -87,7 +105,7 @@ array_append_slice :: proc( using self : ^ Array( $ Type ), items : []Type ) ->
return AllocatorError.None
}
array_append_at :: proc( using self : ^ Array( $ Type ), item : Type, id : u64 ) -> AllocatorError
array_append_at :: proc( using self : ^Array( $ Type ), item : Type, id : u64 ) -> AllocatorError
{
id := id
if id >= num {
@ -119,7 +137,7 @@ array_append_at :: proc( using self : ^ Array( $ Type ), item : Type, id : u64 )
return AllocatorError.None
}
array_append_at_slice :: proc( using self : ^ Array( $ Type ), items : []Type, id : u64 ) -> AllocatorError
array_append_at_slice :: proc( using self : ^Array( $ Type ), items : []Type, id : u64 ) -> AllocatorError
{
id := id
if id >= num {
@ -150,18 +168,28 @@ array_append_at_slice :: proc( using self : ^ Array( $ Type ), items : []Type, i
return AllocatorError.None
}
array_back :: proc( using self : ^ Array( $ Type ) ) -> ^ Type {
array_push_back :: proc( using self : Array( $ Type)) -> b32 {
if num == capacity {
return false
}
data[ num ] = value
num += 1
return true
}
array_back :: proc( using self : Array( $ Type ) ) -> ( ^Type) {
return & data[ num - 1 ]
}
array_clear :: proc( using self : ^ Array( $ Type ), zero_data : b32 ) {
array_clear :: proc( using self : Array( $ Type ), zero_data : b32 ) {
if zero_data {
mem.set( raw_data( data ), 0, num )
}
num = 0
}
array_fill :: proc( using self : ^ Array( $ Type ), begin, end : u64, value : Type ) -> b32
array_fill :: proc( using self : Array( $ Type ), begin, end : u64, value : Type ) -> b32
{
if begin < 0 || end >= num {
return false
@ -177,12 +205,12 @@ array_fill :: proc( using self : ^ Array( $ Type ), begin, end : u64, value : Ty
return true
}
array_free :: proc( using self : ^ Array( $ Type ) ) {
array_free :: proc( using self : Array( $ Type ) ) {
free( data, allocator )
data = nil
self.data = nil
}
array_grow :: proc( using self : ^ Array( $ Type ), min_capacity : u64 ) -> AllocatorError
array_grow :: proc( using self : ^Array( $ Type ), min_capacity : u64 ) -> AllocatorError
{
new_capacity := array_grow_formula( capacity )
@ -192,12 +220,12 @@ array_grow :: proc( using self : ^ Array( $ Type ), min_capacity : u64 ) -> Allo
return array_set_capacity( self, new_capacity )
}
array_pop :: proc( using self : ^ Array( $ Type ) ) {
array_pop :: proc( using self : Array( $ Type ) ) {
verify( num != 0, "Attempted to pop an array with no elements" )
num -= 1
}
array_remove_at :: proc( using self : ^ Array( $ Type ), id : u64 )
array_remove_at :: proc( using self : Array( $ Type ), id : u64 )
{
verify( id >= num, "Attempted to remove from an index larger than the array" )
@ -208,7 +236,7 @@ array_remove_at :: proc( using self : ^ Array( $ Type ), id : u64 )
num -= 1
}
array_reserve :: proc( using self : ^ Array( $ Type ), new_capacity : u64 ) -> AllocatorError
array_reserve :: proc( using self : ^Array( $ Type ), new_capacity : u64 ) -> AllocatorError
{
if capacity < new_capacity {
return array_set_capacity( self, new_capacity )
@ -216,7 +244,7 @@ array_reserve :: proc( using self : ^ Array( $ Type ), new_capacity : u64 ) -> A
return AllocatorError.None
}
array_resize :: proc( array : ^ Array( $ Type ), num : u64 ) -> AllocatorError
array_resize :: proc( array : ^Array( $ Type ), num : u64 ) -> AllocatorError
{
if array.capacity < num
{
@ -230,23 +258,33 @@ array_resize :: proc( array : ^ Array( $ Type ), num : u64 ) -> AllocatorError
return AllocatorError.None
}
array_set_capacity :: proc( using self : ^ Array( $ Type ), new_capacity : u64 ) -> AllocatorError
array_set_capacity :: proc( self : ^Array( $ Type ), new_capacity : u64 ) -> AllocatorError
{
if new_capacity == capacity {
if new_capacity == self.capacity {
return AllocatorError.None
}
if new_capacity < num {
num = new_capacity
if new_capacity < self.num {
self.num = new_capacity
return AllocatorError.None
}
new_data, result_code := alloc( cast(int) new_capacity * size_of(Type), allocator = allocator )
header_size :: size_of(ArrayHeader(Type))
new_size := header_size + cast(int) new_capacity * size_of(Type)
old_size := header_size + cast(int) self.capacity * size_of(Type)
new_mem, result_code := resize( self.header, old_size, new_size, allocator = self.allocator )
if result_code != AllocatorError.None {
ensure( false, "Failed to allocate for new array capacity" )
return result_code
}
free( data )
data = cast( [^] Type ) new_data
capacity = new_capacity
using new_self : Array(Type)
header = cast( ^ArrayHeader(Type)) new_mem;
data = cast( [^]Type ) (cast( [^]ArrayHeader(Type)) header)[ 1:]
capacity = new_capacity
num = self.num
(self ^) = new_self
return result_code
}

View File

@ -4,7 +4,8 @@
// This implementation uses two ZPL-Based Arrays to hold entires and the actual hash table.
// Its algorithim isn't that great, removal of elements is very expensive.
// To the point where if thats done quite a bit another implementation should be looked at.
// Growing the hashtable doesn't do a resize on the original arrays properly, leading to completely discarded memory.
// Its recommended to use something closer to raddbg's implementation for greater flexibility.
package sectr
import "core:slice"
@ -40,7 +41,8 @@ zpl_hmap_init :: proc( $ Type : typeid, allocator : Allocator ) -> ( HMapZPL( Ty
return zpl_hmap_init_reserve( Type, allocator )
}
zpl_hmap_init_reserve :: proc( $ Type : typeid, allocator : Allocator, num : u64 ) -> ( HMapZPL( Type), AllocatorError )
zpl_hmap_init_reserve :: proc
( $ Type : typeid, allocator : Allocator, num : u64 ) -> ( HMapZPL( Type), AllocatorError )
{
result : HMapZPL(Type)
hashes_result, entries_result : AllocatorError
@ -72,8 +74,8 @@ zpl_hmap_clear :: proc( using self : ^ HMapZPL( $ Type ) ) {
zpl_hmap_destroy :: proc( using self : ^ HMapZPL( $ Type ) ) {
if hashes.data != nil && hashes.capacity > 0 {
array_free( & hashes )
array_free( & entries )
array_free( hashes )
array_free( entries )
}
}

View File

@ -21,14 +21,6 @@ btn_released :: proc ( btn : DigitalBtn ) -> b32 {
return btn.ended_down == false && btn.half_transitions > 0
}
pressed :: proc {
btn_pressed,
}
released :: proc {
btn_released,
}
MaxKeyboardKeys :: 256
KeyboardKey :: enum u32 {
null = 0x00,

View File

@ -21,22 +21,7 @@ when ODIN_OS == OS_Type.Windows {
// 1 inch = 2.54 cm, 96 inch * 2.54 = 243.84 DPCM
}
cm_to_pixels :: proc {
f32_cm_to_pixels,
vec2_cm_to_pixels,
range2_cm_to_pixels,
}
pixels_to_cm :: proc {
f32_pixels_to_cm,
vec2_pixels_to_cm,
range2_pixels_to_cm,
}
points_to_pixels :: proc {
f32_points_to_pixels,
vec2_points_to_pixels,
}
//region Unit Conversion Impl

View File

@ -12,7 +12,8 @@ debug_draw_text :: proc( content : string, pos : Vec2, size : f32, color : rl.Co
return
}
runes, alloc_error := to_runes( content, context.temp_allocator )
verify( alloc_error == AllocatorError.None, "Failed to temp allocate runes" )
// runes, alloc_error := to_runes( content, context.temp_allocator )
// verify( alloc_error == AllocatorError.None, "Failed to temp allocate runes" )
font := font
if font.key == Font_Default.key {

View File

@ -268,8 +268,8 @@ UI_State :: struct {
layout_dirty : b32,
// TODO(Ed) : Look into using a build arena like Ryan does for these possibly (and thus have a linked-list stack)
theme_stack : Stack( UI_StyleTheme, UI_Style_Stack_Size ),
parent_stack : Stack( ^ UI_Box, UI_Parent_Stack_Size ),
theme_stack : StackFixed( UI_StyleTheme, UI_Style_Stack_Size ),
parent_stack : StackFixed( ^ UI_Box, UI_Parent_Stack_Size ),
// flag_stack : Stack( UI_BoxFlags, UI_BoxFlags_Stack_Size ),
hot : UI_Key,
@ -558,11 +558,11 @@ ui_style_set_layout :: proc ( layout : UI_Layout, preset : UI_StylePreset ) {
}
ui_style_theme_push :: proc( preset : UI_StyleTheme ) {
stack_push( & get_state().ui_context.theme_stack, preset )
push( & get_state().ui_context.theme_stack, preset )
}
ui_style_theme_pop :: proc() {
stack_pop( & get_state().ui_context.theme_stack )
pop( & get_state().ui_context.theme_stack )
}
@(deferred_none = ui_style_theme_pop)
@ -575,8 +575,3 @@ ui_style_theme_set_layout :: proc ( layout : UI_Layout ) {
preset.layout = layout
}
}
ui_set_layout :: proc {
ui_style_set_layout,
ui_style_theme_set_layout,
}