SectrPrototype/code/math_math.odin

133 lines
3.4 KiB
Odin
Raw Normal View History

2024-03-19 08:36:58 -04:00
// General mathematical constructions used for the prototype
package sectr
import "core:math"
// These are the same as the runtime constants for memory units just using a more general name when not refering to bytes
Kilo :: Kilobyte
Mega :: Megabyte
Giga :: Gigabyte
Tera :: Terabyte
Peta :: Petabyte
Exa :: Exabyte
Axis2 :: enum i32 {
Invalid = -1,
X = 0,
Y = 1,
Count,
}
f32_Infinity :: 0x7F800000
f32_Min :: 0x00800000
// Note(Ed) : I don't see an intrinsict available anywhere for this. So I'll be using the Terathon non-sse impl
// Inverse Square Root
// C++ Source https://github.com/EricLengyel/Terathon-Math-Library/blob/main/TSMath.cpp#L191
inverse_sqrt_f32 :: proc "contextless" ( value : f32 ) -> f32
{
if ( value < f32_Min) {
return f32_Infinity
}
value_u32 := transmute(u32) value
initial_approx := 0x5F375A86 - (value_u32 >> 1)
refined_approx := transmute(f32) initial_approx
// NewtonRaphson method for getting better approximations of square roots
// Done twice for greater accuracy.
refined_approx = refined_approx * (1.5 - value * 0.5 * refined_approx * refined_approx )
refined_approx = refined_approx * (1.5 - value * 0.5 * refined_approx * refined_approx )
// refined_approx = (0.5 * refined_approx) * (3.0 - value * refined_approx * refined_approx)
// refined_approx = (0.5 * refined_approx) * (3.0 - value * refined_approx * refined_approx)
return refined_approx
}
is_power_of_two_u32 :: #force_inline proc "contextless" ( value : u32 ) -> b32
{
return value != 0 && ( value & ( value - 1 )) == 0
}
mov_avg_exp_f32 := #force_inline proc "contextless" ( alpha, delta_interval, last_value : f32 ) -> f32
{
result := (delta_interval * alpha) + (delta_interval * (1.0 - alpha))
return result
}
mov_avg_exp_f64 := #force_inline proc "contextless" ( alpha, delta_interval, last_value : f64 ) -> f64
{
result := (delta_interval * alpha) + (delta_interval * (1.0 - alpha))
return result
}
import "core:math/linalg"
Quat128 :: quaternion128
Matrix2 :: matrix [2, 2] f32
Vec2i :: [2]i32
Vec3i :: [3]i32
vec2i_to_vec2 :: #force_inline proc "contextless" (v : Vec2i) -> Vec2 {return transmute(Vec2) v}
vec3i_to_vec3 :: #force_inline proc "contextless" (v : Vec3i) -> Vec3 {return transmute(Vec3) v}
#region("Range2")
Range2 :: struct #raw_union {
using min_max : struct {
min, max : Vec2
},
using pts : struct {
p0, p1 : Vec2
},
using xy : struct {
x0, y0 : f32,
x1, y1 : f32,
},
using side : struct {
left, bottom : f32,
right, top : f32,
},
ratio : struct {
x, y : f32,
},
// TODO(Ed) : Test these
array : [4]f32,
mat : matrix[2, 2] f32,
}
UnitRange2 :: distinct Range2
range2 :: #force_inline proc "contextless" ( a, b : Vec2 ) -> Range2 {
result := Range2 { pts = { a, b } }
return result
}
add_range2 :: #force_inline proc "contextless" ( a, b : Range2 ) -> Range2 {
result := Range2 { pts = {
a.p0 + b.p0,
a.p1 + b.p1,
}}
return result
}
sub_range2 :: #force_inline proc "contextless" ( a, b : Range2 ) -> Range2 {
// result := Range2 { array = a.array - b.array }
result := Range2 { mat = a.mat - b.mat }
return result
}
equal_range2 :: #force_inline proc "contextless" ( a, b : Range2 ) -> b32 {
result := a.p0 == b.p0 && a.p1 == b.p1
return b32(result)
}
size_range2 :: #force_inline proc "contextless" ( value : Range2 ) -> Vec2 {
return { value.p1.x - value.p0.x, value.p0.y - value.p1.y }
}
#endregion("Range2")