LangStudies/App/RegM/Lectures/Lecture.3.Notes.md

86 lines
1.5 KiB
Markdown
Raw Permalink Normal View History

# Finite Automata
***(AKA: Finite State Machine)***
Mechanism and abstraction used behind regular grammars.
Usually has its state represented using nodes and edges.
Regular grammar:
```
S -> bA
A -> epsilon
```
Equivalent to: `\b\`
State transition:
--label--> : Transition symbol
O : State Symbol
(o) : Accepting State
->O.Start : Starting State (State transition to Start)
Ex:
->O.*Start* --*transition*--> (o).*Accepting*
*ε* - Epsilon (Empty String)
`I will be spelling it out as I do not enjoy single glyth representation`
Two main types of Finite Automtata :
FA w/ output
* Moore machine
* Mealy machine
FA w/o output
* DFA - Deterministic
* NFA - Non-deterministic
* epsilon-NFA - (Epsilon Transition) special case
NFA : Non-deterministic FA - Allos transition on the same symbol to
different states
```
a->o
/
->o.1---b-->o
\
a->o
```
epsilon-NFA : Extension of NFA that allows *epsilon* transitions
```
a--->o---epsi--->(o)
/ /
->o----b-->epsi--->o
\
a-->o--epsi-->(o)
```
DFA : A state machine which forbids multiple transitions on the same symbol, and *epsilon* transitions
```
a--->o
/
->o----b-->o
```
Use case:
Implementation Transformations:
```RegExp -> epsilon-NFA -> ... -> DFA```
## Formal Definition:
Non-deterministic finite automata is a tuple of five elements:
* All possible states
* Alphabet
* Transition Function
* Starting State
* Set of accepting states
NFA = ( States, Alphabet, TransitionFunction, StartingState, AcceptingStates )
NFA = ( Q, Σ, Δ, q0, F )