GASATHON/Project/Source/GasaGen/gen.dep.cpp
Ed_ 18bb578c97 31. Aura HUD (plus other stuff)
- Enabled a few more plugins
- Added clang formatting straight from the GasaGen cpp.
- Setup auto-generation of the DevOptionsCache
- Messed around with generating widgettree hiearchy from template widget
2024-04-21 09:51:51 -04:00

2451 lines
60 KiB
C++

// This file was generated automatially by gencpp's bootstrap.cpp (See: https://github.com/Ed94/gencpp)
// This file is intended to be included within gen.cpp (There is no pragma diagnostic ignores)
#pragma region Macros and Includes
#include <stdio.h>
// NOTE: Ensure we use standard methods for these calls if we use GEN_PICO
#if ! defined( GEN_PICO_CUSTOM_ROUTINES )
#if ! defined( GEN_MODULE_CORE )
#define _strlen strlen
#define _printf_err( fmt, ... ) fprintf( stderr, fmt, __VA_ARGS__ )
#define _printf_err_va( fmt, va ) vfprintf( stderr, fmt, va )
#else
#define _strlen str_len
#define _printf_err( fmt, ... ) str_fmt_out_err( fmt, __VA_ARGS__ )
#define _printf_err_va( fmt, va ) str_fmt_out_err_va( fmt, va )
#endif
#endif
#
#include <errno.h>
#
#if defined( GEN_SYSTEM_UNIX ) || defined( GEN_SYSTEM_MACOS )
#include <unistd.h>
#elif defined( GEN_SYSTEM_WINDOWS )
#if ! defined( GEN_NO_WINDOWS_H )
#ifndef WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#
#define WIN32_LEAN_AND_MEAN
#define WIN32_MEAN_AND_LEAN
#define VC_EXTRALEAN
#endif
#include <windows.h>
#undef NOMINMAX
#undef WIN32_LEAN_AND_MEAN
#undef WIN32_MEAN_AND_LEAN
#undef VC_EXTRALEAN
#endif
#endif
#include <sys/stat.h>
#ifdef GEN_SYSTEM_MACOS
#include <copyfile.h>
#endif
#ifdef GEN_SYSTEM_CYGWIN
#include <windows.h>
#endif
#if defined( GEN_SYSTEM_WINDOWS ) && ! defined( GEN_COMPILER_GCC )
#include <io.h>
#endif
#if defined( GEN_SYSTEM_LINUX )
#include <sys/types.h>
#endif
#ifdef GEN_BENCHMARK
// Timing includes
#if defined( GEN_SYSTEM_MACOS ) || GEN_SYSTEM_UNIX
#include <time.h>
#include <sys/time.h>
#endif
#if defined( GEN_SYSTEM_MACOS )
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <mach/clock.h>
#endif
#if defined( GEN_SYSTEM_EMSCRIPTEN )
#include <emscripten.h>
#endif
#if defined( GEN_SYSTEM_WINDOWS )
#include <timezoneapi.h>
#endif
#endif
#pragma endregion Macros and Includes
GEN_NS_BEGIN
#pragma region Debug
void assert_handler( char const* condition, char const* file, s32 line, char const* msg, ... )
{
_printf_err( "%s:(%d): Assert Failure: ", file, line );
if ( condition )
_printf_err( "`%s` \n", condition );
if ( msg )
{
va_list va;
va_start( va, msg );
_printf_err_va( msg, va );
va_end( va );
}
_printf_err( "%s", "\n" );
}
s32 assert_crash( char const* condition )
{
GEN_PANIC( condition );
return 0;
}
#if defined( GEN_SYSTEM_WINDOWS )
void process_exit( u32 code )
{
ExitProcess( code );
}
#else
#include <stdlib.h>
void process_exit( u32 code )
{
exit( code );
}
#endif
#pragma endregion Debug
#pragma region String Ops
internal sw _scan_zpl_i64( const char* text, s32 base, s64* value )
{
const char* text_begin = text;
s64 result = 0;
b32 negative = false;
if ( *text == '-' )
{
negative = true;
text++;
}
if ( base == 16 && str_compare( text, "0x", 2 ) == 0 )
text += 2;
for ( ;; )
{
s64 v;
if ( char_is_digit( *text ) )
v = *text - '0';
else if ( base == 16 && char_is_hex_digit( *text ) )
v = hex_digit_to_int( *text );
else
break;
result *= base;
result += v;
text++;
}
if ( value )
{
if ( negative )
result = -result;
*value = result;
}
return ( text - text_begin );
}
// TODO : Are these good enough for characters?
global const char _num_to_char_table[] =
"0123456789"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"@$";
s64 str_to_i64( const char* str, char** end_ptr, s32 base )
{
sw len;
s64 value;
if ( ! base )
{
if ( ( str_len( str ) > 2 ) && ( str_compare( str, "0x", 2 ) == 0 ) )
base = 16;
else
base = 10;
}
len = _scan_zpl_i64( str, base, &value );
if ( end_ptr )
*end_ptr = (char*)str + len;
return value;
}
void i64_to_str( s64 value, char* string, s32 base )
{
char* buf = string;
b32 negative = false;
u64 v;
if ( value < 0 )
{
negative = true;
value = -value;
}
v = zpl_cast( u64 ) value;
if ( v != 0 )
{
while ( v > 0 )
{
*buf++ = _num_to_char_table[v % base];
v /= base;
}
}
else
{
*buf++ = '0';
}
if ( negative )
*buf++ = '-';
*buf = '\0';
str_reverse( string );
}
void u64_to_str( u64 value, char* string, s32 base )
{
char* buf = string;
if ( value )
{
while ( value > 0 )
{
*buf++ = _num_to_char_table[value % base];
value /= base;
}
}
else
{
*buf++ = '0';
}
*buf = '\0';
str_reverse( string );
}
f64 str_to_f64( const char* str, char** end_ptr )
{
f64 result, value, sign, scale;
s32 frac;
while ( char_is_space( *str ) )
{
str++;
}
sign = 1.0;
if ( *str == '-' )
{
sign = -1.0;
str++;
}
else if ( *str == '+' )
{
str++;
}
for ( value = 0.0; char_is_digit( *str ); str++ )
{
value = value * 10.0 + ( *str - '0' );
}
if ( *str == '.' )
{
f64 pow10 = 10.0;
str++;
while ( char_is_digit( *str ) )
{
value += ( *str - '0' ) / pow10;
pow10 *= 10.0;
str++;
}
}
frac = 0;
scale = 1.0;
if ( ( *str == 'e' ) || ( *str == 'E' ) )
{
u32 exp;
str++;
if ( *str == '-' )
{
frac = 1;
str++;
}
else if ( *str == '+' )
{
str++;
}
for ( exp = 0; char_is_digit( *str ); str++ )
{
exp = exp * 10 + ( *str - '0' );
}
if ( exp > 308 )
exp = 308;
while ( exp >= 50 )
{
scale *= 1e50;
exp -= 50;
}
while ( exp >= 8 )
{
scale *= 1e8;
exp -= 8;
}
while ( exp > 0 )
{
scale *= 10.0;
exp -= 1;
}
}
result = sign * ( frac ? ( value / scale ) : ( value * scale ) );
if ( end_ptr )
*end_ptr = zpl_cast( char* ) str;
return result;
}
#pragma endregion String Ops
#pragma region Printing
enum
{
GEN_FMT_MINUS = bit( 0 ),
GEN_FMT_PLUS = bit( 1 ),
GEN_FMT_ALT = bit( 2 ),
GEN_FMT_SPACE = bit( 3 ),
GEN_FMT_ZERO = bit( 4 ),
GEN_FMT_CHAR = bit( 5 ),
GEN_FMT_SHORT = bit( 6 ),
GEN_FMT_INT = bit( 7 ),
GEN_FMT_LONG = bit( 8 ),
GEN_FMT_LLONG = bit( 9 ),
GEN_FMT_SIZE = bit( 10 ),
GEN_FMT_INTPTR = bit( 11 ),
GEN_FMT_UNSIGNED = bit( 12 ),
GEN_FMT_LOWER = bit( 13 ),
GEN_FMT_UPPER = bit( 14 ),
GEN_FMT_WIDTH = bit( 15 ),
GEN_FMT_DONE = bit( 30 ),
GEN_FMT_INTS = GEN_FMT_CHAR | GEN_FMT_SHORT | GEN_FMT_INT | GEN_FMT_LONG | GEN_FMT_LLONG | GEN_FMT_SIZE | GEN_FMT_INTPTR
};
struct _format_info
{
s32 base;
s32 flags;
s32 width;
s32 precision;
};
internal sw _print_string( char* text, sw max_len, _format_info* info, char const* str )
{
sw res = 0, len = 0;
sw remaining = max_len;
char* begin = text;
if ( str == NULL && max_len >= 6 )
{
res += str_copy_nulpad( text, "(null)", 6 );
return res;
}
if ( info && info->precision >= 0 )
// Made the design decision for this library that precision is the length of the string.
len = info->precision;
else
len = str_len( str );
if ( info && ( info->width == 0 && info->flags & GEN_FMT_WIDTH ) )
{
return res;
}
if ( info && ( info->width == 0 || info->flags & GEN_FMT_MINUS ) )
{
if ( info->precision > 0 )
len = info->precision < len ? info->precision : len;
if ( res + len > max_len )
return res;
res += str_copy_nulpad( text, str, len );
text += res;
if ( info->width > res )
{
sw padding = info->width - len;
char pad = ( info->flags & GEN_FMT_ZERO ) ? '0' : ' ';
while ( padding-- > 0 && remaining-- > 0 )
*text++ = pad, res++;
}
}
else
{
if ( info && ( info->width > res ) )
{
sw padding = info->width - len;
char pad = ( info->flags & GEN_FMT_ZERO ) ? '0' : ' ';
while ( padding-- > 0 && remaining-- > 0 )
*text++ = pad, res++;
}
if ( res + len > max_len )
return res;
res += str_copy_nulpad( text, str, len );
}
if ( info )
{
if ( info->flags & GEN_FMT_UPPER )
str_to_upper( begin );
else if ( info->flags & GEN_FMT_LOWER )
str_to_lower( begin );
}
return res;
}
internal sw _print_char( char* text, sw max_len, _format_info* info, char arg )
{
char str[2] = "";
str[0] = arg;
return _print_string( text, max_len, info, str );
}
internal sw _print_repeated_char( char* text, sw max_len, _format_info* info, char arg )
{
sw res = 0;
s32 rem = ( info ) ? ( info->width > 0 ) ? info->width : 1 : 1;
res = rem;
while ( rem-- > 0 )
*text++ = arg;
return res;
}
internal sw _print_i64( char* text, sw max_len, _format_info* info, s64 value )
{
char num[130];
i64_to_str( value, num, info ? info->base : 10 );
return _print_string( text, max_len, info, num );
}
internal sw _print_u64( char* text, sw max_len, _format_info* info, u64 value )
{
char num[130];
u64_to_str( value, num, info ? info->base : 10 );
return _print_string( text, max_len, info, num );
}
internal sw _print_f64( char* text, sw max_len, _format_info* info, b32 is_hexadecimal, f64 arg )
{
// TODO: Handle exponent notation
sw width, len, remaining = max_len;
char* text_begin = text;
if ( arg )
{
u64 value;
if ( arg < 0 )
{
if ( remaining > 1 )
*text = '-', remaining--;
text++;
arg = -arg;
}
else if ( info->flags & GEN_FMT_MINUS )
{
if ( remaining > 1 )
*text = '+', remaining--;
text++;
}
value = zpl_cast( u64 ) arg;
len = _print_u64( text, remaining, NULL, value );
text += len;
if ( len >= remaining )
remaining = min( remaining, 1 );
else
remaining -= len;
arg -= value;
if ( info->precision < 0 )
info->precision = 6;
if ( ( info->flags & GEN_FMT_ALT ) || info->precision > 0 )
{
s64 mult = 10;
if ( remaining > 1 )
*text = '.', remaining--;
text++;
while ( info->precision-- > 0 )
{
value = zpl_cast( u64 )( arg * mult );
len = _print_u64( text, remaining, NULL, value );
text += len;
if ( len >= remaining )
remaining = min( remaining, 1 );
else
remaining -= len;
arg -= zpl_cast( f64 ) value / mult;
mult *= 10;
}
}
}
else
{
if ( remaining > 1 )
*text = '0', remaining--;
text++;
if ( info->flags & GEN_FMT_ALT )
{
if ( remaining > 1 )
*text = '.', remaining--;
text++;
}
}
width = info->width - ( text - text_begin );
if ( width > 0 )
{
char fill = ( info->flags & GEN_FMT_ZERO ) ? '0' : ' ';
char* end = text + remaining - 1;
len = ( text - text_begin );
for ( len = ( text - text_begin ); len--; )
{
if ( ( text_begin + len + width ) < end )
*( text_begin + len + width ) = *( text_begin + len );
}
len = width;
text += len;
if ( len >= remaining )
remaining = min( remaining, 1 );
else
remaining -= len;
while ( len-- )
{
if ( text_begin + len < end )
text_begin[len] = fill;
}
}
return ( text - text_begin );
}
neverinline sw str_fmt_va( char* text, sw max_len, char const* fmt, va_list va )
{
char const* text_begin = text;
sw remaining = max_len, res;
while ( *fmt )
{
_format_info info = { 0 };
sw len = 0;
info.precision = -1;
while ( *fmt && *fmt != '%' && remaining )
*text++ = *fmt++;
if ( *fmt == '%' )
{
do
{
switch ( *++fmt )
{
case '-' :
{
info.flags |= GEN_FMT_MINUS;
break;
}
case '+' :
{
info.flags |= GEN_FMT_PLUS;
break;
}
case '#' :
{
info.flags |= GEN_FMT_ALT;
break;
}
case ' ' :
{
info.flags |= GEN_FMT_SPACE;
break;
}
case '0' :
{
info.flags |= ( GEN_FMT_ZERO | GEN_FMT_WIDTH );
break;
}
default :
{
info.flags |= GEN_FMT_DONE;
break;
}
}
} while ( ! ( info.flags & GEN_FMT_DONE ) );
}
// NOTE: Optional Width
if ( *fmt == '*' )
{
int width = va_arg( va, int );
if ( width < 0 )
{
info.flags |= GEN_FMT_MINUS;
info.width = -width;
}
else
{
info.width = width;
}
info.flags |= GEN_FMT_WIDTH;
fmt++;
}
else
{
info.width = zpl_cast( s32 ) str_to_i64( fmt, zpl_cast( char** ) & fmt, 10 );
if ( info.width != 0 )
{
info.flags |= GEN_FMT_WIDTH;
}
}
// NOTE: Optional Precision
if ( *fmt == '.' )
{
fmt++;
if ( *fmt == '*' )
{
info.precision = va_arg( va, int );
fmt++;
}
else
{
info.precision = zpl_cast( s32 ) str_to_i64( fmt, zpl_cast( char** ) & fmt, 10 );
}
info.flags &= ~GEN_FMT_ZERO;
}
switch ( *fmt++ )
{
case 'h' :
if ( *fmt == 'h' )
{ // hh => char
info.flags |= GEN_FMT_CHAR;
fmt++;
}
else
{ // h => short
info.flags |= GEN_FMT_SHORT;
}
break;
case 'l' :
if ( *fmt == 'l' )
{ // ll => long long
info.flags |= GEN_FMT_LLONG;
fmt++;
}
else
{ // l => long
info.flags |= GEN_FMT_LONG;
}
break;
break;
case 'z' : // NOTE: zpl_usize
info.flags |= GEN_FMT_UNSIGNED;
// fallthrough
case 't' : // NOTE: zpl_isize
info.flags |= GEN_FMT_SIZE;
break;
default :
fmt--;
break;
}
switch ( *fmt )
{
case 'u' :
info.flags |= GEN_FMT_UNSIGNED;
// fallthrough
case 'd' :
case 'i' :
info.base = 10;
break;
case 'o' :
info.base = 8;
break;
case 'x' :
info.base = 16;
info.flags |= ( GEN_FMT_UNSIGNED | GEN_FMT_LOWER );
break;
case 'X' :
info.base = 16;
info.flags |= ( GEN_FMT_UNSIGNED | GEN_FMT_UPPER );
break;
case 'f' :
case 'F' :
case 'g' :
case 'G' :
len = _print_f64( text, remaining, &info, 0, va_arg( va, f64 ) );
break;
case 'a' :
case 'A' :
len = _print_f64( text, remaining, &info, 1, va_arg( va, f64 ) );
break;
case 'c' :
len = _print_char( text, remaining, &info, zpl_cast( char ) va_arg( va, int ) );
break;
case 's' :
len = _print_string( text, remaining, &info, va_arg( va, char* ) );
break;
case 'S' :
{
String gen_str = String { va_arg( va, char* ) };
info.precision = gen_str.length();
len = _print_string( text, remaining, &info, gen_str );
}
break;
case 'r' :
len = _print_repeated_char( text, remaining, &info, va_arg( va, int ) );
break;
case 'p' :
info.base = 16;
info.flags |= ( GEN_FMT_LOWER | GEN_FMT_UNSIGNED | GEN_FMT_ALT | GEN_FMT_INTPTR );
break;
case '%' :
len = _print_char( text, remaining, &info, '%' );
break;
default :
fmt--;
break;
}
fmt++;
if ( info.base != 0 )
{
if ( info.flags & GEN_FMT_UNSIGNED )
{
u64 value = 0;
switch ( info.flags & GEN_FMT_INTS )
{
case GEN_FMT_CHAR :
value = zpl_cast( u64 ) zpl_cast( u8 ) va_arg( va, int );
break;
case GEN_FMT_SHORT :
value = zpl_cast( u64 ) zpl_cast( u16 ) va_arg( va, int );
break;
case GEN_FMT_LONG :
value = zpl_cast( u64 ) va_arg( va, unsigned long );
break;
case GEN_FMT_LLONG :
value = zpl_cast( u64 ) va_arg( va, unsigned long long );
break;
case GEN_FMT_SIZE :
value = zpl_cast( u64 ) va_arg( va, uw );
break;
case GEN_FMT_INTPTR :
value = zpl_cast( u64 ) va_arg( va, uptr );
break;
default :
value = zpl_cast( u64 ) va_arg( va, unsigned int );
break;
}
len = _print_u64( text, remaining, &info, value );
}
else
{
s64 value = 0;
switch ( info.flags & GEN_FMT_INTS )
{
case GEN_FMT_CHAR :
value = zpl_cast( s64 ) zpl_cast( s8 ) va_arg( va, int );
break;
case GEN_FMT_SHORT :
value = zpl_cast( s64 ) zpl_cast( s16 ) va_arg( va, int );
break;
case GEN_FMT_LONG :
value = zpl_cast( s64 ) va_arg( va, long );
break;
case GEN_FMT_LLONG :
value = zpl_cast( s64 ) va_arg( va, long long );
break;
case GEN_FMT_SIZE :
value = zpl_cast( s64 ) va_arg( va, uw );
break;
case GEN_FMT_INTPTR :
value = zpl_cast( s64 ) va_arg( va, uptr );
break;
default :
value = zpl_cast( s64 ) va_arg( va, int );
break;
}
len = _print_i64( text, remaining, &info, value );
}
}
text += len;
if ( len >= remaining )
remaining = min( remaining, 1 );
else
remaining -= len;
}
*text++ = '\0';
res = ( text - text_begin );
return ( res >= max_len || res < 0 ) ? -1 : res;
}
char* str_fmt_buf_va( char const* fmt, va_list va )
{
local_persist thread_local char buffer[GEN_PRINTF_MAXLEN];
str_fmt_va( buffer, size_of( buffer ), fmt, va );
return buffer;
}
char* str_fmt_buf( char const* fmt, ... )
{
va_list va;
char* str;
va_start( va, fmt );
str = str_fmt_buf_va( fmt, va );
va_end( va );
return str;
}
sw str_fmt_file_va( struct FileInfo* f, char const* fmt, va_list va )
{
local_persist thread_local char buf[GEN_PRINTF_MAXLEN];
sw len = str_fmt_va( buf, size_of( buf ), fmt, va );
b32 res = file_write( f, buf, len - 1 ); // NOTE: prevent extra whitespace
return res ? len : -1;
}
sw str_fmt_file( struct FileInfo* f, char const* fmt, ... )
{
sw res;
va_list va;
va_start( va, fmt );
res = str_fmt_file_va( f, fmt, va );
va_end( va );
return res;
}
sw str_fmt( char* str, sw n, char const* fmt, ... )
{
sw res;
va_list va;
va_start( va, fmt );
res = str_fmt_va( str, n, fmt, va );
va_end( va );
return res;
}
sw str_fmt_out_va( char const* fmt, va_list va )
{
return str_fmt_file_va( file_get_standard( EFileStandard_OUTPUT ), fmt, va );
}
sw str_fmt_out_err_va( char const* fmt, va_list va )
{
return str_fmt_file_va( file_get_standard( EFileStandard_ERROR ), fmt, va );
}
sw str_fmt_out_err( char const* fmt, ... )
{
sw res;
va_list va;
va_start( va, fmt );
res = str_fmt_out_err_va( fmt, va );
va_end( va );
return res;
}
#pragma endregion Printing
#pragma region Hashing
global u32 const _crc32_table[256] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b,
0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0,
0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd,
0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea,
0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525,
0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27,
0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda,
0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703,
0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff,
0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729,
0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d,
};
u32 crc32( void const* data, sw len )
{
sw remaining;
u32 result = ~( zpl_cast( u32 ) 0 );
u8 const* c = zpl_cast( u8 const* ) data;
for ( remaining = len; remaining--; c++ )
result = ( result >> 8 ) ^ ( _crc32_table[( result ^ *c ) & 0xff] );
return ~result;
}
global u64 const _crc64_table[256] = {
0x0000000000000000ull, 0x7ad870c830358979ull, 0xf5b0e190606b12f2ull, 0x8f689158505e9b8bull, 0xc038e5739841b68full, 0xbae095bba8743ff6ull,
0x358804e3f82aa47dull, 0x4f50742bc81f2d04ull, 0xab28ecb46814fe75ull, 0xd1f09c7c5821770cull, 0x5e980d24087fec87ull, 0x24407dec384a65feull,
0x6b1009c7f05548faull, 0x11c8790fc060c183ull, 0x9ea0e857903e5a08ull, 0xe478989fa00bd371ull, 0x7d08ff3b88be6f81ull, 0x07d08ff3b88be6f8ull,
0x88b81eabe8d57d73ull, 0xf2606e63d8e0f40aull, 0xbd301a4810ffd90eull, 0xc7e86a8020ca5077ull, 0x4880fbd87094cbfcull, 0x32588b1040a14285ull,
0xd620138fe0aa91f4ull, 0xacf86347d09f188dull, 0x2390f21f80c18306ull, 0x594882d7b0f40a7full, 0x1618f6fc78eb277bull, 0x6cc0863448deae02ull,
0xe3a8176c18803589ull, 0x997067a428b5bcf0ull, 0xfa11fe77117cdf02ull, 0x80c98ebf2149567bull, 0x0fa11fe77117cdf0ull, 0x75796f2f41224489ull,
0x3a291b04893d698dull, 0x40f16bccb908e0f4ull, 0xcf99fa94e9567b7full, 0xb5418a5cd963f206ull, 0x513912c379682177ull, 0x2be1620b495da80eull,
0xa489f35319033385ull, 0xde51839b2936bafcull, 0x9101f7b0e12997f8ull, 0xebd98778d11c1e81ull, 0x64b116208142850aull, 0x1e6966e8b1770c73ull,
0x8719014c99c2b083ull, 0xfdc17184a9f739faull, 0x72a9e0dcf9a9a271ull, 0x08719014c99c2b08ull, 0x4721e43f0183060cull, 0x3df994f731b68f75ull,
0xb29105af61e814feull, 0xc849756751dd9d87ull, 0x2c31edf8f1d64ef6ull, 0x56e99d30c1e3c78full, 0xd9810c6891bd5c04ull, 0xa3597ca0a188d57dull,
0xec09088b6997f879ull, 0x96d1784359a27100ull, 0x19b9e91b09fcea8bull, 0x636199d339c963f2ull, 0xdf7adabd7a6e2d6full, 0xa5a2aa754a5ba416ull,
0x2aca3b2d1a053f9dull, 0x50124be52a30b6e4ull, 0x1f423fcee22f9be0ull, 0x659a4f06d21a1299ull, 0xeaf2de5e82448912ull, 0x902aae96b271006bull,
0x74523609127ad31aull, 0x0e8a46c1224f5a63ull, 0x81e2d7997211c1e8ull, 0xfb3aa75142244891ull, 0xb46ad37a8a3b6595ull, 0xceb2a3b2ba0eececull,
0x41da32eaea507767ull, 0x3b024222da65fe1eull, 0xa2722586f2d042eeull, 0xd8aa554ec2e5cb97ull, 0x57c2c41692bb501cull, 0x2d1ab4dea28ed965ull,
0x624ac0f56a91f461ull, 0x1892b03d5aa47d18ull, 0x97fa21650afae693ull, 0xed2251ad3acf6feaull, 0x095ac9329ac4bc9bull, 0x7382b9faaaf135e2ull,
0xfcea28a2faafae69ull, 0x8632586aca9a2710ull, 0xc9622c4102850a14ull, 0xb3ba5c8932b0836dull, 0x3cd2cdd162ee18e6ull, 0x460abd1952db919full,
0x256b24ca6b12f26dull, 0x5fb354025b277b14ull, 0xd0dbc55a0b79e09full, 0xaa03b5923b4c69e6ull, 0xe553c1b9f35344e2ull, 0x9f8bb171c366cd9bull,
0x10e3202993385610ull, 0x6a3b50e1a30ddf69ull, 0x8e43c87e03060c18ull, 0xf49bb8b633338561ull, 0x7bf329ee636d1eeaull, 0x012b592653589793ull,
0x4e7b2d0d9b47ba97ull, 0x34a35dc5ab7233eeull, 0xbbcbcc9dfb2ca865ull, 0xc113bc55cb19211cull, 0x5863dbf1e3ac9decull, 0x22bbab39d3991495ull,
0xadd33a6183c78f1eull, 0xd70b4aa9b3f20667ull, 0x985b3e827bed2b63ull, 0xe2834e4a4bd8a21aull, 0x6debdf121b863991ull, 0x1733afda2bb3b0e8ull,
0xf34b37458bb86399ull, 0x8993478dbb8deae0ull, 0x06fbd6d5ebd3716bull, 0x7c23a61ddbe6f812ull, 0x3373d23613f9d516ull, 0x49aba2fe23cc5c6full,
0xc6c333a67392c7e4ull, 0xbc1b436e43a74e9dull, 0x95ac9329ac4bc9b5ull, 0xef74e3e19c7e40ccull, 0x601c72b9cc20db47ull, 0x1ac40271fc15523eull,
0x5594765a340a7f3aull, 0x2f4c0692043ff643ull, 0xa02497ca54616dc8ull, 0xdafce7026454e4b1ull, 0x3e847f9dc45f37c0ull, 0x445c0f55f46abeb9ull,
0xcb349e0da4342532ull, 0xb1eceec59401ac4bull, 0xfebc9aee5c1e814full, 0x8464ea266c2b0836ull, 0x0b0c7b7e3c7593bdull, 0x71d40bb60c401ac4ull,
0xe8a46c1224f5a634ull, 0x927c1cda14c02f4dull, 0x1d148d82449eb4c6ull, 0x67ccfd4a74ab3dbfull, 0x289c8961bcb410bbull, 0x5244f9a98c8199c2ull,
0xdd2c68f1dcdf0249ull, 0xa7f41839ecea8b30ull, 0x438c80a64ce15841ull, 0x3954f06e7cd4d138ull, 0xb63c61362c8a4ab3ull, 0xcce411fe1cbfc3caull,
0x83b465d5d4a0eeceull, 0xf96c151de49567b7ull, 0x76048445b4cbfc3cull, 0x0cdcf48d84fe7545ull, 0x6fbd6d5ebd3716b7ull, 0x15651d968d029fceull,
0x9a0d8ccedd5c0445ull, 0xe0d5fc06ed698d3cull, 0xaf85882d2576a038ull, 0xd55df8e515432941ull, 0x5a3569bd451db2caull, 0x20ed197575283bb3ull,
0xc49581ead523e8c2ull, 0xbe4df122e51661bbull, 0x3125607ab548fa30ull, 0x4bfd10b2857d7349ull, 0x04ad64994d625e4dull, 0x7e7514517d57d734ull,
0xf11d85092d094cbfull, 0x8bc5f5c11d3cc5c6ull, 0x12b5926535897936ull, 0x686de2ad05bcf04full, 0xe70573f555e26bc4ull, 0x9ddd033d65d7e2bdull,
0xd28d7716adc8cfb9ull, 0xa85507de9dfd46c0ull, 0x273d9686cda3dd4bull, 0x5de5e64efd965432ull, 0xb99d7ed15d9d8743ull, 0xc3450e196da80e3aull,
0x4c2d9f413df695b1ull, 0x36f5ef890dc31cc8ull, 0x79a59ba2c5dc31ccull, 0x037deb6af5e9b8b5ull, 0x8c157a32a5b7233eull, 0xf6cd0afa9582aa47ull,
0x4ad64994d625e4daull, 0x300e395ce6106da3ull, 0xbf66a804b64ef628ull, 0xc5bed8cc867b7f51ull, 0x8aeeace74e645255ull, 0xf036dc2f7e51db2cull,
0x7f5e4d772e0f40a7ull, 0x05863dbf1e3ac9deull, 0xe1fea520be311aafull, 0x9b26d5e88e0493d6ull, 0x144e44b0de5a085dull, 0x6e963478ee6f8124ull,
0x21c640532670ac20ull, 0x5b1e309b16452559ull, 0xd476a1c3461bbed2ull, 0xaeaed10b762e37abull, 0x37deb6af5e9b8b5bull, 0x4d06c6676eae0222ull,
0xc26e573f3ef099a9ull, 0xb8b627f70ec510d0ull, 0xf7e653dcc6da3dd4ull, 0x8d3e2314f6efb4adull, 0x0256b24ca6b12f26ull, 0x788ec2849684a65full,
0x9cf65a1b368f752eull, 0xe62e2ad306bafc57ull, 0x6946bb8b56e467dcull, 0x139ecb4366d1eea5ull, 0x5ccebf68aecec3a1ull, 0x2616cfa09efb4ad8ull,
0xa97e5ef8cea5d153ull, 0xd3a62e30fe90582aull, 0xb0c7b7e3c7593bd8ull, 0xca1fc72bf76cb2a1ull, 0x45775673a732292aull, 0x3faf26bb9707a053ull,
0x70ff52905f188d57ull, 0x0a2722586f2d042eull, 0x854fb3003f739fa5ull, 0xff97c3c80f4616dcull, 0x1bef5b57af4dc5adull, 0x61372b9f9f784cd4ull,
0xee5fbac7cf26d75full, 0x9487ca0fff135e26ull, 0xdbd7be24370c7322ull, 0xa10fceec0739fa5bull, 0x2e675fb4576761d0ull, 0x54bf2f7c6752e8a9ull,
0xcdcf48d84fe75459ull, 0xb71738107fd2dd20ull, 0x387fa9482f8c46abull, 0x42a7d9801fb9cfd2ull, 0x0df7adabd7a6e2d6ull, 0x772fdd63e7936bafull,
0xf8474c3bb7cdf024ull, 0x829f3cf387f8795dull, 0x66e7a46c27f3aa2cull, 0x1c3fd4a417c62355ull, 0x935745fc4798b8deull, 0xe98f353477ad31a7ull,
0xa6df411fbfb21ca3ull, 0xdc0731d78f8795daull, 0x536fa08fdfd90e51ull, 0x29b7d047efec8728ull,
};
u64 crc64( void const* data, sw len )
{
sw remaining;
u64 result = ( zpl_cast( u64 ) 0 );
u8 const* c = zpl_cast( u8 const* ) data;
for ( remaining = len; remaining--; c++ )
result = ( result >> 8 ) ^ ( _crc64_table[( result ^ *c ) & 0xff] );
return result;
}
#pragma endregion Hashing
#pragma region Memory
void* mem_copy( void* dest, void const* source, sw n )
{
if ( dest == NULL )
{
return NULL;
}
return memcpy( dest, source, n );
}
void const* mem_find( void const* data, u8 c, sw n )
{
u8 const* s = zpl_cast( u8 const* ) data;
while ( ( zpl_cast( uptr ) s & ( sizeof( uw ) - 1 ) ) && n && *s != c )
{
s++;
n--;
}
if ( n && *s != c )
{
sw const* w;
sw k = GEN__ONES * c;
w = zpl_cast( sw const* ) s;
while ( n >= size_of( sw ) && ! GEN__HAS_ZERO( *w ^ k ) )
{
w++;
n -= size_of( sw );
}
s = zpl_cast( u8 const* ) w;
while ( n && *s != c )
{
s++;
n--;
}
}
return n ? zpl_cast( void const* ) s : NULL;
}
#define GEN_HEAP_STATS_MAGIC 0xDEADC0DE
struct _heap_stats
{
u32 magic;
sw used_memory;
sw alloc_count;
};
global _heap_stats _heap_stats_info;
void heap_stats_init( void )
{
zero_item( &_heap_stats_info );
_heap_stats_info.magic = GEN_HEAP_STATS_MAGIC;
}
sw heap_stats_used_memory( void )
{
GEN_ASSERT_MSG( _heap_stats_info.magic == GEN_HEAP_STATS_MAGIC, "heap_stats is not initialised yet, call heap_stats_init first!" );
return _heap_stats_info.used_memory;
}
sw heap_stats_alloc_count( void )
{
GEN_ASSERT_MSG( _heap_stats_info.magic == GEN_HEAP_STATS_MAGIC, "heap_stats is not initialised yet, call heap_stats_init first!" );
return _heap_stats_info.alloc_count;
}
void heap_stats_check( void )
{
GEN_ASSERT_MSG( _heap_stats_info.magic == GEN_HEAP_STATS_MAGIC, "heap_stats is not initialised yet, call heap_stats_init first!" );
GEN_ASSERT( _heap_stats_info.used_memory == 0 );
GEN_ASSERT( _heap_stats_info.alloc_count == 0 );
}
struct _heap_alloc_info
{
sw size;
void* physical_start;
};
void* heap_allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags )
{
void* ptr = NULL;
// unused( allocator_data );
// unused( old_size );
if ( ! alignment )
alignment = GEN_DEFAULT_MEMORY_ALIGNMENT;
#ifdef GEN_HEAP_ANALYSIS
sw alloc_info_size = size_of( _heap_alloc_info );
sw alloc_info_remainder = ( alloc_info_size % alignment );
sw track_size = max( alloc_info_size, alignment ) + alloc_info_remainder;
switch ( type )
{
case EAllocation_FREE :
{
if ( ! old_memory )
break;
_heap_alloc_info* alloc_info = zpl_cast( _heap_alloc_info* ) old_memory - 1;
_heap_stats_info.used_memory -= alloc_info->size;
_heap_stats_info.alloc_count--;
old_memory = alloc_info->physical_start;
}
break;
case EAllocation_ALLOC :
{
size += track_size;
}
break;
default :
break;
}
#endif
switch ( type )
{
#if defined( GEN_COMPILER_MSVC ) || ( defined( GEN_COMPILER_GCC ) && defined( GEN_SYSTEM_WINDOWS ) ) \
|| ( defined( GEN_COMPILER_TINYC ) && defined( GEN_SYSTEM_WINDOWS ) )
case EAllocation_ALLOC :
ptr = _aligned_malloc( size, alignment );
if ( flags & ALLOCATOR_FLAG_CLEAR_TO_ZERO )
zero_size( ptr, size );
break;
case EAllocation_FREE :
_aligned_free( old_memory );
break;
case EAllocation_RESIZE :
{
AllocatorInfo a = heap();
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
#elif defined( GEN_SYSTEM_LINUX ) && ! defined( GEN_CPU_ARM ) && ! defined( GEN_COMPILER_TINYC )
case EAllocation_ALLOC :
{
ptr = aligned_alloc( alignment, ( size + alignment - 1 ) & ~( alignment - 1 ) );
if ( flags & GEN_ALLOCATOR_FLAG_CLEAR_TO_ZERO )
{
zero_size( ptr, size );
}
}
break;
case EAllocation_FREE :
{
free( old_memory );
}
break;
case EAllocation_RESIZE :
{
AllocatorInfo a = heap();
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
#else
case EAllocation_ALLOC :
{
posix_memalign( &ptr, alignment, size );
if ( flags & GEN_ALLOCATOR_FLAG_CLEAR_TO_ZERO )
{
zero_size( ptr, size );
}
}
break;
case EAllocation_FREE :
{
free( old_memory );
}
break;
case EAllocation_RESIZE :
{
AllocatorInfo a = heap();
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
#endif
case EAllocation_FREE_ALL :
break;
}
#ifdef GEN_HEAP_ANALYSIS
if ( type == EAllocation_ALLOC )
{
_heap_alloc_info* alloc_info = zpl_cast( _heap_alloc_info* )( zpl_cast( char* ) ptr + alloc_info_remainder );
zero_item( alloc_info );
alloc_info->size = size - track_size;
alloc_info->physical_start = ptr;
ptr = zpl_cast( void* )( alloc_info + 1 );
_heap_stats_info.used_memory += alloc_info->size;
_heap_stats_info.alloc_count++;
}
#endif
return ptr;
}
#pragma region VirtualMemory
VirtualMemory vm_from_memory( void* data, sw size )
{
VirtualMemory vm;
vm.data = data;
vm.size = size;
return vm;
}
#if defined( GEN_SYSTEM_WINDOWS )
VirtualMemory vm_alloc( void* addr, sw size )
{
VirtualMemory vm;
GEN_ASSERT( size > 0 );
vm.data = VirtualAlloc( addr, size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE );
vm.size = size;
return vm;
}
b32 vm_free( VirtualMemory vm )
{
MEMORY_BASIC_INFORMATION info;
while ( vm.size > 0 )
{
if ( VirtualQuery( vm.data, &info, size_of( info ) ) == 0 )
return false;
if ( info.BaseAddress != vm.data || info.AllocationBase != vm.data || info.State != MEM_COMMIT || info.RegionSize > zpl_cast( uw ) vm.size )
{
return false;
}
if ( VirtualFree( vm.data, 0, MEM_RELEASE ) == 0 )
return false;
vm.data = pointer_add( vm.data, info.RegionSize );
vm.size -= info.RegionSize;
}
return true;
}
VirtualMemory vm_trim( VirtualMemory vm, sw lead_size, sw size )
{
VirtualMemory new_vm = { 0 };
void* ptr;
GEN_ASSERT( vm.size >= lead_size + size );
ptr = pointer_add( vm.data, lead_size );
vm_free( vm );
new_vm = vm_alloc( ptr, size );
if ( new_vm.data == ptr )
return new_vm;
if ( new_vm.data )
vm_free( new_vm );
return new_vm;
}
b32 vm_purge( VirtualMemory vm )
{
VirtualAlloc( vm.data, vm.size, MEM_RESET, PAGE_READWRITE );
// NOTE: Can this really fail?
return true;
}
sw virtual_memory_page_size( sw* alignment_out )
{
SYSTEM_INFO info;
GetSystemInfo( &info );
if ( alignment_out )
*alignment_out = info.dwAllocationGranularity;
return info.dwPageSize;
}
#else
#include <sys/mman.h>
#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif
VirtualMemory vm_alloc( void* addr, sw size )
{
VirtualMemory vm;
GEN_ASSERT( size > 0 );
vm.data = mmap( addr, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0 );
vm.size = size;
return vm;
}
b32 vm_free( VirtualMemory vm )
{
munmap( vm.data, vm.size );
return true;
}
VirtualMemory vm_trim( VirtualMemory vm, sw lead_size, sw size )
{
void* ptr;
sw trail_size;
GEN_ASSERT( vm.size >= lead_size + size );
ptr = pointer_add( vm.data, lead_size );
trail_size = vm.size - lead_size - size;
if ( lead_size != 0 )
vm_free( vm_from_memory(( vm.data, lead_size ) );
if ( trail_size != 0 )
vm_free( vm_from_memory( ptr, trail_size ) );
return vm_from_memory( ptr, size );
}
b32 vm_purge( VirtualMemory vm )
{
int err = madvise( vm.data, vm.size, MADV_DONTNEED );
return err != 0;
}
sw virtual_memory_page_size( sw* alignment_out )
{
// TODO: Is this always true?
sw result = zpl_cast( sw ) sysconf( _SC_PAGE_SIZE );
if ( alignment_out )
*alignment_out = result;
return result;
}
#endif
#pragma endregion VirtualMemory
void* Arena::allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags )
{
Arena* arena = rcast( Arena*, allocator_data );
void* ptr = NULL;
// unused( old_size );
switch ( type )
{
case EAllocation_ALLOC :
{
void* end = pointer_add( arena->PhysicalStart, arena->TotalUsed );
sw total_size = align_forward_i64( size, alignment );
// NOTE: Out of memory
if ( arena->TotalUsed + total_size > (sw)arena->TotalSize )
{
// zpl__printf_err("%s", "Arena out of memory\n");
GEN_FATAL( "Arena out of memory! (Possibly could not fit for the largest size Arena!!)" );
return nullptr;
}
ptr = align_forward( end, alignment );
arena->TotalUsed += total_size;
if ( flags & ALLOCATOR_FLAG_CLEAR_TO_ZERO )
zero_size( ptr, size );
}
break;
case EAllocation_FREE :
// NOTE: Free all at once
// Use Temp_Arena_Memory if you want to free a block
break;
case EAllocation_FREE_ALL :
arena->TotalUsed = 0;
break;
case EAllocation_RESIZE :
{
// TODO : Check if ptr is on top of stack and just extend
AllocatorInfo a = arena->Backing;
ptr = default_resize_align( a, old_memory, old_size, size, alignment );
}
break;
}
return ptr;
}
void* Pool::allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags )
{
Pool* pool = zpl_cast( Pool* ) allocator_data;
void* ptr = NULL;
// unused( old_size );
switch ( type )
{
case EAllocation_ALLOC :
{
uptr next_free;
GEN_ASSERT( size == pool->BlockSize );
GEN_ASSERT( alignment == pool->BlockAlign );
GEN_ASSERT( pool->FreeList != NULL );
next_free = *zpl_cast( uptr* ) pool->FreeList;
ptr = pool->FreeList;
pool->FreeList = zpl_cast( void* ) next_free;
pool->TotalSize += pool->BlockSize;
if ( flags & ALLOCATOR_FLAG_CLEAR_TO_ZERO )
zero_size( ptr, size );
}
break;
case EAllocation_FREE :
{
uptr* next;
if ( old_memory == NULL )
return NULL;
next = zpl_cast( uptr* ) old_memory;
*next = zpl_cast( uptr ) pool->FreeList;
pool->FreeList = old_memory;
pool->TotalSize -= pool->BlockSize;
}
break;
case EAllocation_FREE_ALL :
{
sw actual_block_size, block_index;
void* curr;
uptr* end;
actual_block_size = pool->BlockSize + pool->BlockAlign;
pool->TotalSize = 0;
// NOTE: Init intrusive freelist
curr = pool->PhysicalStart;
for ( block_index = 0; block_index < pool->NumBlocks - 1; block_index++ )
{
uptr* next = zpl_cast( uptr* ) curr;
*next = zpl_cast( uptr ) curr + actual_block_size;
curr = pointer_add( curr, actual_block_size );
}
end = zpl_cast( uptr* ) curr;
*end = zpl_cast( uptr ) NULL;
pool->FreeList = pool->PhysicalStart;
}
break;
case EAllocation_RESIZE :
// NOTE: Cannot resize
GEN_PANIC( "You cannot resize something allocated by with a pool." );
break;
}
return ptr;
}
Pool Pool::init_align( AllocatorInfo backing, sw num_blocks, sw block_size, sw block_align )
{
Pool pool = {};
sw actual_block_size, pool_size, block_index;
void *data, *curr;
uptr* end;
zero_item( &pool );
pool.Backing = backing;
pool.BlockSize = block_size;
pool.BlockAlign = block_align;
pool.NumBlocks = num_blocks;
actual_block_size = block_size + block_align;
pool_size = num_blocks * actual_block_size;
data = alloc_align( backing, pool_size, block_align );
// NOTE: Init intrusive freelist
curr = data;
for ( block_index = 0; block_index < num_blocks - 1; block_index++ )
{
uptr* next = (uptr*)curr;
*next = (uptr)curr + actual_block_size;
curr = pointer_add( curr, actual_block_size );
}
end = (uptr*)curr;
*end = (uptr)NULL;
pool.PhysicalStart = data;
pool.FreeList = data;
return pool;
}
void Pool::clear()
{
sw actual_block_size, block_index;
void* curr;
uptr* end;
actual_block_size = BlockSize + BlockAlign;
curr = PhysicalStart;
for ( block_index = 0; block_index < NumBlocks - 1; block_index++ )
{
uptr* next = (uptr*)curr;
*next = (uptr)curr + actual_block_size;
curr = pointer_add( curr, actual_block_size );
}
end = (uptr*)curr;
*end = (uptr)NULL;
FreeList = PhysicalStart;
}
#pragma endregion Memory
#pragma region String
String String::fmt( AllocatorInfo allocator, char* buf, sw buf_size, char const* fmt, ... )
{
va_list va;
va_start( va, fmt );
str_fmt_va( buf, buf_size, fmt, va );
va_end( va );
return make( allocator, buf );
}
String String::make_length( AllocatorInfo allocator, char const* str, sw length )
{
constexpr sw header_size = sizeof( Header );
s32 alloc_size = header_size + length + 1;
void* allocation = alloc( allocator, alloc_size );
if ( allocation == nullptr )
return { nullptr };
Header& header = *rcast( Header*, allocation );
header = { allocator, length, length };
String result = { rcast( char*, allocation ) + header_size };
if ( length && str )
mem_copy( result, str, length );
else
mem_set( result, 0, alloc_size - header_size );
result[length] = '\0';
return result;
}
String String::make_reserve( AllocatorInfo allocator, sw capacity )
{
constexpr sw header_size = sizeof( Header );
s32 alloc_size = header_size + capacity + 1;
void* allocation = alloc( allocator, alloc_size );
if ( allocation == nullptr )
return { nullptr };
mem_set( allocation, 0, alloc_size );
Header* header = rcast( Header*, allocation );
header->Allocator = allocator;
header->Capacity = capacity;
header->Length = 0;
String result = { rcast( char*, allocation ) + header_size };
return result;
}
String String::fmt_buf( AllocatorInfo allocator, char const* fmt, ... )
{
local_persist thread_local char buf[GEN_PRINTF_MAXLEN] = { 0 };
va_list va;
va_start( va, fmt );
str_fmt_va( buf, GEN_PRINTF_MAXLEN, fmt, va );
va_end( va );
return make( allocator, buf );
}
bool String::append_fmt( char const* fmt, ... )
{
sw res;
char buf[GEN_PRINTF_MAXLEN] = { 0 };
va_list va;
va_start( va, fmt );
res = str_fmt_va( buf, count_of( buf ) - 1, fmt, va ) - 1;
va_end( va );
return append( buf, res );
}
bool String::make_space_for( char const* str, sw add_len )
{
sw available = avail_space();
// NOTE: Return if there is enough space left
if ( available >= add_len )
{
return true;
}
else
{
sw new_len, old_size, new_size;
void* ptr;
void* new_ptr;
AllocatorInfo allocator = get_header().Allocator;
Header* header = nullptr;
new_len = grow_formula( length() + add_len );
ptr = &get_header();
old_size = size_of( Header ) + length() + 1;
new_size = size_of( Header ) + new_len + 1;
new_ptr = resize( allocator, ptr, old_size, new_size );
if ( new_ptr == nullptr )
return false;
header = zpl_cast( Header* ) new_ptr;
header->Allocator = allocator;
header->Capacity = new_len;
Data = rcast( char*, header + 1 );
return str;
}
}
#pragma endregion String
#pragma region File Handling
#if defined( GEN_SYSTEM_WINDOWS ) || defined( GEN_SYSTEM_CYGWIN )
internal wchar_t* _alloc_utf8_to_ucs2( AllocatorInfo a, char const* text, sw* w_len_ )
{
wchar_t* w_text = NULL;
sw len = 0, w_len = 0, w_len1 = 0;
if ( text == NULL )
{
if ( w_len_ )
*w_len_ = w_len;
return NULL;
}
len = str_len( text );
if ( len == 0 )
{
if ( w_len_ )
*w_len_ = w_len;
return NULL;
}
w_len = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, text, zpl_cast( int ) len, NULL, 0 );
if ( w_len == 0 )
{
if ( w_len_ )
*w_len_ = w_len;
return NULL;
}
w_text = alloc_array( a, wchar_t, w_len + 1 );
w_len1 = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, text, zpl_cast( int ) len, w_text, zpl_cast( int ) w_len );
if ( w_len1 == 0 )
{
free( a, w_text );
if ( w_len_ )
*w_len_ = 0;
return NULL;
}
w_text[w_len] = 0;
if ( w_len_ )
*w_len_ = w_len;
return w_text;
}
internal GEN_FILE_SEEK_PROC( _win32_file_seek )
{
LARGE_INTEGER li_offset;
li_offset.QuadPart = offset;
if ( ! SetFilePointerEx( fd.p, li_offset, &li_offset, whence ) )
{
return false;
}
if ( new_offset )
*new_offset = li_offset.QuadPart;
return true;
}
internal GEN_FILE_READ_AT_PROC( _win32_file_read )
{
// unused( stop_at_newline );
b32 result = false;
_win32_file_seek( fd, offset, ESeekWhence_BEGIN, NULL );
DWORD size_ = zpl_cast( DWORD )( size > GEN_I32_MAX ? GEN_I32_MAX : size );
DWORD bytes_read_;
if ( ReadFile( fd.p, buffer, size_, &bytes_read_, NULL ) )
{
if ( bytes_read )
*bytes_read = bytes_read_;
result = true;
}
return result;
}
internal GEN_FILE_WRITE_AT_PROC( _win32_file_write )
{
DWORD size_ = zpl_cast( DWORD )( size > GEN_I32_MAX ? GEN_I32_MAX : size );
DWORD bytes_written_;
_win32_file_seek( fd, offset, ESeekWhence_BEGIN, NULL );
if ( WriteFile( fd.p, buffer, size_, &bytes_written_, NULL ) )
{
if ( bytes_written )
*bytes_written = bytes_written_;
return true;
}
return false;
}
internal GEN_FILE_CLOSE_PROC( _win32_file_close )
{
CloseHandle( fd.p );
}
FileOperations const default_file_operations = { _win32_file_read, _win32_file_write, _win32_file_seek, _win32_file_close };
neverinline GEN_FILE_OPEN_PROC( _win32_file_open )
{
DWORD desired_access;
DWORD creation_disposition;
void* handle;
wchar_t* w_text;
switch ( mode & GEN_FILE_MODES )
{
case EFileMode_READ :
desired_access = GENERIC_READ;
creation_disposition = OPEN_EXISTING;
break;
case EFileMode_WRITE :
desired_access = GENERIC_WRITE;
creation_disposition = CREATE_ALWAYS;
break;
case EFileMode_APPEND :
desired_access = GENERIC_WRITE;
creation_disposition = OPEN_ALWAYS;
break;
case EFileMode_READ | EFileMode_RW :
desired_access = GENERIC_READ | GENERIC_WRITE;
creation_disposition = OPEN_EXISTING;
break;
case EFileMode_WRITE | EFileMode_RW :
desired_access = GENERIC_READ | GENERIC_WRITE;
creation_disposition = CREATE_ALWAYS;
break;
case EFileMode_APPEND | EFileMode_RW :
desired_access = GENERIC_READ | GENERIC_WRITE;
creation_disposition = OPEN_ALWAYS;
break;
default :
GEN_PANIC( "Invalid file mode" );
return EFileError_INVALID;
}
w_text = _alloc_utf8_to_ucs2( heap(), filename, NULL );
handle = CreateFileW( w_text, desired_access, FILE_SHARE_READ | FILE_SHARE_DELETE, NULL, creation_disposition, FILE_ATTRIBUTE_NORMAL, NULL );
free( heap(), w_text );
if ( handle == INVALID_HANDLE_VALUE )
{
DWORD err = GetLastError();
switch ( err )
{
case ERROR_FILE_NOT_FOUND :
return EFileError_NOT_EXISTS;
case ERROR_FILE_EXISTS :
return EFileError_EXISTS;
case ERROR_ALREADY_EXISTS :
return EFileError_EXISTS;
case ERROR_ACCESS_DENIED :
return EFileError_PERMISSION;
}
return EFileError_INVALID;
}
if ( mode & EFileMode_APPEND )
{
LARGE_INTEGER offset = { { 0 } };
if ( ! SetFilePointerEx( handle, offset, NULL, ESeekWhence_END ) )
{
CloseHandle( handle );
return EFileError_INVALID;
}
}
fd->p = handle;
*ops = default_file_operations;
return EFileError_NONE;
}
#else // POSIX
#include <fcntl.h>
internal GEN_FILE_SEEK_PROC( _posix_file_seek )
{
#if defined( GEN_SYSTEM_OSX )
s64 res = lseek( fd.i, offset, whence );
#else // TODO(ZaKlaus): @fixme lseek64
s64 res = lseek( fd.i, offset, whence );
#endif
if ( res < 0 )
return false;
if ( new_offset )
*new_offset = res;
return true;
}
internal GEN_FILE_READ_AT_PROC( _posix_file_read )
{
unused( stop_at_newline );
sw res = pread( fd.i, buffer, size, offset );
if ( res < 0 )
return false;
if ( bytes_read )
*bytes_read = res;
return true;
}
internal GEN_FILE_WRITE_AT_PROC( _posix_file_write )
{
sw res;
s64 curr_offset = 0;
_posix_file_seek( fd, 0, ESeekWhence_CURRENT, &curr_offset );
if ( curr_offset == offset )
{
// NOTE: Writing to stdout et al. doesn't like pwrite for numerous reasons
res = write( zpl_cast( int ) fd.i, buffer, size );
}
else
{
res = pwrite( zpl_cast( int ) fd.i, buffer, size, offset );
}
if ( res < 0 )
return false;
if ( bytes_written )
*bytes_written = res;
return true;
}
internal GEN_FILE_CLOSE_PROC( _posix_file_close )
{
close( fd.i );
}
FileOperations const default_file_operations = { _posix_file_read, _posix_file_write, _posix_file_seek, _posix_file_close };
neverinline GEN_FILE_OPEN_PROC( _posix_file_open )
{
s32 os_mode;
switch ( mode & GEN_FILE_MODES )
{
case EFileMode_READ :
os_mode = O_RDONLY;
break;
case EFileMode_WRITE :
os_mode = O_WRONLY | O_CREAT | O_TRUNC;
break;
case EFileMode_APPEND :
os_mode = O_WRONLY | O_APPEND | O_CREAT;
break;
case EFileMode_READ | EFileMode_RW :
os_mode = O_RDWR;
break;
case EFileMode_WRITE | EFileMode_RW :
os_mode = O_RDWR | O_CREAT | O_TRUNC;
break;
case EFileMode_APPEND | EFileMode_RW :
os_mode = O_RDWR | O_APPEND | O_CREAT;
break;
default :
GEN_PANIC( "Invalid file mode" );
return EFileError_INVALID;
}
fd->i = open( filename, os_mode, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH );
if ( fd->i < 0 )
{
// TODO : More file errors
return EFileError_INVALID;
}
*ops = default_file_operations;
return EFileError_NONE;
}
// POSIX
#endif
internal void _dirinfo_free_entry( DirEntry* entry );
// TODO : Is this a bad idea?
global b32 _std_file_set = false;
global FileInfo _std_files[EFileStandard_COUNT] = {
{ { nullptr, nullptr, nullptr, nullptr }, { nullptr }, 0, nullptr, 0, nullptr }
};
#if defined( GEN_SYSTEM_WINDOWS ) || defined( GEN_SYSTEM_CYGWIN )
FileInfo* file_get_standard( FileStandardType std )
{
if ( ! _std_file_set )
{
#define GEN__SET_STD_FILE( type, v ) \
_std_files[type].fd.p = v; \
_std_files[type].ops = default_file_operations
GEN__SET_STD_FILE( EFileStandard_INPUT, GetStdHandle( STD_INPUT_HANDLE ) );
GEN__SET_STD_FILE( EFileStandard_OUTPUT, GetStdHandle( STD_OUTPUT_HANDLE ) );
GEN__SET_STD_FILE( EFileStandard_ERROR, GetStdHandle( STD_ERROR_HANDLE ) );
#undef GEN__SET_STD_FILE
_std_file_set = true;
}
return &_std_files[std];
}
#else // POSIX
FileInfo* file_get_standard( FileStandardType std )
{
if ( ! _std_file_set )
{
#define GEN__SET_STD_FILE( type, v ) \
_std_files[type].fd.i = v; \
_std_files[type].ops = default_file_operations
GEN__SET_STD_FILE( EFileStandard_INPUT, 0 );
GEN__SET_STD_FILE( EFileStandard_OUTPUT, 1 );
GEN__SET_STD_FILE( EFileStandard_ERROR, 2 );
#undef GEN__SET_STD_FILE
_std_file_set = true;
}
return &_std_files[std];
}
#endif
FileError file_close( FileInfo* f )
{
if ( ! f )
return EFileError_INVALID;
if ( f->filename )
free( heap(), zpl_cast( char* ) f->filename );
#if defined( GEN_SYSTEM_WINDOWS )
if ( f->fd.p == INVALID_HANDLE_VALUE )
return EFileError_INVALID;
#else
if ( f->fd.i < 0 )
return EFileError_INVALID;
#endif
if ( f->is_temp )
{
f->ops.close( f->fd );
return EFileError_NONE;
}
if ( ! f->ops.read_at )
f->ops = default_file_operations;
f->ops.close( f->fd );
#if 0
if ( f->Dir )
{
_dirinfo_free_entry( f->Dir );
mfree( f->Dir );
f->Dir = NULL;
}
#endif
return EFileError_NONE;
}
FileError file_new( FileInfo* f, FileDescriptor fd, FileOperations ops, char const* filename )
{
FileError err = EFileError_NONE;
sw len = str_len( filename );
f->ops = ops;
f->fd = fd;
f->dir = nullptr;
f->last_write_time = 0;
f->filename = alloc_array( heap(), char, len + 1 );
mem_copy( zpl_cast( char* ) f->filename, zpl_cast( char* ) filename, len + 1 );
return err;
}
FileError file_open( FileInfo* f, char const* filename )
{
return file_open_mode( f, EFileMode_READ, filename );
}
FileError file_open_mode( FileInfo* f, FileMode mode, char const* filename )
{
FileInfo file_ = {
{ nullptr, nullptr, nullptr, nullptr },
{ nullptr },
0, nullptr, 0, nullptr
};
*f = file_;
FileError err;
#if defined( GEN_SYSTEM_WINDOWS ) || defined( GEN_SYSTEM_CYGWIN )
err = _win32_file_open( &f->fd, &f->ops, mode, filename );
#else
err = _posix_file_open( &f->fd, &f->ops, mode, filename );
#endif
if ( err == EFileError_NONE )
return file_new( f, f->fd, f->ops, filename );
return err;
}
s64 file_size( FileInfo* f )
{
s64 size = 0;
s64 prev_offset = file_tell( f );
file_seek_to_end( f );
size = file_tell( f );
file_seek( f, prev_offset );
return size;
}
FileContents file_read_contents( AllocatorInfo a, b32 zero_terminate, char const* filepath )
{
FileContents result;
FileInfo file;
result.allocator = a;
if ( file_open( &file, filepath ) == EFileError_NONE )
{
sw fsize = zpl_cast( sw ) file_size( &file );
if ( fsize > 0 )
{
result.data = alloc( a, zero_terminate ? fsize + 1 : fsize );
result.size = fsize;
file_read_at( &file, result.data, result.size, 0 );
if ( zero_terminate )
{
u8* str = zpl_cast( u8* ) result.data;
str[fsize] = '\0';
}
}
file_close( &file );
}
return result;
}
struct _memory_fd
{
u8 magic;
u8* buf; //< zpl_array OR plain buffer if we can't write
sw cursor;
AllocatorInfo allocator;
FileStreamFlags flags;
sw cap;
};
#define GEN__FILE_STREAM_FD_MAGIC 37
GEN_DEF_INLINE FileDescriptor _file_stream_fd_make( _memory_fd* d );
GEN_DEF_INLINE _memory_fd* _file_stream_from_fd( FileDescriptor fd );
GEN_IMPL_INLINE FileDescriptor _file_stream_fd_make( _memory_fd* d )
{
FileDescriptor fd = { 0 };
fd.p = (void*)d;
return fd;
}
GEN_IMPL_INLINE _memory_fd* _file_stream_from_fd( FileDescriptor fd )
{
_memory_fd* d = (_memory_fd*)fd.p;
GEN_ASSERT( d->magic == GEN__FILE_STREAM_FD_MAGIC );
return d;
}
b8 file_stream_new( FileInfo* file, AllocatorInfo allocator )
{
GEN_ASSERT_NOT_NULL( file );
_memory_fd* d = (_memory_fd*)alloc( allocator, size_of( _memory_fd ) );
if ( ! d )
return false;
zero_item( file );
d->magic = GEN__FILE_STREAM_FD_MAGIC;
d->allocator = allocator;
d->flags = EFileStream_CLONE_WRITABLE;
d->cap = 0;
d->buf = Array<u8>::init( allocator );
if ( ! d->buf )
return false;
file->ops = memory_file_operations;
file->fd = _file_stream_fd_make( d );
file->dir = NULL;
file->last_write_time = 0;
file->filename = NULL;
file->is_temp = true;
return true;
}
b8 file_stream_open( FileInfo* file, AllocatorInfo allocator, u8* buffer, sw size, FileStreamFlags flags )
{
GEN_ASSERT_NOT_NULL( file );
_memory_fd* d = (_memory_fd*)alloc( allocator, size_of( _memory_fd ) );
if ( ! d )
return false;
zero_item( file );
d->magic = GEN__FILE_STREAM_FD_MAGIC;
d->allocator = allocator;
d->flags = flags;
if ( d->flags & EFileStream_CLONE_WRITABLE )
{
Array<u8> arr = Array<u8>::init_reserve( allocator, size );
d->buf = arr;
if ( ! d->buf )
return false;
mem_copy( d->buf, buffer, size );
d->cap = size;
arr.get_header()->Num = size;
}
else
{
d->buf = buffer;
d->cap = size;
}
file->ops = memory_file_operations;
file->fd = _file_stream_fd_make( d );
file->dir = NULL;
file->last_write_time = 0;
file->filename = NULL;
file->is_temp = true;
return true;
}
u8* file_stream_buf( FileInfo* file, sw* size )
{
GEN_ASSERT_NOT_NULL( file );
_memory_fd* d = _file_stream_from_fd( file->fd );
if ( size )
*size = d->cap;
return d->buf;
}
internal GEN_FILE_SEEK_PROC( _memory_file_seek )
{
_memory_fd* d = _file_stream_from_fd( fd );
sw buflen = d->cap;
if ( whence == ESeekWhence_BEGIN )
d->cursor = 0;
else if ( whence == ESeekWhence_END )
d->cursor = buflen;
d->cursor = max( 0, clamp( d->cursor + offset, 0, buflen ) );
if ( new_offset )
*new_offset = d->cursor;
return true;
}
internal GEN_FILE_READ_AT_PROC( _memory_file_read )
{
// unused( stop_at_newline );
_memory_fd* d = _file_stream_from_fd( fd );
mem_copy( buffer, d->buf + offset, size );
if ( bytes_read )
*bytes_read = size;
return true;
}
internal GEN_FILE_WRITE_AT_PROC( _memory_file_write )
{
_memory_fd* d = _file_stream_from_fd( fd );
if ( ! ( d->flags & ( EFileStream_CLONE_WRITABLE | EFileStream_WRITABLE ) ) )
return false;
sw buflen = d->cap;
sw extralen = max( 0, size - ( buflen - offset ) );
sw rwlen = size - extralen;
sw new_cap = buflen + extralen;
if ( d->flags & EFileStream_CLONE_WRITABLE )
{
Array<u8> arr = { d->buf };
if ( arr.get_header()->Capacity < new_cap )
{
if ( ! arr.grow( (s64)( new_cap ) ) )
return false;
d->buf = arr;
}
}
mem_copy( d->buf + offset, buffer, rwlen );
if ( ( d->flags & EFileStream_CLONE_WRITABLE ) && extralen > 0 )
{
Array<u8> arr = { d->buf };
mem_copy( d->buf + offset + rwlen, pointer_add_const( buffer, rwlen ), extralen );
d->cap = new_cap;
arr.get_header()->Capacity = new_cap;
}
else
{
extralen = 0;
}
if ( bytes_written )
*bytes_written = ( rwlen + extralen );
return true;
}
internal GEN_FILE_CLOSE_PROC( _memory_file_close )
{
_memory_fd* d = _file_stream_from_fd( fd );
AllocatorInfo allocator = d->allocator;
if ( d->flags & EFileStream_CLONE_WRITABLE )
{
Array<u8> arr = { d->buf };
arr.free();
}
free( allocator, d );
}
FileOperations const memory_file_operations = { _memory_file_read, _memory_file_write, _memory_file_seek, _memory_file_close };
#pragma endregion File Handling
#pragma region Timing
#ifdef GEN_BENCHMARK
#if defined( GEN_COMPILER_MSVC ) && ! defined( __clang__ )
u64 read_cpu_time_stamp_counter( void )
{
return __rdtsc();
}
#elif defined( __i386__ )
u64 read_cpu_time_stamp_counter( void )
{
u64 x;
__asm__ volatile( ".byte 0x0f, 0x31" : "=A"( x ) );
return x;
}
#elif defined( __x86_64__ )
u64 read_cpu_time_stamp_counter( void )
{
u32 hi, lo;
__asm__ __volatile__( "rdtsc" : "=a"( lo ), "=d"( hi ) );
return ( zpl_cast( u64 ) lo ) | ( ( zpl_cast( u64 ) hi ) << 32 );
}
#elif defined( __powerpc__ )
u64 read_cpu_time_stamp_counter( void )
{
u64 result = 0;
u32 upper, lower, tmp;
__asm__ volatile(
"0: \n"
"\tmftbu %0 \n"
"\tmftb %1 \n"
"\tmftbu %2 \n"
"\tcmpw %2,%0 \n"
"\tbne 0b \n"
: "=r"( upper ), "=r"( lower ), "=r"( tmp )
);
result = upper;
result = result << 32;
result = result | lower;
return result;
}
#elif defined( GEN_SYSTEM_EMSCRIPTEN )
u64 read_cpu_time_stamp_counter( void )
{
return (u64)( emscripten_get_now() * 1e+6 );
}
#elif defined( GEN_CPU_ARM ) && ! defined( GEN_COMPILER_TINYC )
u64 read_cpu_time_stamp_counter( void )
{
#if defined( __aarch64__ )
int64_t r = 0;
asm volatile( "mrs %0, cntvct_el0" : "=r"( r ) );
#elif ( __ARM_ARCH >= 6 )
uint32_t r = 0;
uint32_t pmccntr;
uint32_t pmuseren;
uint32_t pmcntenset;
// Read the user mode perf monitor counter access permissions.
asm volatile( "mrc p15, 0, %0, c9, c14, 0" : "=r"( pmuseren ) );
if ( pmuseren & 1 )
{ // Allows reading perfmon counters for user mode code.
asm volatile( "mrc p15, 0, %0, c9, c12, 1" : "=r"( pmcntenset ) );
if ( pmcntenset & 0x80000000ul )
{ // Is it counting?
asm volatile( "mrc p15, 0, %0, c9, c13, 0" : "=r"( pmccntr ) );
// The counter is set up to count every 64th cycle
return ( (int64_t)pmccntr ) * 64; // Should optimize to << 6
}
}
#else
#error "No suitable method for read_cpu_time_stamp_counter for this cpu type"
#endif
return r;
}
#else
u64 read_cpu_time_stamp_counter( void )
{
GEN_PANIC( "read_cpu_time_stamp_counter is not supported on this particular setup" );
return -0;
}
#endif
#if defined( GEN_SYSTEM_WINDOWS ) || defined( GEN_SYSTEM_CYGWIN )
u64 time_rel_ms( void )
{
local_persist LARGE_INTEGER win32_perf_count_freq = {};
u64 result;
LARGE_INTEGER counter;
local_persist LARGE_INTEGER win32_perf_counter = {};
if ( ! win32_perf_count_freq.QuadPart )
{
QueryPerformanceFrequency( &win32_perf_count_freq );
GEN_ASSERT( win32_perf_count_freq.QuadPart != 0 );
QueryPerformanceCounter( &win32_perf_counter );
}
QueryPerformanceCounter( &counter );
result = ( counter.QuadPart - win32_perf_counter.QuadPart ) * 1000 / ( win32_perf_count_freq.QuadPart );
return result;
}
#else
#if defined( GEN_SYSTEM_LINUX ) || defined( GEN_SYSTEM_FREEBSD ) || defined( GEN_SYSTEM_OPENBSD ) || defined( GEN_SYSTEM_EMSCRIPTEN )
u64 _unix_gettime( void )
{
struct timespec t;
u64 result;
clock_gettime( 1 /*CLOCK_MONOTONIC*/, &t );
result = 1000 * t.tv_sec + 1.0e-6 * t.tv_nsec;
return result;
}
#endif
u64 time_rel_ms( void )
{
#if defined( GEN_SYSTEM_OSX )
u64 result;
local_persist u64 timebase = 0;
local_persist u64 timestart = 0;
if ( ! timestart )
{
mach_timebase_info_data_t tb = { 0 };
mach_timebase_info( &tb );
timebase = tb.numer;
timebase /= tb.denom;
timestart = mach_absolute_time();
}
// NOTE: mach_absolute_time() returns things in nanoseconds
result = 1.0e-6 * ( mach_absolute_time() - timestart ) * timebase;
return result;
#else
local_persist u64 unix_timestart = 0.0;
if ( ! unix_timestart )
{
unix_timestart = _unix_gettime();
}
u64 now = _unix_gettime();
return ( now - unix_timestart );
#endif
}
#endif
f64 time_rel( void )
{
return (f64)( time_rel_ms() * 1e-3 );
}
#endif
#pragma endregion Timing
GEN_NS_END