2887 lines
65 KiB
C++
Raw Normal View History

// This file was generated automatially by gencpp's bootstrap.cpp (See: https://github.com/Ed94/gencpp)
#pragma once
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-const-variable"
#pragma clang diagnostic ignored "-Wswitch"
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunknown-pragmas"
#pragma clang diagnostic ignored "-Wvarargs"
#pragma clang diagnostic ignored "-Wunused-function"
#endif
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunknown-pragmas"
#pragma GCC diagnostic ignored "-Wcomment"
#pragma GCC diagnostic ignored "-Wswitch"
#pragma GCC diagnostic ignored "-Wunused-variable"
#endif
#pragma region Platform Detection
/* Platform architecture */
#if defined( _WIN64 ) || defined( __x86_64__ ) || defined( _M_X64 ) || defined( __64BIT__ ) || defined( __powerpc64__ ) || defined( __ppc64__ ) \
|| defined( __aarch64__ )
#ifndef GEN_ARCH_64_BIT
#define GEN_ARCH_64_BIT 1
#endif
#else
#ifndef GEN_ARCH_32_BItxt_StrCaT
#define GEN_ARCH_32_BIT 1
#endif
#endif
/* Platform OS */
#if defined( _WIN32 ) || defined( _WIN64 )
#ifndef GEN_SYSTEM_WINDOWS
#define GEN_SYSTEM_WINDOWS 1
#endif
#elif defined( __APPLE__ ) && defined( __MACH__ )
#ifndef GEN_SYSTEM_OSX
#define GEN_SYSTEM_OSX 1
#endif
#ifndef GEN_SYSTEM_MACOS
#define GEN_SYSTEM_MACOS 1
#endif
#include <TargetConditionals.h>
#if TARGET_IPHONE_SIMULATOR == 1 || TARGET_OS_IPHONE == 1
#ifndef GEN_SYSTEM_IOS
#define GEN_SYSTEM_IOS 1
#endif
#endif
#elif defined( __unix__ )
#ifndef GEN_SYSTEM_UNIX
#define GEN_SYSTEM_UNIX 1
#endif
#if defined( ANDROID ) || defined( __ANDROID__ )
#ifndef GEN_SYSTEM_ANDROID
#define GEN_SYSTEM_ANDROID 1
#endif
#ifndef GEN_SYSTEM_LINUX
#define GEN_SYSTEM_LINUX 1
#endif
#elif defined( __linux__ )
#ifndef GEN_SYSTEM_LINUX
#define GEN_SYSTEM_LINUX 1
#endif
#elif defined( __FreeBSD__ ) || defined( __FreeBSD_kernel__ )
#ifndef GEN_SYSTEM_FREEBSD
#define GEN_SYSTEM_FREEBSD 1
#endif
#elif defined( __OpenBSD__ )
#ifndef GEN_SYSTEM_OPENBSD
#define GEN_SYSTEM_OPENBSD 1
#endif
#elif defined( __EMSCRIPTEN__ )
#ifndef GEN_SYSTEM_EMSCRIPTEN
#define GEN_SYSTEM_EMSCRIPTEN 1
#endif
#elif defined( __CYGWIN__ )
#ifndef GEN_SYSTEM_CYGWIN
#define GEN_SYSTEM_CYGWIN 1
#endif
#else
#error This UNIX operating system is not supported
#endif
#else
#error This operating system is not supported
#endif
/* Platform compiler */
#if defined( _MSC_VER )
#define GEN_COMPILER_MSVC 1
#elif defined( __GNUC__ )
#define GEN_COMPILER_GCC 1
#elif defined( __clang__ )
#define GEN_COMPILER_CLANG 1
#elif defined( __MINGW32__ )
#define GEN_COMPILER_MINGW 1
#error Unknown compiler
#endif
#if defined( __has_attribute )
#define GEN_HAS_ATTRIBUTE( attribute ) __has_attribute( attribute )
#else
#define GEN_HAS_ATTRIBUTE( attribute ) ( 0 )
#endif
#if defined( GEN_GCC_VERSION_CHECK )
#undef GEN_GCC_VERSION_CHECK
#endif
#if defined( GEN_GCC_VERSION )
#define GEN_GCC_VERSION_CHECK( major, minor, patch ) ( GEN_GCC_VERSION >= GEN_VERSION_ENCODE( major, minor, patch ) )
#else
#define GEN_GCC_VERSION_CHECK( major, minor, patch ) ( 0 )
#endif
#define GEN_DEF_INLINE static
#define GEN_IMPL_INLINE static inline
#pragma endregion Platform Detection
#pragma region Mandatory Includes
#include <stdarg.h>
#include <stddef.h>
#if defined( GEN_SYSTEM_WINDOWS )
#include <intrin.h>
#endif
#pragma endregion Mandatory Includes
#ifdef GEN_DONT_USE_NAMESPACE
#define GEN_NS
#define GEN_NS_BEGIN
#define GEN_NS_END
#else
#define GEN_NS gen::
#define GEN_NS_BEGIN \
namespace gen \
{
#define GEN_NS_END }
#endif
GEN_NS_BEGIN
#pragma region Macros
#define zpl_cast( Type ) ( Type )
// Keywords
#define global // Global variables
#define internal static // Internal linkage
#define local_persist static // Local Persisting variables
#ifdef GEN_COMPILER_MSVC
#define FORCEINLINE __forceinline
#define neverinline __declspec( noinline )
#elif defined( GEN_COMPILER_GCC )
#define FORCEINLINE inline __attribute__( ( __always_inline__ ) )
#define neverinline __attribute__( ( __noinline__ ) )
#elif defined( GEN_COMPILER_CLANG )
#if __has_attribute( __always_inline__ )
#define FORCEINLINE inline __attribute__( ( __always_inline__ ) )
#define neverinline __attribute__( ( __noinline__ ) )
#else
#define FORCEINLINE
#define neverinline
#endif
#else
#define FORCEINLINE
#define neverinline
#endif
// Bits
#define bit( Value ) ( 1 << Value )
#define bitfield_is_equal( Type, Field, Mask ) ( ( Type( Mask ) & Type( Field ) ) == Type( Mask ) )
// Casting
#define ccast( Type, Value ) ( *const_cast<Type*>( &( Value ) ) )
#define pcast( Type, Value ) ( *reinterpret_cast<Type*>( &( Value ) ) )
#define rcast( Type, Value ) reinterpret_cast<Type>( Value )
#define scast( Type, Value ) static_cast<Type>( Value )
// Num Arguments (Varadics)
// #if defined(__GNUC__) || defined(__clang__)
// Supports 0-50 arguments
#define num_args_impl( \
_0, \
_1, \
_2, \
_3, \
_4, \
_5, \
_6, \
_7, \
_8, \
_9, \
_10, \
_11, \
_12, \
_13, \
_14, \
_15, \
_16, \
_17, \
_18, \
_19, \
_20, \
_21, \
_22, \
_23, \
_24, \
_25, \
_26, \
_27, \
_28, \
_29, \
_30, \
_31, \
_32, \
_33, \
_34, \
_35, \
_36, \
_37, \
_38, \
_39, \
_40, \
_41, \
_42, \
_43, \
_44, \
_45, \
_46, \
_47, \
_48, \
_49, \
_50, \
_51, \
_52, \
_53, \
_54, \
_55, \
_56, \
_57, \
_58, \
_59, \
_60, \
_61, \
_62, \
_63, \
_64, \
_65, \
_66, \
_67, \
_68, \
_69, \
_70, \
_71, \
_72, \
_73, \
_74, \
_75, \
_76, \
_77, \
_78, \
_79, \
_80, \
_81, \
_82, \
_83, \
_84, \
_85, \
_86, \
_87, \
_88, \
_89, \
_90, \
_91, \
_92, \
_93, \
_94, \
_95, \
_96, \
_97, \
_98, \
_99, \
_100, \
N, \
... \
) \
N
// ## deletes preceding comma if _VA_ARGS__ is empty (GCC, Clang)
#define num_args( ... ) \
num_args_impl( \
_, \
##__VA_ARGS__, \
100, \
99, \
98, \
97, \
96, \
95, \
94, \
93, \
92, \
91, \
90, \
89, \
88, \
87, \
86, \
85, \
84, \
83, \
82, \
81, \
80, \
79, \
78, \
77, \
76, \
75, \
74, \
73, \
72, \
71, \
70, \
69, \
68, \
67, \
66, \
65, \
64, \
63, \
62, \
61, \
60, \
59, \
58, \
57, \
56, \
55, \
54, \
53, \
52, \
51, \
50, \
49, \
48, \
47, \
46, \
45, \
44, \
43, \
42, \
41, \
40, \
39, \
38, \
37, \
36, \
35, \
34, \
33, \
32, \
31, \
30, \
29, \
28, \
27, \
26, \
25, \
24, \
23, \
22, \
21, \
20, \
19, \
18, \
17, \
16, \
15, \
14, \
13, \
12, \
11, \
10, \
9, \
8, \
7, \
6, \
5, \
4, \
3, \
2, \
1, \
0 \
)
// #else
// This doesn't work on latest msvc so I had to use /Zc:preprocessor flag.
// Supports 1-50 arguments
// #define num_args_impl( \
// _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \
// _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \
// _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, \
// _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, \
// _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, \
// _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, \
// _61, _62, _63, _64, _65, _66, _67, _68, _69, _70, \
// _71, _72, _73, _74, _75, _76, _77, _78, _79, _80, \
// _81, _82, _83, _84, _85, _86, _87, _88, _89, _90, \
// _91, _92, _93, _94, _95, _96, _97, _98, _99, _100, \
// N, ... \
// ) N
// #define num_args(...) \
// num_args_impl( __VA_ARGS__, \
// 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, \
// 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, \
// 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, \
// 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, \
// 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
// 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \
// 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \
// 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \
// 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, \
// 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \
// 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 \
// )
// #endif
// Stringizing
#define stringize_va( ... ) #__VA_ARGS__
#define stringize( ... ) stringize_va( __VA_ARGS__ )
// Function do once
#define do_once() \
do \
{ \
static bool Done = false; \
if ( Done ) \
return; \
Done = true; \
} while ( 0 )
#define do_once_start \
do \
{ \
static bool Done = false; \
if ( Done ) \
break; \
Done = true;
#define do_once_end \
} \
while ( 0 ) \
;
#define labeled_scope_start \
if ( false ) \
{
#define labeled_scope_end }
#define clamp( x, lower, upper ) min( max( ( x ), ( lower ) ), ( upper ) )
#define count_of( x ) ( ( size_of( x ) / size_of( 0 [x] ) ) / ( (sw)( ! ( size_of( x ) % size_of( 0 [x] ) ) ) ) )
#define is_between( x, lower, upper ) ( ( ( lower ) <= ( x ) ) && ( ( x ) <= ( upper ) ) )
#define max( a, b ) ( ( a ) > ( b ) ? ( a ) : ( b ) )
#define min( a, b ) ( ( a ) < ( b ) ? ( a ) : ( b ) )
#define size_of( x ) ( sw )( sizeof( x ) )
#if defined( _MSC_VER ) || defined( GEN_COMPILER_TINYC )
#define offset_of( Type, element ) ( ( GEN_NS( gen_sw ) ) & ( ( (Type*)0 )->element ) )
#else
#define offset_of( Type, element ) __builtin_offsetof( Type, element )
#endif
template<class Type>
void swap( Type& a, Type& b )
{
Type tmp = a;
a = b;
b = tmp;
}
#pragma endregion Macros
#pragma region Basic Types
#define GEN_U8_MIN 0u
#define GEN_U8_MAX 0xffu
#define GEN_I8_MIN ( -0x7f - 1 )
#define GEN_I8_MAX 0x7f
#define GEN_U16_MIN 0u
#define GEN_U16_MAX 0xffffu
#define GEN_I16_MIN ( -0x7fff - 1 )
#define GEN_I16_MAX 0x7fff
#define GEN_U32_MIN 0u
#define GEN_U32_MAX 0xffffffffu
#define GEN_I32_MIN ( -0x7fffffff - 1 )
#define GEN_I32_MAX 0x7fffffff
#define GEN_U64_MIN 0ull
#define GEN_U64_MAX 0xffffffffffffffffull
#define GEN_I64_MIN ( -0x7fffffffffffffffll - 1 )
#define GEN_I64_MAX 0x7fffffffffffffffll
#if defined( GEN_ARCH_32_BIT )
#define GEN_USIZE_MIN GEN_U32_MIN
#define GEN_USIZE_MAX GEN_U32_MAX
#define GEN_ISIZE_MIN GEN_S32_MIN
#define GEN_ISIZE_MAX GEN_S32_MAX
#elif defined( GEN_ARCH_64_BIT )
#define GEN_USIZE_MIN GEN_U64_MIN
#define GEN_USIZE_MAX GEN_U64_MAX
#define GEN_ISIZE_MIN GEN_I64_MIN
#define GEN_ISIZE_MAX GEN_I64_MAX
#else
#error Unknown architecture size. This library only supports 32 bit and 64 bit architectures.
#endif
#define GEN_F32_MIN 1.17549435e-38f
#define GEN_F32_MAX 3.40282347e+38f
#define GEN_F64_MIN 2.2250738585072014e-308
#define GEN_F64_MAX 1.7976931348623157e+308
#if defined( GEN_COMPILER_MSVC )
#if _MSC_VER < 1300
typedef unsigned char u8;
typedef signed char s8;
typedef unsigned short u16;
typedef signed short s16;
typedef unsigned int u32;
typedef signed int s32;
#else
typedef unsigned __int8 u8;
typedef signed __int8 s8;
typedef unsigned __int16 u16;
typedef signed __int16 s16;
typedef unsigned __int32 u32;
typedef signed __int32 s32;
#endif
typedef unsigned __int64 u64;
typedef signed __int64 s64;
#else
#include <stdint.h>
typedef uint8_t u8;
typedef int8_t s8;
typedef uint16_t u16;
typedef int16_t s16;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint64_t u64;
typedef int64_t s64;
#endif
static_assert( sizeof( u8 ) == sizeof( s8 ), "sizeof(u8) != sizeof(s8)" );
static_assert( sizeof( u16 ) == sizeof( s16 ), "sizeof(u16) != sizeof(s16)" );
static_assert( sizeof( u32 ) == sizeof( s32 ), "sizeof(u32) != sizeof(s32)" );
static_assert( sizeof( u64 ) == sizeof( s64 ), "sizeof(u64) != sizeof(s64)" );
static_assert( sizeof( u8 ) == 1, "sizeof(u8) != 1" );
static_assert( sizeof( u16 ) == 2, "sizeof(u16) != 2" );
static_assert( sizeof( u32 ) == 4, "sizeof(u32) != 4" );
static_assert( sizeof( u64 ) == 8, "sizeof(u64) != 8" );
typedef size_t uw;
typedef ptrdiff_t sw;
static_assert( sizeof( uw ) == sizeof( sw ), "sizeof(uw) != sizeof(sw)" );
// NOTE: (u)zpl_intptr is only here for semantic reasons really as this library will only support 32/64 bit OSes.
#if defined( _WIN64 )
typedef signed __int64 sptr;
typedef unsigned __int64 uptr;
#elif defined( _WIN32 )
// NOTE; To mark types changing their size, e.g. zpl_intptr
#ifndef _W64
#if ! defined( __midl ) && ( defined( _X86_ ) || defined( _M_IX86 ) ) && _MSC_VER >= 1300
#define _W64 __w64
#else
#define _W64
#endif
#endif
typedef _W64 signed int sptr;
typedef _W64 unsigned int uptr;
#else
typedef uintptr_t uptr;
typedef intptr_t sptr;
#endif
static_assert( sizeof( uptr ) == sizeof( sptr ), "sizeof(uptr) != sizeof(sptr)" );
typedef float f32;
typedef double f64;
static_assert( sizeof( f32 ) == 4, "sizeof(f32) != 4" );
static_assert( sizeof( f64 ) == 8, "sizeof(f64) != 8" );
typedef s8 b8;
typedef s16 b16;
typedef s32 b32;
#pragma endregion Basic Types
#pragma region Debug
#if defined( _MSC_VER )
#if _MSC_VER < 1300
#define GEN_DEBUG_TRAP() __asm int 3 /* Trap to debugger! */
#else
#define GEN_DEBUG_TRAP() __debugbreak()
#endif
#elif defined( GEN_COMPILER_TINYC )
#define GEN_DEBUG_TRAP() process_exit( 1 )
#else
#define GEN_DEBUG_TRAP() __builtin_trap()
#endif
#define GEN_ASSERT( cond ) GEN_ASSERT_MSG( cond, NULL )
#define GEN_ASSERT_MSG( cond, msg, ... ) \
do \
{ \
if ( ! ( cond ) ) \
{ \
assert_handler( #cond, __FILE__, zpl_cast( s64 ) __LINE__, msg, ##__VA_ARGS__ ); \
GEN_DEBUG_TRAP(); \
} \
} while ( 0 )
#define GEN_ASSERT_NOT_NULL( ptr ) GEN_ASSERT_MSG( ( ptr ) != NULL, #ptr " must not be NULL" )
// NOTE: Things that shouldn't happen with a message!
#define GEN_PANIC( msg, ... ) GEN_ASSERT_MSG( 0, msg, ##__VA_ARGS__ )
void assert_handler( char const* condition, char const* file, s32 line, char const* msg, ... );
s32 assert_crash( char const* condition );
void process_exit( u32 code );
#if Build_Debug
#define GEN_FATAL( ... ) \
do \
{ \
local_persist thread_local char buf[GEN_PRINTF_MAXLEN] = { 0 }; \
\
str_fmt( buf, GEN_PRINTF_MAXLEN, __VA_ARGS__ ); \
GEN_PANIC( buf ); \
} while ( 0 )
#else
#define GEN_FATAL( ... ) \
do \
{ \
str_fmt_out_err( __VA_ARGS__ ); \
process_exit( 1 ); \
} while ( 0 )
#endif
#pragma endregion Debug
#pragma region Memory
#define kilobytes( x ) ( ( x ) * (s64)( 1024 ) )
#define megabytes( x ) ( kilobytes( x ) * (s64)( 1024 ) )
#define gigabytes( x ) ( megabytes( x ) * (s64)( 1024 ) )
#define terabytes( x ) ( gigabytes( x ) * (s64)( 1024 ) )
#define GEN__ONES ( zpl_cast( uw ) - 1 / GEN_U8_MAX )
#define GEN__HIGHS ( GEN__ONES * ( GEN_U8_MAX / 2 + 1 ) )
#define GEN__HAS_ZERO( x ) ( ( ( x ) - GEN__ONES ) & ~( x ) & GEN__HIGHS )
//! Checks if value is power of 2.
GEN_DEF_INLINE b32 is_power_of_two( sw x );
//! Aligns address to specified alignment.
GEN_DEF_INLINE void* align_forward( void* ptr, sw alignment );
//! Aligns value to a specified alignment.
GEN_DEF_INLINE s64 align_forward_i64( s64 value, sw alignment );
//! Moves pointer forward by bytes.
GEN_DEF_INLINE void* pointer_add( void* ptr, sw bytes );
//! Moves pointer forward by bytes.
GEN_DEF_INLINE void const* pointer_add_const( void const* ptr, sw bytes );
//! Calculates difference between two addresses.
GEN_DEF_INLINE sw pointer_diff( void const* begin, void const* end );
//! Copy non-overlapping memory from source to destination.
void* mem_copy( void* dest, void const* source, sw size );
//! Search for a constant value within the size limit at memory location.
void const* mem_find( void const* data, u8 byte_value, sw size );
//! Copy memory from source to destination.
GEN_DEF_INLINE void* mem_move( void* dest, void const* source, sw size );
//! Set constant value at memory location with specified size.
GEN_DEF_INLINE void* mem_set( void* data, u8 byte_value, sw size );
//! @param ptr Memory location to clear up.
//! @param size The size to clear up with.
GEN_DEF_INLINE void zero_size( void* ptr, sw size );
//! Clears up an item.
#define zero_item( t ) zero_size( ( t ), size_of( *( t ) ) ) // NOTE: Pass pointer of struct
//! Clears up an array.
#define zero_array( a, count ) zero_size( ( a ), size_of( *( a ) ) * count )
enum AllocType : u8
{
EAllocation_ALLOC,
EAllocation_FREE,
EAllocation_FREE_ALL,
EAllocation_RESIZE,
};
using AllocatorProc = void*( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags );
struct AllocatorInfo
{
AllocatorProc* Proc;
void* Data;
};
enum AllocFlag
{
ALLOCATOR_FLAG_CLEAR_TO_ZERO = bit( 0 ),
};
#ifndef GEN_DEFAULT_MEMORY_ALIGNMENT
#define GEN_DEFAULT_MEMORY_ALIGNMENT ( 2 * size_of( void* ) )
#endif
#ifndef GEN_DEFAULT_ALLOCATOR_FLAGS
#define GEN_DEFAULT_ALLOCATOR_FLAGS ( ALLOCATOR_FLAG_CLEAR_TO_ZERO )
#endif
//! Allocate memory with default alignment.
GEN_DEF_INLINE void* alloc( AllocatorInfo a, sw size );
//! Allocate memory with specified alignment.
GEN_DEF_INLINE void* alloc_align( AllocatorInfo a, sw size, sw alignment );
//! Free allocated memory.
GEN_DEF_INLINE void free( AllocatorInfo a, void* ptr );
//! Free all memory allocated by an allocator.
GEN_DEF_INLINE void free_all( AllocatorInfo a );
//! Resize an allocated memory.
GEN_DEF_INLINE void* resize( AllocatorInfo a, void* ptr, sw old_size, sw new_size );
//! Resize an allocated memory with specified alignment.
GEN_DEF_INLINE void* resize_align( AllocatorInfo a, void* ptr, sw old_size, sw new_size, sw alignment );
//! Allocate memory for an item.
#define alloc_item( allocator_, Type ) (Type*)alloc( allocator_, size_of( Type ) )
//! Allocate memory for an array of items.
#define alloc_array( allocator_, Type, count ) (Type*)alloc( allocator_, size_of( Type ) * ( count ) )
/* heap memory analysis tools */
/* define GEN_HEAP_ANALYSIS to enable this feature */
/* call zpl_heap_stats_init at the beginning of the entry point */
/* you can call zpl_heap_stats_check near the end of the execution to validate any possible leaks */
void heap_stats_init( void );
sw heap_stats_used_memory( void );
sw heap_stats_alloc_count( void );
void heap_stats_check( void );
//! Allocate/Resize memory using default options.
//! Use this if you don't need a "fancy" resize allocation
GEN_DEF_INLINE void* default_resize_align( AllocatorInfo a, void* ptr, sw old_size, sw new_size, sw alignment );
void* heap_allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags );
//! The heap allocator backed by operating system's memory manager.
constexpr AllocatorInfo heap( void )
{
return { heap_allocator_proc, nullptr };
}
//! Helper to allocate memory using heap allocator.
#define malloc( sz ) alloc( heap(), sz )
//! Helper to free memory allocated by heap allocator.
#define mfree( ptr ) free( heap(), ptr )
GEN_IMPL_INLINE b32 is_power_of_two( sw x )
{
if ( x <= 0 )
return false;
return ! ( x & ( x - 1 ) );
}
GEN_IMPL_INLINE void* align_forward( void* ptr, sw alignment )
{
uptr p;
GEN_ASSERT( is_power_of_two( alignment ) );
p = zpl_cast( uptr ) ptr;
return zpl_cast( void* )( ( p + ( alignment - 1 ) ) & ~( alignment - 1 ) );
}
GEN_IMPL_INLINE s64 align_forward_i64( s64 value, sw alignment )
{
return value + ( alignment - value % alignment ) % alignment;
}
GEN_IMPL_INLINE void* pointer_add( void* ptr, sw bytes )
{
return zpl_cast( void* )( zpl_cast( u8* ) ptr + bytes );
}
GEN_IMPL_INLINE void const* pointer_add_const( void const* ptr, sw bytes )
{
return zpl_cast( void const* )( zpl_cast( u8 const* ) ptr + bytes );
}
GEN_IMPL_INLINE sw pointer_diff( void const* begin, void const* end )
{
return zpl_cast( sw )( zpl_cast( u8 const* ) end - zpl_cast( u8 const* ) begin );
}
GEN_IMPL_INLINE void* mem_move( void* dest, void const* source, sw n )
{
if ( dest == NULL )
{
return NULL;
}
u8* d = zpl_cast( u8* ) dest;
u8 const* s = zpl_cast( u8 const* ) source;
if ( d == s )
return d;
if ( s + n <= d || d + n <= s ) // NOTE: Non-overlapping
return mem_copy( d, s, n );
if ( d < s )
{
if ( zpl_cast( uptr ) s % size_of( sw ) == zpl_cast( uptr ) d % size_of( sw ) )
{
while ( zpl_cast( uptr ) d % size_of( sw ) )
{
if ( ! n-- )
return dest;
*d++ = *s++;
}
while ( n >= size_of( sw ) )
{
*zpl_cast( sw* ) d = *zpl_cast( sw* ) s;
n -= size_of( sw );
d += size_of( sw );
s += size_of( sw );
}
}
for ( ; n; n-- )
*d++ = *s++;
}
else
{
if ( ( zpl_cast( uptr ) s % size_of( sw ) ) == ( zpl_cast( uptr ) d % size_of( sw ) ) )
{
while ( zpl_cast( uptr )( d + n ) % size_of( sw ) )
{
if ( ! n-- )
return dest;
d[n] = s[n];
}
while ( n >= size_of( sw ) )
{
n -= size_of( sw );
*zpl_cast( sw* )( d + n ) = *zpl_cast( sw* )( s + n );
}
}
while ( n )
n--, d[n] = s[n];
}
return dest;
}
GEN_IMPL_INLINE void* mem_set( void* dest, u8 c, sw n )
{
if ( dest == NULL )
{
return NULL;
}
u8* s = zpl_cast( u8* ) dest;
sw k;
u32 c32 = ( (u32)-1 ) / 255 * c;
if ( n == 0 )
return dest;
s[0] = s[n - 1] = c;
if ( n < 3 )
return dest;
s[1] = s[n - 2] = c;
s[2] = s[n - 3] = c;
if ( n < 7 )
return dest;
s[3] = s[n - 4] = c;
if ( n < 9 )
return dest;
k = -zpl_cast( sptr ) s & 3;
s += k;
n -= k;
n &= -4;
*zpl_cast( u32* )( s + 0 ) = c32;
*zpl_cast( u32* )( s + n - 4 ) = c32;
if ( n < 9 )
return dest;
*zpl_cast( u32* )( s + 4 ) = c32;
*zpl_cast( u32* )( s + 8 ) = c32;
*zpl_cast( u32* )( s + n - 12 ) = c32;
*zpl_cast( u32* )( s + n - 8 ) = c32;
if ( n < 25 )
return dest;
*zpl_cast( u32* )( s + 12 ) = c32;
*zpl_cast( u32* )( s + 16 ) = c32;
*zpl_cast( u32* )( s + 20 ) = c32;
*zpl_cast( u32* )( s + 24 ) = c32;
*zpl_cast( u32* )( s + n - 28 ) = c32;
*zpl_cast( u32* )( s + n - 24 ) = c32;
*zpl_cast( u32* )( s + n - 20 ) = c32;
*zpl_cast( u32* )( s + n - 16 ) = c32;
k = 24 + ( zpl_cast( uptr ) s & 4 );
s += k;
n -= k;
{
u64 c64 = ( zpl_cast( u64 ) c32 << 32 ) | c32;
while ( n > 31 )
{
*zpl_cast( u64* )( s + 0 ) = c64;
*zpl_cast( u64* )( s + 8 ) = c64;
*zpl_cast( u64* )( s + 16 ) = c64;
*zpl_cast( u64* )( s + 24 ) = c64;
n -= 32;
s += 32;
}
}
return dest;
}
GEN_IMPL_INLINE void* alloc_align( AllocatorInfo a, sw size, sw alignment )
{
return a.Proc( a.Data, EAllocation_ALLOC, size, alignment, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
GEN_IMPL_INLINE void* alloc( AllocatorInfo a, sw size )
{
return alloc_align( a, size, GEN_DEFAULT_MEMORY_ALIGNMENT );
}
GEN_IMPL_INLINE void free( AllocatorInfo a, void* ptr )
{
if ( ptr != nullptr )
a.Proc( a.Data, EAllocation_FREE, 0, 0, ptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
GEN_IMPL_INLINE void free_all( AllocatorInfo a )
{
a.Proc( a.Data, EAllocation_FREE_ALL, 0, 0, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
GEN_IMPL_INLINE void* resize( AllocatorInfo a, void* ptr, sw old_size, sw new_size )
{
return resize_align( a, ptr, old_size, new_size, GEN_DEFAULT_MEMORY_ALIGNMENT );
}
GEN_IMPL_INLINE void* resize_align( AllocatorInfo a, void* ptr, sw old_size, sw new_size, sw alignment )
{
return a.Proc( a.Data, EAllocation_RESIZE, new_size, alignment, ptr, old_size, GEN_DEFAULT_ALLOCATOR_FLAGS );
}
GEN_IMPL_INLINE void* default_resize_align( AllocatorInfo a, void* old_memory, sw old_size, sw new_size, sw alignment )
{
if ( ! old_memory )
return alloc_align( a, new_size, alignment );
if ( new_size == 0 )
{
free( a, old_memory );
return nullptr;
}
if ( new_size < old_size )
new_size = old_size;
if ( old_size == new_size )
{
return old_memory;
}
else
{
void* new_memory = alloc_align( a, new_size, alignment );
if ( ! new_memory )
return nullptr;
mem_move( new_memory, old_memory, min( new_size, old_size ) );
free( a, old_memory );
return new_memory;
}
}
GEN_IMPL_INLINE void zero_size( void* ptr, sw size )
{
mem_set( ptr, 0, size );
}
struct VirtualMemory
{
void* data;
sw size;
};
//! Initialize virtual memory from existing data.
VirtualMemory vm_from_memory( void* data, sw size );
//! Allocate virtual memory at address with size.
//! @param addr The starting address of the region to reserve. If NULL, it lets operating system to decide where to allocate it.
//! @param size The size to serve.
VirtualMemory vm_alloc( void* addr, sw size );
//! Release the virtual memory.
b32 vm_free( VirtualMemory vm );
//! Trim virtual memory.
VirtualMemory vm_trim( VirtualMemory vm, sw lead_size, sw size );
//! Purge virtual memory.
b32 gen_vm_purge( VirtualMemory vm );
//! Retrieve VM's page size and alignment.
sw gen_virtual_memory_page_size( sw* alignment_out );
struct Arena
{
static void* allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags );
static Arena init_from_memory( void* start, sw size )
{
return {
{ nullptr, nullptr },
start,
size,
0,
0
};
}
static Arena init_from_allocator( AllocatorInfo backing, sw size )
{
Arena result = { backing, alloc( backing, size ), size, 0, 0 };
return result;
}
static Arena init_sub( Arena& parent, sw size )
{
return init_from_allocator( parent.Backing, size );
}
sw alignment_of( sw alignment )
{
sw alignment_offset, result_pointer, mask;
GEN_ASSERT( is_power_of_two( alignment ) );
alignment_offset = 0;
result_pointer = (sw)PhysicalStart + TotalUsed;
mask = alignment - 1;
if ( result_pointer & mask )
alignment_offset = alignment - ( result_pointer & mask );
return alignment_offset;
}
#pragma push_macro("check")
#undef check
void check()
{
GEN_ASSERT( TempCount == 0 );
}
#pragma pop_macro("check")
void free()
{
if ( Backing.Proc )
{
gen::free( Backing, PhysicalStart );
PhysicalStart = nullptr;
}
}
sw size_remaining( sw alignment )
{
sw result = TotalSize - ( TotalUsed + alignment_of( alignment ) );
return result;
}
AllocatorInfo Backing;
void* PhysicalStart;
sw TotalSize;
sw TotalUsed;
sw TempCount;
operator AllocatorInfo()
{
return { allocator_proc, this };
}
};
// Just a wrapper around using an arena with memory associated with its scope instead of from an allocator.
// Used for static segment or stack allocations.
template<s32 Size>
struct FixedArena
{
static FixedArena init()
{
FixedArena result = { Arena::init_from_memory( result.memory, Size ), { 0 } };
return result;
}
sw size_remaining( sw alignment )
{
return arena.size_remaining( alignment );
}
operator AllocatorInfo()
{
return { Arena::allocator_proc, &arena };
}
Arena arena;
char memory[Size];
};
using Arena_1KB = FixedArena<kilobytes( 1 )>;
using Arena_4KB = FixedArena<kilobytes( 4 )>;
using Arena_8KB = FixedArena<kilobytes( 8 )>;
using Arena_16KB = FixedArena<kilobytes( 16 )>;
using Arena_32KB = FixedArena<kilobytes( 32 )>;
using Arena_64KB = FixedArena<kilobytes( 64 )>;
using Arena_128KB = FixedArena<kilobytes( 128 )>;
using Arena_256KB = FixedArena<kilobytes( 256 )>;
using Arena_512KB = FixedArena<kilobytes( 512 )>;
using Arena_1MB = FixedArena<megabytes( 1 )>;
using Arena_2MB = FixedArena<megabytes( 2 )>;
using Arena_4MB = FixedArena<megabytes( 4 )>;
struct Pool
{
static void* allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags );
static Pool init( AllocatorInfo backing, sw num_blocks, sw block_size )
{
return init_align( backing, num_blocks, block_size, GEN_DEFAULT_MEMORY_ALIGNMENT );
}
static Pool init_align( AllocatorInfo backing, sw num_blocks, sw block_size, sw block_align );
void clear();
void free()
{
if ( Backing.Proc )
{
gen::free( Backing, PhysicalStart );
}
}
AllocatorInfo Backing;
void* PhysicalStart;
void* FreeList;
sw BlockSize;
sw BlockAlign;
sw TotalSize;
sw NumBlocks;
operator AllocatorInfo()
{
return { allocator_proc, this };
}
};
#pragma endregion Memory
#pragma region String Ops
GEN_DEF_INLINE const char* char_first_occurence( const char* str, char c );
constexpr auto str_find = &char_first_occurence;
GEN_DEF_INLINE b32 char_is_alpha( char c );
GEN_DEF_INLINE b32 char_is_alphanumeric( char c );
GEN_DEF_INLINE b32 char_is_digit( char c );
GEN_DEF_INLINE b32 char_is_hex_digit( char c );
GEN_DEF_INLINE b32 char_is_space( char c );
GEN_DEF_INLINE char char_to_lower( char c );
GEN_DEF_INLINE char char_to_upper( char c );
GEN_DEF_INLINE s32 digit_to_int( char c );
GEN_DEF_INLINE s32 hex_digit_to_int( char c );
GEN_DEF_INLINE s32 str_compare( const char* s1, const char* s2 );
GEN_DEF_INLINE s32 str_compare( const char* s1, const char* s2, sw len );
GEN_DEF_INLINE char* str_copy( char* dest, const char* source, sw len );
GEN_DEF_INLINE sw str_copy_nulpad( char* dest, const char* source, sw len );
GEN_DEF_INLINE sw str_len( const char* str );
GEN_DEF_INLINE sw str_len( const char* str, sw max_len );
GEN_DEF_INLINE char* str_reverse( char* str ); // NOTE: ASCII only
GEN_DEF_INLINE char const* str_skip( char const* str, char c );
GEN_DEF_INLINE char const* str_skip_any( char const* str, char const* char_list );
GEN_DEF_INLINE char const* str_trim( char const* str, b32 catch_newline );
// NOTE: ASCII only
GEN_DEF_INLINE void str_to_lower( char* str );
GEN_DEF_INLINE void str_to_upper( char* str );
s64 str_to_i64( const char* str, char** end_ptr, s32 base );
void i64_to_str( s64 value, char* string, s32 base );
void u64_to_str( u64 value, char* string, s32 base );
f64 str_to_f64( const char* str, char** end_ptr );
GEN_IMPL_INLINE const char* char_first_occurence( const char* s, char c )
{
char ch = c;
for ( ; *s != ch; s++ )
{
if ( *s == '\0' )
return NULL;
}
return s;
}
GEN_IMPL_INLINE b32 char_is_alpha( char c )
{
if ( ( c >= 'A' && c <= 'Z' ) || ( c >= 'a' && c <= 'z' ) )
return true;
return false;
}
GEN_IMPL_INLINE b32 char_is_alphanumeric( char c )
{
return char_is_alpha( c ) || char_is_digit( c );
}
GEN_IMPL_INLINE b32 char_is_digit( char c )
{
if ( c >= '0' && c <= '9' )
return true;
return false;
}
GEN_IMPL_INLINE b32 char_is_hex_digit( char c )
{
if ( char_is_digit( c ) || ( c >= 'a' && c <= 'f' ) || ( c >= 'A' && c <= 'F' ) )
return true;
return false;
}
GEN_IMPL_INLINE b32 char_is_space( char c )
{
if ( c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f' || c == '\v' )
return true;
return false;
}
GEN_IMPL_INLINE char char_to_lower( char c )
{
if ( c >= 'A' && c <= 'Z' )
return 'a' + ( c - 'A' );
return c;
}
GEN_IMPL_INLINE char char_to_upper( char c )
{
if ( c >= 'a' && c <= 'z' )
return 'A' + ( c - 'a' );
return c;
}
GEN_IMPL_INLINE s32 digit_to_int( char c )
{
return char_is_digit( c ) ? c - '0' : c - 'W';
}
GEN_IMPL_INLINE s32 hex_digit_to_int( char c )
{
if ( char_is_digit( c ) )
return digit_to_int( c );
else if ( is_between( c, 'a', 'f' ) )
return c - 'a' + 10;
else if ( is_between( c, 'A', 'F' ) )
return c - 'A' + 10;
return -1;
}
GEN_IMPL_INLINE s32 str_compare( const char* s1, const char* s2 )
{
while ( *s1 && ( *s1 == *s2 ) )
{
s1++, s2++;
}
return *(u8*)s1 - *(u8*)s2;
}
GEN_IMPL_INLINE s32 str_compare( const char* s1, const char* s2, sw len )
{
for ( ; len > 0; s1++, s2++, len-- )
{
if ( *s1 != *s2 )
return ( ( s1 < s2 ) ? -1 : +1 );
else if ( *s1 == '\0' )
return 0;
}
return 0;
}
GEN_IMPL_INLINE char* str_copy( char* dest, const char* source, sw len )
{
GEN_ASSERT_NOT_NULL( dest );
if ( source )
{
char* str = dest;
while ( len > 0 && *source )
{
*str++ = *source++;
len--;
}
while ( len > 0 )
{
*str++ = '\0';
len--;
}
}
return dest;
}
GEN_IMPL_INLINE sw str_copy_nulpad( char* dest, const char* source, sw len )
{
sw result = 0;
GEN_ASSERT_NOT_NULL( dest );
if ( source )
{
const char* source_start = source;
char* str = dest;
while ( len > 0 && *source )
{
*str++ = *source++;
len--;
}
while ( len > 0 )
{
*str++ = '\0';
len--;
}
result = source - source_start;
}
return result;
}
GEN_IMPL_INLINE sw str_len( const char* str )
{
if ( str == NULL )
{
return 0;
}
const char* p = str;
while ( *str )
str++;
return str - p;
}
GEN_IMPL_INLINE sw str_len( const char* str, sw max_len )
{
const char* end = zpl_cast( const char* ) mem_find( str, 0, max_len );
if ( end )
return end - str;
return max_len;
}
GEN_IMPL_INLINE char* str_reverse( char* str )
{
sw len = str_len( str );
char* a = str + 0;
char* b = str + len - 1;
len /= 2;
while ( len-- )
{
swap( *a, *b );
a++, b--;
}
return str;
}
GEN_IMPL_INLINE char const* str_skip( char const* str, char c )
{
while ( *str && *str != c )
{
++str;
}
return str;
}
GEN_IMPL_INLINE char const* str_skip_any( char const* str, char const* char_list )
{
char const* closest_ptr = zpl_cast( char const* ) pointer_add( (void*)str, str_len( str ) );
sw char_list_count = str_len( char_list );
for ( sw i = 0; i < char_list_count; i++ )
{
char const* p = str_skip( str, char_list[i] );
closest_ptr = min( closest_ptr, p );
}
return closest_ptr;
}
GEN_IMPL_INLINE char const* str_trim( char const* str, b32 catch_newline )
{
while ( *str && char_is_space( *str ) && ( ! catch_newline || ( catch_newline && *str != '\n' ) ) )
{
++str;
}
return str;
}
GEN_IMPL_INLINE void str_to_lower( char* str )
{
if ( ! str )
return;
while ( *str )
{
*str = char_to_lower( *str );
str++;
}
}
GEN_IMPL_INLINE void str_to_upper( char* str )
{
if ( ! str )
return;
while ( *str )
{
*str = char_to_upper( *str );
str++;
}
}
#pragma endregion String Ops
#pragma region Printing
struct FileInfo;
#ifndef GEN_PRINTF_MAXLEN
#define GEN_PRINTF_MAXLEN kilobytes( 128 )
#endif
// NOTE: A locally persisting buffer is used internally
char* str_fmt_buf( char const* fmt, ... );
char* str_fmt_buf_va( char const* fmt, va_list va );
sw str_fmt( char* str, sw n, char const* fmt, ... );
sw str_fmt_va( char* str, sw n, char const* fmt, va_list va );
sw str_fmt_out_va( char const* fmt, va_list va );
sw str_fmt_out_err( char const* fmt, ... );
sw str_fmt_out_err_va( char const* fmt, va_list va );
sw str_fmt_file( FileInfo* f, char const* fmt, ... );
sw str_fmt_file_va( FileInfo* f, char const* fmt, va_list va );
constexpr char const* Msg_Invalid_Value = "INVALID VALUE PROVIDED";
inline sw log_fmt( char const* fmt, ... )
{
sw res;
va_list va;
va_start( va, fmt );
res = str_fmt_out_va( fmt, va );
va_end( va );
return res;
}
#pragma endregion Printing
#pragma region Containers
template<class TType>
struct RemoveConst
{
typedef TType Type;
};
template<class TType>
struct RemoveConst<const TType>
{
typedef TType Type;
};
template<class TType>
struct RemoveConst<const TType[]>
{
typedef TType Type[];
};
template<class TType, uw Size>
struct RemoveConst<const TType[Size]>
{
typedef TType Type[Size];
};
template<class TType>
using TRemoveConst = typename RemoveConst<TType>::Type;
template<class Type>
struct Array
{
struct Header
{
AllocatorInfo Allocator;
uw Capacity;
uw Num;
};
static Array init( AllocatorInfo allocator )
{
return init_reserve( allocator, grow_formula( 0 ) );
}
static Array init_reserve( AllocatorInfo allocator, sw capacity )
{
Header* header = rcast( Header*, alloc( allocator, sizeof( Header ) + sizeof( Type ) * capacity ) );
if ( header == nullptr )
return { nullptr };
header->Allocator = allocator;
header->Capacity = capacity;
header->Num = 0;
return { rcast( Type*, header + 1 ) };
}
static uw grow_formula( uw value )
{
return 2 * value + 8;
}
bool append( Array other )
{
return append( other, other.num() );
}
bool append( Type value )
{
Header* header = get_header();
if ( header->Num == header->Capacity )
{
if ( ! grow( header->Capacity ) )
return false;
header = get_header();
}
Data[header->Num] = value;
header->Num++;
return true;
}
bool append( Type* items, uw item_num )
{
Header* header = get_header();
if ( header->Num + item_num > header->Capacity )
{
if ( ! grow( header->Capacity + item_num ) )
return false;
header = get_header();
}
mem_copy( Data + header->Num, items, item_num * sizeof( Type ) );
header->Num += item_num;
return true;
}
bool append_at( Type item, uw idx )
{
Header* header = get_header();
if ( idx >= header->Num )
idx = header->Num - 1;
if ( idx < 0 )
idx = 0;
if ( header->Capacity < header->Num + 1 )
{
if ( ! grow( header->Capacity + 1 ) )
return false;
header = get_header();
}
Type* target = Data + idx;
mem_move( target + 1, target, ( header->Num - idx ) * sizeof( Type ) );
header->Num++;
return true;
}
bool append_at( Type* items, uw item_num, uw idx )
{
Header* header = get_header();
if ( idx >= header->Num )
{
return append( items, item_num );
}
if ( item_num > header->Capacity )
{
if ( ! grow( header->Capacity + item_num ) )
return false;
header = get_header();
}
Type* target = Data + idx + item_num;
Type* src = Data + idx;
mem_move( target, src, ( header->Num - idx ) * sizeof( Type ) );
mem_copy( src, items, item_num * sizeof( Type ) );
header->Num += item_num;
return true;
}
Type& back( void )
{
Header& header = *get_header();
return Data[header.Num - 1];
}
void clear( void )
{
Header& header = *get_header();
header.Num = 0;
}
bool fill( uw begin, uw end, Type value )
{
Header& header = *get_header();
if ( begin < 0 || end > header.Num )
return false;
for ( sw idx = sw(begin); idx < sw(end); idx++ )
{
Data[idx] = value;
}
return true;
}
void free( void )
{
Header& header = *get_header();
gen::free( header.Allocator, &header );
Data = nullptr;
}
Header* get_header( void )
{
using NonConstType = TRemoveConst<Type>;
return rcast( Header*, const_cast<NonConstType*>( Data ) ) - 1;
}
bool grow( uw min_capacity )
{
Header& header = *get_header();
uw new_capacity = grow_formula( header.Capacity );
if ( new_capacity < min_capacity )
new_capacity = min_capacity;
return set_capacity( new_capacity );
}
uw num( void )
{
return get_header()->Num;
}
void pop( void )
{
Header& header = *get_header();
GEN_ASSERT( header.Num > 0 );
header.Num--;
}
void remove_at( uw idx )
{
Header* header = get_header();
GEN_ASSERT( idx < header->Num );
mem_move( header + idx, header + idx + 1, sizeof( Type ) * ( header->Num - idx - 1 ) );
header->Num--;
}
bool reserve( uw new_capacity )
{
Header& header = *get_header();
if ( header.Capacity < new_capacity )
return set_capacity( new_capacity );
return true;
}
bool resize( uw num )
{
Header* header = get_header();
if ( header->Capacity < num )
{
if ( ! grow( num ) )
return false;
header = get_header();
}
header->Num = num;
return true;
}
bool set_capacity( uw new_capacity )
{
Header& header = *get_header();
if ( new_capacity == header.Capacity )
return true;
if ( new_capacity < header.Num )
{
// Already have the memory, mine as well keep it.
header.Num = new_capacity;
return true;
}
sw size = sizeof( Header ) + sizeof( Type ) * new_capacity;
Header* new_header = rcast( Header*, alloc( header.Allocator, size ) );
if ( new_header == nullptr )
return false;
mem_move( new_header, &header, sizeof( Header ) + sizeof( Type ) * header.Num );
new_header->Capacity = new_capacity;
gen::free( header.Allocator, &header );
Data = rcast( Type*, new_header + 1 );
return true;
}
Type* Data;
operator Type*()
{
return Data;
}
operator Type const*() const
{
return Data;
}
// For-range based support
Type* begin()
{
return Data;
}
Type* end()
{
return Data + get_header()->Num;
}
};
// TODO(Ed) : This thing needs ALOT of work.
template<typename Type>
struct HashTable
{
struct FindResult
{
sw HashIndex;
sw PrevIndex;
sw EntryIndex;
};
struct Entry
{
u64 Key;
sw Next;
Type Value;
};
static constexpr f32 CriticalLoadScale = 0.7f;
static HashTable init( AllocatorInfo allocator )
{
HashTable<Type> result = init_reserve(allocator, 8);
return result;
}
static HashTable init_reserve( AllocatorInfo allocator, uw num )
{
HashTable<Type> result = { { nullptr }, { nullptr } };
result.Hashes = Array<sw>::init_reserve( allocator, num );
result.Hashes.get_header()->Num = num;
result.Hashes.resize( num );
result.Hashes.fill( 0, num, -1);
result.Entries = Array<Entry>::init_reserve( allocator, num );
return result;
}
void clear( void )
{
Entries.clear();
Hashes.fill( 0, Hashes.num(), -1);
}
void destroy( void )
{
if ( Hashes && Hashes.get_header()->Capacity )
{
Hashes.free();
Entries.free();
}
}
Type* get( u64 key )
{
sw idx = find( key ).EntryIndex;
if ( idx >= 0 )
return &Entries[idx].Value;
return nullptr;
}
using MapProc = void ( * )( u64 key, Type value );
void map( MapProc map_proc )
{
GEN_ASSERT_NOT_NULL( map_proc );
for ( sw idx = 0; idx < Entries.num(); idx++ )
{
map_proc( Entries[idx].Key, Entries[idx].Value );
}
}
using MapMutProc = void ( * )( u64 key, Type* value );
void map_mut( MapMutProc map_proc )
{
GEN_ASSERT_NOT_NULL( map_proc );
for ( sw idx = 0; idx < Entries.num(); idx++ )
{
map_proc( Entries[idx].Key, &Entries[idx].Value );
}
}
void grow()
{
sw new_num = Array<Entry>::grow_formula( Entries.num() );
rehash( new_num );
}
void rehash( sw new_num )
{
sw last_added_index;
HashTable<Type> new_ht = init_reserve( Hashes.get_header()->Allocator, new_num );
for ( sw idx = 0; idx < sw(Entries.num()); ++idx )
{
FindResult find_result;
Entry& entry = Entries[idx];
find_result = new_ht.find( entry.Key );
last_added_index = new_ht.add_entry( entry.Key );
if ( find_result.PrevIndex < 0 )
new_ht.Hashes[find_result.HashIndex] = last_added_index;
else
new_ht.Entries[find_result.PrevIndex].Next = last_added_index;
new_ht.Entries[last_added_index].Next = find_result.EntryIndex;
new_ht.Entries[last_added_index].Value = entry.Value;
}
destroy();
*this = new_ht;
}
void rehash_fast()
{
sw idx;
for ( idx = 0; idx < Entries.num(); idx++ )
Entries[idx].Next = -1;
for ( idx = 0; idx < Hashes.num(); idx++ )
Hashes[idx] = -1;
for ( idx = 0; idx < Entries.num(); idx++ )
{
Entry* entry;
FindResult find_result;
entry = &Entries[idx];
find_result = find( entry->Key );
if ( find_result.PrevIndex < 0 )
Hashes[find_result.HashIndex] = idx;
else
Entries[find_result.PrevIndex].Next = idx;
}
}
void remove( u64 key )
{
FindResult find_result = find( key );
if ( find_result.EntryIndex >= 0 )
{
Entries.remove_at( find_result.EntryIndex );
rehash_fast();
}
}
void remove_entry( sw idx )
{
Entries.remove_at( idx );
}
void set( u64 key, Type value )
{
sw idx;
FindResult find_result;
if ( full() )
grow();
find_result = find( key );
if ( find_result.EntryIndex >= 0 )
{
idx = find_result.EntryIndex;
}
else
{
idx = add_entry( key );
if ( find_result.PrevIndex >= 0 )
{
Entries[find_result.PrevIndex].Next = idx;
}
else
{
Hashes[find_result.HashIndex] = idx;
}
}
Entries[idx].Value = value;
if ( full() )
grow();
}
sw slot( u64 key )
{
for ( sw idx = 0; idx < Hashes.num(); ++idx )
if ( Hashes[idx] == key )
return idx;
return -1;
}
Array<sw> Hashes;
Array<Entry> Entries;
protected:
sw add_entry( u64 key )
{
sw idx;
Entry entry = { key, -1 };
idx = Entries.num();
Entries.append( entry );
return idx;
}
FindResult find( u64 key )
{
FindResult result = { -1, -1, -1 };
if ( Hashes.num() > 0 )
{
result.HashIndex = key % Hashes.num();
result.EntryIndex = Hashes[result.HashIndex];
while ( result.EntryIndex >= 0 )
{
if ( Entries[result.EntryIndex].Key == key )
break;
result.PrevIndex = result.EntryIndex;
result.EntryIndex = Entries[result.EntryIndex].Next;
}
}
return result;
}
b32 full()
{
uw critical_load = uw( CriticalLoadScale * f32(Hashes.num()) );
b32 result = Entries.num() > critical_load;
return result;
}
};
#pragma endregion Containers
#pragma region Hashing
u32 crc32( void const* data, sw len );
u64 crc64( void const* data, sw len );
#pragma endregion Hashing
#pragma region Strings
// Constant string with length.
struct StrC
{
sw Len;
char const* Ptr;
char const& operator[]( sw index ) const
{
return Ptr[index];
}
operator char const*() const
{
return Ptr;
}
};
#define cast_to_strc( str ) *rcast( StrC*, str - sizeof( sw ) )
#define txt( text ) \
StrC \
{ \
sizeof( (text) ) - 1, (text) \
}
inline
StrC to_str( char const* str )
{
return { str_len( str ), str };
}
// Dynamic String
// This is directly based off the ZPL string api.
// They used a header pattern
// I kept it for simplicty of porting but its not necessary to keep it that way.
struct String
{
struct Header
{
AllocatorInfo Allocator;
sw Capacity;
sw Length;
};
static uw grow_formula( uw value )
{
// Using a very aggressive growth formula to reduce time mem_copying with recursive calls to append in this library.
return 4 * value + 8;
}
static String make( AllocatorInfo allocator, char const* str )
{
sw length = str ? str_len( str ) : 0;
return make_length( allocator, str, length );
}
static String make( AllocatorInfo allocator, StrC str )
{
return make_length( allocator, str.Ptr, str.Len );
}
static String make_reserve( AllocatorInfo allocator, sw capacity );
static String make_length( AllocatorInfo allocator, char const* str, sw length );
static String fmt( AllocatorInfo allocator, char* buf, sw buf_size, char const* fmt, ... );
static String fmt_buf( AllocatorInfo allocator, char const* fmt, ... );
static String join( AllocatorInfo allocator, char const** parts, sw num_parts, char const* glue )
{
String result = make( allocator, "" );
for ( sw idx = 0; idx < num_parts; ++idx )
{
result.append( parts[idx] );
if ( idx < num_parts - 1 )
result.append( glue );
}
return result;
}
static bool are_equal( String lhs, String rhs )
{
if ( lhs.length() != rhs.length() )
return false;
for ( sw idx = 0; idx < lhs.length(); ++idx )
if ( lhs[idx] != rhs[idx] )
return false;
return true;
}
static bool are_equal( String lhs, StrC rhs )
{
if ( lhs.length() != (rhs.Len - 1) )
return false;
for ( sw idx = 0; idx < lhs.length(); ++idx )
if ( lhs[idx] != rhs[idx] )
return false;
return true;
}
bool make_space_for( char const* str, sw add_len );
bool append( char c )
{
return append( &c, 1 );
}
bool append( char const* str )
{
return append( str, str_len( str ) );
}
bool append( char const* str, sw length )
{
if ( sptr( str ) > 0 )
{
sw curr_len = this->length();
if ( ! make_space_for( str, length ) )
return false;
Header& header = get_header();
mem_copy( Data + curr_len, str, length );
Data[curr_len + length] = '\0';
header.Length = curr_len + length;
}
return true;
}
bool append( StrC str )
{
return append( str.Ptr, str.Len );
}
bool append( const String other )
{
return append( other.Data, other.length() );
}
bool append_fmt( char const* fmt, ... );
sw avail_space() const
{
Header const& header = *rcast( Header const*, Data - sizeof( Header ) );
return header.Capacity - header.Length;
}
char& back()
{
return Data[length() - 1];
}
sw capacity() const
{
Header const& header = *rcast( Header const*, Data - sizeof( Header ) );
return header.Capacity;
}
void clear()
{
get_header().Length = 0;
}
b32 starts_with( StrC substring ) const
{
if (substring.Len > length())
return false;
b32 result = str_compare(Data, substring.Ptr, substring.Len ) == 0;
return result;
}
b32 starts_with( String substring ) const
{
if (substring.length() > length())
return false;
b32 result = str_compare(Data, substring, substring.length() - 1 ) == 0;
return result;
}
String duplicate( AllocatorInfo allocator ) const
{
return make_length( allocator, Data, length() );
}
void free()
{
if ( ! Data )
return;
Header& header = get_header();
gen::free( header.Allocator, &header );
}
Header& get_header()
{
return *(Header*)( Data - sizeof( Header ) );
}
sw length() const
{
Header const& header = *rcast( Header const*, Data - sizeof( Header ) );
return header.Length;
}
void skip_line()
{
#define current ( *scanner )
char* scanner = Data;
while ( current != '\r' && current != '\n' )
{
++scanner;
}
s32 new_length = scanner - Data;
if ( current == '\r' )
{
new_length += 1;
}
mem_move( Data, scanner, new_length );
Header* header = &get_header();
header->Length = new_length;
#undef current
}
void strip_space()
{
char* write_pos = Data;
char* read_pos = Data;
while ( *read_pos )
{
if ( ! char_is_space( *read_pos ) )
{
*write_pos = *read_pos;
write_pos++;
}
read_pos++;
}
write_pos[0] = '\0'; // Null-terminate the modified string
// Update the length if needed
get_header().Length = write_pos - Data;
}
void trim( char const* cut_set )
{
sw len = 0;
char* start_pos = Data;
char* end_pos = Data + length() - 1;
while ( start_pos <= end_pos && char_first_occurence( cut_set, *start_pos ) )
start_pos++;
while ( end_pos > start_pos && char_first_occurence( cut_set, *end_pos ) )
end_pos--;
len = scast( sw, ( start_pos > end_pos ) ? 0 : ( ( end_pos - start_pos ) + 1 ) );
if ( Data != start_pos )
mem_move( Data, start_pos, len );
Data[len] = '\0';
get_header().Length = len;
}
void trim_space()
{
return trim( " \t\r\n\v\f" );
}
// Debug function that provides a copy of the string with whitespace characters visualized.
String visualize_whitespace() const
{
Header* header = (Header*)( Data - sizeof( Header ) );
String result = make_reserve( header->Allocator, length() * 2 ); // Assume worst case for space requirements.
for ( char c : *this )
{
switch ( c )
{
case ' ' :
result.append( txt( "·" ) );
break;
case '\t' :
result.append( txt( "" ) );
break;
case '\n' :
result.append( txt( "" ) );
break;
case '\r' :
result.append( txt( "" ) );
break;
case '\v' :
result.append( txt( "" ) );
break;
case '\f' :
result.append( txt( "" ) );
break;
default :
result.append( c );
break;
}
}
return result;
}
// For-range support
char* begin() const
{
return Data;
}
char* end() const
{
Header const& header = *rcast( Header const*, Data - sizeof( Header ) );
return Data + header.Length;
}
operator bool()
{
return Data != nullptr;
}
operator char*()
{
return Data;
}
operator char const*() const
{
return Data;
}
operator StrC() const
{
return { length(), Data };
}
// Used with cached strings
// Essentially makes the string a string view.
String const& operator=( String const& other ) const
{
if ( this == &other )
return *this;
String& this_ = ccast( String, *this );
this_.Data = other.Data;
return this_;
}
char& operator[]( sw index )
{
return Data[index];
}
char const& operator[]( sw index ) const
{
return Data[index];
}
char* Data;
};
struct String_POD
{
char* Data;
};
static_assert( sizeof( String_POD ) == sizeof( String ), "String is not a POD" );
// Implements basic string interning. Data structure is based off the ZPL Hashtable.
using StringTable = HashTable<String const>;
// Represents strings cached with the string table.
// Should never be modified, if changed string is desired, cache_string( str ) another.
using StringCached = String const;
#pragma endregion Strings
#pragma region File Handling
typedef u32 FileMode;
enum FileModeFlag
{
EFileMode_READ = bit( 0 ),
EFileMode_WRITE = bit( 1 ),
EFileMode_APPEND = bit( 2 ),
EFileMode_RW = bit( 3 ),
GEN_FILE_MODES = EFileMode_READ | EFileMode_WRITE | EFileMode_APPEND | EFileMode_RW,
};
// NOTE: Only used internally and for the file operations
enum SeekWhenceType
{
ESeekWhence_BEGIN = 0,
ESeekWhence_CURRENT = 1,
ESeekWhence_END = 2,
};
enum FileError
{
EFileError_NONE,
EFileError_INVALID,
EFileError_INVALID_FILENAME,
EFileError_EXISTS,
EFileError_NOT_EXISTS,
EFileError_PERMISSION,
EFileError_TRUNCATION_FAILURE,
EFileError_NOT_EMPTY,
EFileError_NAME_TOO_LONG,
EFileError_UNKNOWN,
};
union FileDescriptor
{
void* p;
sptr i;
uptr u;
};
typedef struct FileOperations FileOperations;
#define GEN_FILE_OPEN_PROC( name ) FileError name( FileDescriptor* fd, FileOperations* ops, FileMode mode, char const* filename )
#define GEN_FILE_READ_AT_PROC( name ) b32 name( FileDescriptor fd, void* buffer, sw size, s64 offset, sw* bytes_read, b32 stop_at_newline )
#define GEN_FILE_WRITE_AT_PROC( name ) b32 name( FileDescriptor fd, void const* buffer, sw size, s64 offset, sw* bytes_written )
#define GEN_FILE_SEEK_PROC( name ) b32 name( FileDescriptor fd, s64 offset, SeekWhenceType whence, s64* new_offset )
#define GEN_FILE_CLOSE_PROC( name ) void name( FileDescriptor fd )
typedef GEN_FILE_OPEN_PROC( file_open_proc );
typedef GEN_FILE_READ_AT_PROC( FileReadProc );
typedef GEN_FILE_WRITE_AT_PROC( FileWriteProc );
typedef GEN_FILE_SEEK_PROC( FileSeekProc );
typedef GEN_FILE_CLOSE_PROC( FileCloseProc );
struct FileOperations
{
FileReadProc* read_at;
FileWriteProc* write_at;
FileSeekProc* seek;
FileCloseProc* close;
};
extern FileOperations const default_file_operations;
typedef u64 FileTime;
enum DirType
{
GEN_DIR_TYPE_FILE,
GEN_DIR_TYPE_FOLDER,
GEN_DIR_TYPE_UNKNOWN,
};
struct DirInfo;
struct DirEntry
{
char const* filename;
struct DirInfo* dir_info;
u8 type;
};
struct DirInfo
{
char const* fullpath;
DirEntry* entries; // zpl_array
// Internals
char** filenames; // zpl_array
String buf;
};
struct FileInfo
{
FileOperations ops;
FileDescriptor fd;
b32 is_temp;
char const* filename;
FileTime last_write_time;
DirEntry* dir;
};
enum FileStandardType
{
EFileStandard_INPUT,
EFileStandard_OUTPUT,
EFileStandard_ERROR,
EFileStandard_COUNT,
};
/**
* Get standard file I/O.
* @param std Check zpl_file_standard_type
* @return File handle to standard I/O
*/
FileInfo* file_get_standard( FileStandardType std );
/**
* Closes the file
* @param file
*/
FileError file_close( FileInfo* file );
/**
* Returns the currently opened file's name
* @param file
*/
inline char const* file_name( FileInfo* file )
{
return file->filename ? file->filename : "";
}
/**
* Opens a file
* @param file
* @param filename
*/
FileError file_open( FileInfo* file, char const* filename );
/**
* Opens a file using a specified mode
* @param file
* @param mode Access mode to use
* @param filename
*/
FileError file_open_mode( FileInfo* file, FileMode mode, char const* filename );
/**
* Reads from a file
* @param file
* @param buffer Buffer to read to
* @param size Size to read
*/
GEN_DEF_INLINE b32 file_read( FileInfo* file, void* buffer, sw size );
/**
* Reads file at a specific offset
* @param file
* @param buffer Buffer to read to
* @param size Size to read
* @param offset Offset to read from
* @param bytes_read How much data we've actually read
*/
GEN_DEF_INLINE b32 file_read_at( FileInfo* file, void* buffer, sw size, s64 offset );
/**
* Reads file safely
* @param file
* @param buffer Buffer to read to
* @param size Size to read
* @param offset Offset to read from
* @param bytes_read How much data we've actually read
*/
GEN_DEF_INLINE b32 file_read_at_check( FileInfo* file, void* buffer, sw size, s64 offset, sw* bytes_read );
struct FileContents
{
AllocatorInfo allocator;
void* data;
sw size;
};
constexpr b32 zero_terminate = true;
constexpr b32 no_zero_terminate = false;
/**
* Reads the whole file contents
* @param a Allocator to use
* @param zero_terminate End the read data with null terminator
* @param filepath Path to the file
* @return File contents data
*/
FileContents file_read_contents( AllocatorInfo a, b32 zero_terminate, char const* filepath );
/**
* Returns a size of the file
* @param file
* @return File size
*/
s64 file_size( FileInfo* file );
/**
* Seeks the file cursor from the beginning of file to a specific position
* @param file
* @param offset Offset to seek to
*/
GEN_DEF_INLINE s64 file_seek( FileInfo* file, s64 offset );
/**
* Seeks the file cursor to the end of the file
* @param file
*/
GEN_DEF_INLINE s64 file_seek_to_end( FileInfo* file );
/**
* Returns the length from the beginning of the file we've read so far
* @param file
* @return Our current position in file
*/
GEN_DEF_INLINE s64 file_tell( FileInfo* file );
/**
* Writes to a file
* @param file
* @param buffer Buffer to read from
* @param size Size to read
*/
GEN_DEF_INLINE b32 file_write( FileInfo* file, void const* buffer, sw size );
/**
* Writes to file at a specific offset
* @param file
* @param buffer Buffer to read from
* @param size Size to write
* @param offset Offset to write to
* @param bytes_written How much data we've actually written
*/
GEN_DEF_INLINE b32 file_write_at( FileInfo* file, void const* buffer, sw size, s64 offset );
/**
* Writes to file safely
* @param file
* @param buffer Buffer to read from
* @param size Size to write
* @param offset Offset to write to
* @param bytes_written How much data we've actually written
*/
GEN_DEF_INLINE b32 file_write_at_check( FileInfo* file, void const* buffer, sw size, s64 offset, sw* bytes_written );
GEN_IMPL_INLINE s64 file_seek( FileInfo* f, s64 offset )
{
s64 new_offset = 0;
if ( ! f->ops.read_at )
f->ops = default_file_operations;
f->ops.seek( f->fd, offset, ESeekWhence_BEGIN, &new_offset );
return new_offset;
}
GEN_IMPL_INLINE s64 file_seek_to_end( FileInfo* f )
{
s64 new_offset = 0;
if ( ! f->ops.read_at )
f->ops = default_file_operations;
f->ops.seek( f->fd, 0, ESeekWhence_END, &new_offset );
return new_offset;
}
GEN_IMPL_INLINE s64 file_tell( FileInfo* f )
{
s64 new_offset = 0;
if ( ! f->ops.read_at )
f->ops = default_file_operations;
f->ops.seek( f->fd, 0, ESeekWhence_CURRENT, &new_offset );
return new_offset;
}
GEN_IMPL_INLINE b32 file_read( FileInfo* f, void* buffer, sw size )
{
s64 cur_offset = file_tell( f );
b32 result = file_read_at( f, buffer, size, file_tell( f ) );
file_seek( f, cur_offset + size );
return result;
}
GEN_IMPL_INLINE b32 file_read_at( FileInfo* f, void* buffer, sw size, s64 offset )
{
return file_read_at_check( f, buffer, size, offset, NULL );
}
GEN_IMPL_INLINE b32 file_read_at_check( FileInfo* f, void* buffer, sw size, s64 offset, sw* bytes_read )
{
if ( ! f->ops.read_at )
f->ops = default_file_operations;
return f->ops.read_at( f->fd, buffer, size, offset, bytes_read, false );
}
GEN_IMPL_INLINE b32 file_write( FileInfo* f, void const* buffer, sw size )
{
s64 cur_offset = file_tell( f );
b32 result = file_write_at( f, buffer, size, file_tell( f ) );
file_seek( f, cur_offset + size );
return result;
}
GEN_IMPL_INLINE b32 file_write_at( FileInfo* f, void const* buffer, sw size, s64 offset )
{
return file_write_at_check( f, buffer, size, offset, NULL );
}
GEN_IMPL_INLINE b32 file_write_at_check( FileInfo* f, void const* buffer, sw size, s64 offset, sw* bytes_written )
{
if ( ! f->ops.read_at )
f->ops = default_file_operations;
return f->ops.write_at( f->fd, buffer, size, offset, bytes_written );
}
enum FileStreamFlags : u32
{
/* Allows us to write to the buffer directly. Beware: you can not append a new data! */
EFileStream_WRITABLE = bit( 0 ),
/* Clones the input buffer so you can write (zpl_file_write*) data into it. */
/* Since we work with a clone, the buffer size can dynamically grow as well. */
EFileStream_CLONE_WRITABLE = bit( 1 ),
};
/**
* Opens a new memory stream
* @param file
* @param allocator
*/
b8 file_stream_new( FileInfo* file, AllocatorInfo allocator );
/**
* Opens a memory stream over an existing buffer
* @param file
* @param allocator
* @param buffer Memory to create stream from
* @param size Buffer's size
* @param flags
*/
b8 file_stream_open( FileInfo* file, AllocatorInfo allocator, u8* buffer, sw size, FileStreamFlags flags );
/**
* Retrieves the stream's underlying buffer and buffer size.
* @param file memory stream
* @param size (Optional) buffer size
*/
u8* file_stream_buf( FileInfo* file, sw* size );
extern FileOperations const memory_file_operations;
#pragma endregion File Handling
#pragma region Timing
#ifdef GEN_BENCHMARK
//! Return CPU timestamp.
u64 read_cpu_time_stamp_counter( void );
//! Return relative time (in seconds) since the application start.
f64 time_rel( void );
//! Return relative time since the application start.
u64 time_rel_ms( void );
#endif
#pragma endregion Timing
GEN_NS_END
#ifdef __clang__
#pragma clang diagnostic pop
#endif
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif