#ifdef GEN_INTELLISENSE_DIRECTIVES # pragma once # include "debug.hpp" #endif #pragma region Memory #define kilobytes( x ) ( ( x ) * ( s64 )( 1024 ) ) #define megabytes( x ) ( kilobytes( x ) * ( s64 )( 1024 ) ) #define gigabytes( x ) ( megabytes( x ) * ( s64 )( 1024 ) ) #define terabytes( x ) ( gigabytes( x ) * ( s64 )( 1024 ) ) #define GEN__ONES ( zpl_cast( uw ) - 1 / GEN_U8_MAX ) #define GEN__HIGHS ( GEN__ONES * ( GEN_U8_MAX / 2 + 1 ) ) #define GEN__HAS_ZERO( x ) ( ( ( x )-GEN__ONES ) & ~( x )&GEN__HIGHS ) //! Checks if value is power of 2. GEN_DEF_INLINE b32 is_power_of_two( sw x ); //! Aligns address to specified alignment. GEN_DEF_INLINE void* align_forward( void* ptr, sw alignment ); //! Aligns value to a specified alignment. GEN_DEF_INLINE s64 align_forward_i64( s64 value, sw alignment ); //! Moves pointer forward by bytes. GEN_DEF_INLINE void* pointer_add( void* ptr, sw bytes ); //! Moves pointer forward by bytes. GEN_DEF_INLINE void const* pointer_add_const( void const* ptr, sw bytes ); //! Calculates difference between two addresses. GEN_DEF_INLINE sw pointer_diff( void const* begin, void const* end ); //! Copy non-overlapping memory from source to destination. void* mem_copy( void* dest, void const* source, sw size ); //! Search for a constant value within the size limit at memory location. void const* mem_find( void const* data, u8 byte_value, sw size ); //! Copy memory from source to destination. GEN_DEF_INLINE void* mem_move( void* dest, void const* source, sw size ); //! Set constant value at memory location with specified size. GEN_DEF_INLINE void* mem_set( void* data, u8 byte_value, sw size ); //! @param ptr Memory location to clear up. //! @param size The size to clear up with. GEN_DEF_INLINE void zero_size( void* ptr, sw size ); //! Clears up an item. #define zero_item( t ) zero_size( ( t ), size_of( *( t ) ) ) // NOTE: Pass pointer of struct //! Clears up an array. #define zero_array( a, count ) zero_size( ( a ), size_of( *( a ) ) * count ) enum AllocType : u8 { EAllocation_ALLOC, EAllocation_FREE, EAllocation_FREE_ALL, EAllocation_RESIZE, }; using AllocatorProc = void* ( void* allocator_data, AllocType type , sw size, sw alignment , void* old_memory, sw old_size , u64 flags ); struct AllocatorInfo { AllocatorProc* Proc; void* Data; }; enum AllocFlag { ALLOCATOR_FLAG_CLEAR_TO_ZERO = bit( 0 ), }; #ifndef GEN_DEFAULT_MEMORY_ALIGNMENT # define GEN_DEFAULT_MEMORY_ALIGNMENT ( 2 * size_of( void* ) ) #endif #ifndef GEN_DEFAULT_ALLOCATOR_FLAGS # define GEN_DEFAULT_ALLOCATOR_FLAGS ( ALLOCATOR_FLAG_CLEAR_TO_ZERO ) #endif //! Allocate memory with default alignment. GEN_DEF_INLINE void* alloc( AllocatorInfo a, sw size ); //! Allocate memory with specified alignment. GEN_DEF_INLINE void* alloc_align( AllocatorInfo a, sw size, sw alignment ); //! Free allocated memory. GEN_DEF_INLINE void free( AllocatorInfo a, void* ptr ); //! Free all memory allocated by an allocator. GEN_DEF_INLINE void free_all( AllocatorInfo a ); //! Resize an allocated memory. GEN_DEF_INLINE void* resize( AllocatorInfo a, void* ptr, sw old_size, sw new_size ); //! Resize an allocated memory with specified alignment. GEN_DEF_INLINE void* resize_align( AllocatorInfo a, void* ptr, sw old_size, sw new_size, sw alignment ); //! Allocate memory for an item. #define alloc_item( allocator_, Type ) ( Type* )alloc( allocator_, size_of( Type ) ) //! Allocate memory for an array of items. #define alloc_array( allocator_, Type, count ) ( Type* )alloc( allocator_, size_of( Type ) * ( count ) ) /* heap memory analysis tools */ /* define GEN_HEAP_ANALYSIS to enable this feature */ /* call zpl_heap_stats_init at the beginning of the entry point */ /* you can call zpl_heap_stats_check near the end of the execution to validate any possible leaks */ void heap_stats_init( void ); sw heap_stats_used_memory( void ); sw heap_stats_alloc_count( void ); void heap_stats_check( void ); //! Allocate/Resize memory using default options. //! Use this if you don't need a "fancy" resize allocation GEN_DEF_INLINE void* default_resize_align( AllocatorInfo a, void* ptr, sw old_size, sw new_size, sw alignment ); void* heap_allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags ); //! The heap allocator backed by operating system's memory manager. constexpr AllocatorInfo heap( void ) { return { heap_allocator_proc, nullptr }; } //! Helper to allocate memory using heap allocator. #define malloc( sz ) alloc( heap(), sz ) //! Helper to free memory allocated by heap allocator. #define mfree( ptr ) free( heap(), ptr ) GEN_IMPL_INLINE b32 is_power_of_two( sw x ) { if ( x <= 0 ) return false; return ! ( x & ( x - 1 ) ); } GEN_IMPL_INLINE void* align_forward( void* ptr, sw alignment ) { uptr p; GEN_ASSERT( is_power_of_two( alignment ) ); p = zpl_cast( uptr ) ptr; return zpl_cast( void* )( ( p + ( alignment - 1 ) ) & ~( alignment - 1 ) ); } GEN_IMPL_INLINE s64 align_forward_i64( s64 value, sw alignment ) { return value + ( alignment - value % alignment ) % alignment; } GEN_IMPL_INLINE void* pointer_add( void* ptr, sw bytes ) { return zpl_cast( void* )( zpl_cast( u8* ) ptr + bytes ); } GEN_IMPL_INLINE void const* pointer_add_const( void const* ptr, sw bytes ) { return zpl_cast( void const* )( zpl_cast( u8 const* ) ptr + bytes ); } GEN_IMPL_INLINE sw pointer_diff( void const* begin, void const* end ) { return zpl_cast( sw )( zpl_cast( u8 const* ) end - zpl_cast( u8 const* ) begin ); } GEN_IMPL_INLINE void* mem_move( void* dest, void const* source, sw n ) { if ( dest == NULL ) { return NULL; } u8* d = zpl_cast( u8* ) dest; u8 const* s = zpl_cast( u8 const* ) source; if ( d == s ) return d; if ( s + n <= d || d + n <= s ) // NOTE: Non-overlapping return mem_copy( d, s, n ); if ( d < s ) { if ( zpl_cast( uptr ) s % size_of( sw ) == zpl_cast( uptr ) d % size_of( sw ) ) { while ( zpl_cast( uptr ) d % size_of( sw ) ) { if ( ! n-- ) return dest; *d++ = *s++; } while ( n >= size_of( sw ) ) { *zpl_cast( sw* ) d = *zpl_cast( sw* ) s; n -= size_of( sw ); d += size_of( sw ); s += size_of( sw ); } } for ( ; n; n-- ) *d++ = *s++; } else { if ( ( zpl_cast( uptr ) s % size_of( sw ) ) == ( zpl_cast( uptr ) d % size_of( sw ) ) ) { while ( zpl_cast( uptr )( d + n ) % size_of( sw ) ) { if ( ! n-- ) return dest; d[ n ] = s[ n ]; } while ( n >= size_of( sw ) ) { n -= size_of( sw ); *zpl_cast( sw* )( d + n ) = *zpl_cast( sw* )( s + n ); } } while ( n ) n--, d[ n ] = s[ n ]; } return dest; } GEN_IMPL_INLINE void* mem_set( void* dest, u8 c, sw n ) { if ( dest == NULL ) { return NULL; } u8* s = zpl_cast( u8* ) dest; sw k; u32 c32 = ( ( u32 )-1 ) / 255 * c; if ( n == 0 ) return dest; s[ 0 ] = s[ n - 1 ] = c; if ( n < 3 ) return dest; s[ 1 ] = s[ n - 2 ] = c; s[ 2 ] = s[ n - 3 ] = c; if ( n < 7 ) return dest; s[ 3 ] = s[ n - 4 ] = c; if ( n < 9 ) return dest; k = -zpl_cast( sptr ) s & 3; s += k; n -= k; n &= -4; *zpl_cast( u32* )( s + 0 ) = c32; *zpl_cast( u32* )( s + n - 4 ) = c32; if ( n < 9 ) return dest; *zpl_cast( u32* )( s + 4 ) = c32; *zpl_cast( u32* )( s + 8 ) = c32; *zpl_cast( u32* )( s + n - 12 ) = c32; *zpl_cast( u32* )( s + n - 8 ) = c32; if ( n < 25 ) return dest; *zpl_cast( u32* )( s + 12 ) = c32; *zpl_cast( u32* )( s + 16 ) = c32; *zpl_cast( u32* )( s + 20 ) = c32; *zpl_cast( u32* )( s + 24 ) = c32; *zpl_cast( u32* )( s + n - 28 ) = c32; *zpl_cast( u32* )( s + n - 24 ) = c32; *zpl_cast( u32* )( s + n - 20 ) = c32; *zpl_cast( u32* )( s + n - 16 ) = c32; k = 24 + ( zpl_cast( uptr ) s & 4 ); s += k; n -= k; { u64 c64 = ( zpl_cast( u64 ) c32 << 32 ) | c32; while ( n > 31 ) { *zpl_cast( u64* )( s + 0 ) = c64; *zpl_cast( u64* )( s + 8 ) = c64; *zpl_cast( u64* )( s + 16 ) = c64; *zpl_cast( u64* )( s + 24 ) = c64; n -= 32; s += 32; } } return dest; } GEN_IMPL_INLINE void* alloc_align( AllocatorInfo a, sw size, sw alignment ) { return a.Proc( a.Data, EAllocation_ALLOC, size, alignment, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS ); } GEN_IMPL_INLINE void* alloc( AllocatorInfo a, sw size ) { return alloc_align( a, size, GEN_DEFAULT_MEMORY_ALIGNMENT ); } GEN_IMPL_INLINE void free( AllocatorInfo a, void* ptr ) { if ( ptr != nullptr ) a.Proc( a.Data, EAllocation_FREE, 0, 0, ptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS ); } GEN_IMPL_INLINE void free_all( AllocatorInfo a ) { a.Proc( a.Data, EAllocation_FREE_ALL, 0, 0, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS ); } GEN_IMPL_INLINE void* resize( AllocatorInfo a, void* ptr, sw old_size, sw new_size ) { return resize_align( a, ptr, old_size, new_size, GEN_DEFAULT_MEMORY_ALIGNMENT ); } GEN_IMPL_INLINE void* resize_align( AllocatorInfo a, void* ptr, sw old_size, sw new_size, sw alignment ) { return a.Proc( a.Data, EAllocation_RESIZE, new_size, alignment, ptr, old_size, GEN_DEFAULT_ALLOCATOR_FLAGS ); } GEN_IMPL_INLINE void* default_resize_align( AllocatorInfo a, void* old_memory, sw old_size, sw new_size, sw alignment ) { if ( ! old_memory ) return alloc_align( a, new_size, alignment ); if ( new_size == 0 ) { free( a, old_memory ); return nullptr; } if ( new_size < old_size ) new_size = old_size; if ( old_size == new_size ) { return old_memory; } else { void* new_memory = alloc_align( a, new_size, alignment ); if ( ! new_memory ) return nullptr; mem_move( new_memory, old_memory, min( new_size, old_size ) ); free( a, old_memory ); return new_memory; } } GEN_IMPL_INLINE void zero_size( void* ptr, sw size ) { mem_set( ptr, 0, size ); } struct VirtualMemory { void* data; sw size; }; //! Initialize virtual memory from existing data. VirtualMemory vm_from_memory( void* data, sw size ); //! Allocate virtual memory at address with size. //! @param addr The starting address of the region to reserve. If NULL, it lets operating system to decide where to allocate it. //! @param size The size to serve. VirtualMemory vm_alloc( void* addr, sw size ); //! Release the virtual memory. b32 vm_free( VirtualMemory vm ); //! Trim virtual memory. VirtualMemory vm_trim( VirtualMemory vm, sw lead_size, sw size ); //! Purge virtual memory. b32 gen_vm_purge( VirtualMemory vm ); //! Retrieve VM's page size and alignment. sw gen_virtual_memory_page_size( sw* alignment_out ); struct Arena { static void* allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags ); static Arena init_from_memory( void* start, sw size ) { return { { nullptr, nullptr }, start, size, 0, 0 }; } static Arena init_from_allocator( AllocatorInfo backing, sw size ) { Arena result = { backing, alloc( backing, size), size, 0, 0 }; return result; } static Arena init_sub( Arena& parent, sw size ) { return init_from_allocator( parent.Backing, size ); } sw alignment_of( sw alignment ) { sw alignment_offset, result_pointer, mask; GEN_ASSERT( is_power_of_two( alignment ) ); alignment_offset = 0; result_pointer = (sw) PhysicalStart + TotalUsed; mask = alignment - 1; if ( result_pointer & mask ) alignment_offset = alignment - ( result_pointer & mask ); return alignment_offset; } void check() { GEN_ASSERT( TempCount == 0 ); } void free() { if ( Backing.Proc ) { gen::free( Backing, PhysicalStart ); PhysicalStart = nullptr; } } sw size_remaining( sw alignment ) { sw result = TotalSize - ( TotalUsed + alignment_of( alignment ) ); return result; } AllocatorInfo Backing; void* PhysicalStart; sw TotalSize; sw TotalUsed; sw TempCount; operator AllocatorInfo() { return { allocator_proc, this }; } }; // Just a wrapper around using an arena with memory associated with its scope instead of from an allocator. // Used for static segment or stack allocations. template< s32 Size > struct FixedArena { static FixedArena init() { FixedArena result = { Arena::init_from_memory( result.memory, Size ), {0} }; return result; } sw size_remaining( sw alignment ) { return arena.size_remaining( alignment ); } operator AllocatorInfo() { return { Arena::allocator_proc, &arena }; } Arena arena; char memory[ Size ]; }; using Arena_1KB = FixedArena< kilobytes( 1 ) >; using Arena_4KB = FixedArena< kilobytes( 4 ) >; using Arena_8KB = FixedArena< kilobytes( 8 ) >; using Arena_16KB = FixedArena< kilobytes( 16 ) >; using Arena_32KB = FixedArena< kilobytes( 32 ) >; using Arena_64KB = FixedArena< kilobytes( 64 ) >; using Arena_128KB = FixedArena< kilobytes( 128 ) >; using Arena_256KB = FixedArena< kilobytes( 256 ) >; using Arena_512KB = FixedArena< kilobytes( 512 ) >; using Arena_1MB = FixedArena< megabytes( 1 ) >; using Arena_2MB = FixedArena< megabytes( 2 ) >; using Arena_4MB = FixedArena< megabytes( 4 ) >; struct Pool { static void* allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags ); static Pool init( AllocatorInfo backing, sw num_blocks, sw block_size ) { return init_align( backing, num_blocks, block_size, GEN_DEFAULT_MEMORY_ALIGNMENT ); } static Pool init_align( AllocatorInfo backing, sw num_blocks, sw block_size, sw block_align ); void clear(); void free() { if ( Backing.Proc ) { gen::free( Backing, PhysicalStart ); } } AllocatorInfo Backing; void* PhysicalStart; void* FreeList; sw BlockSize; sw BlockAlign; sw TotalSize; sw NumBlocks; operator AllocatorInfo() { return { allocator_proc, this }; } }; #pragma endregion Memory