#ifdef GEN_INTELLISENSE_DIRECTIVES # pragma once # include "hashing.hpp" #endif #pragma region Strings struct StrC; bool are_equal (StrC lhs, StrC rhs); char const* back (StrC str); bool contains (StrC str, StrC substring); StrC duplicate (StrC str, AllocatorInfo allocator); b32 starts_with (StrC str, StrC substring); StrC to_str (char const* bad_string); StrC visualize_whitespace(StrC str, AllocatorInfo allocator); // Constant string with length. struct StrC { ssize Len; char const* Ptr; #if ! GEN_COMPILER_C operator char const* () const { return Ptr; } char const& operator[]( ssize index ) const { return Ptr[index]; } #if GEN_SUPPORT_CPP_MEMBER_FEATURES bool is_equal (StrC rhs) const { return GEN_NS are_equal(* this, rhs); } char const* back () const { return GEN_NS back(* this); } bool contains (StrC substring) const { return GEN_NS contains(* this, substring); } StrC duplicate (AllocatorInfo allocator) const { return GEN_NS duplicate(* this, allocator); } b32 starts_with (StrC substring) const { return GEN_NS starts_with(* this, substring); } StrC visualize_whitespace(AllocatorInfo allocator) const { return GEN_NS visualize_whitespace(* this, allocator); } #endif #endif }; #define cast_to_strc( str ) * rcast( StrC*, (str) - sizeof(ssize) ) #define txt( text ) StrC { sizeof( text ) - 1, ( text ) } inline char const* begin(StrC str) { return str.Ptr; } inline char const* end (StrC str) { return str.Ptr + str.Len; } inline char const* next (StrC str, char const* iter) { return iter + 1; } inline bool are_equal(StrC lhs, StrC rhs) { if (lhs.Len != rhs.Len) return false; for (ssize idx = 0; idx < lhs.Len; ++idx) if (lhs[idx] != rhs[idx]) return false; return true; } inline char const* back(StrC str) { return & str.Ptr[str.Len - 1]; } inline bool contains(StrC str, StrC substring) { if (substring.Len > str.Len) return false; ssize main_len = str.Len; ssize sub_len = substring.Len; for (ssize idx = 0; idx <= main_len - sub_len; ++idx) { if (str_compare(str.Ptr + idx, substring.Ptr, sub_len) == 0) return true; } return false; } inline b32 starts_with(StrC str, StrC substring) { if (substring.Len > str.Len) return false; b32 result = str_compare(str.Ptr, substring.Ptr, substring.Len) == 0; return result; } inline StrC to_str( char const* bad_str ) { return { str_len( bad_str ), bad_str }; } // Dynamic String // This is directly based off the ZPL string api. // They used a header pattern // I kept it for simplicty of porting but its not necessary to keep it that way. #pragma region String struct StringHeader; #if GEN_COMPILER_C || ! GEN_SUPPORT_CPP_MEMBER_FEATURES typedef char* String; #else struct String; #endif usize string_grow_formula(usize value); String string_make (AllocatorInfo allocator, char const* str); String string_make (AllocatorInfo allocator, StrC str); String string_make_reserve (AllocatorInfo allocator, ssize capacity); String string_make_length (AllocatorInfo allocator, char const* str, ssize length); String string_fmt (AllocatorInfo allocator, char* buf, ssize buf_size, char const* fmt, ...); String string_fmt_buf (AllocatorInfo allocator, char const* fmt, ...); String string_join (AllocatorInfo allocator, char const** parts, ssize num_parts, char const* glue); bool are_equal (String const lhs, String const rhs); bool are_equal (String const lhs, StrC rhs); bool make_space_for (String* str, char const* to_append, ssize add_len); bool append (String* str, char c); bool append (String* str, char const* str_to_append); bool append (String* str, char const* str_to_append, ssize length); bool append (String* str, StrC str_to_append); bool append (String* str, String const other); bool append_fmt (String* str, char const* fmt, ...); ssize avail_space (String const str); char* back (String str); bool contains (String const str, StrC substring); bool contains (String const str, String const substring); ssize capacity (String const str); void clear (String str); String duplicate (String const str, AllocatorInfo allocator); void free (String* str); StringHeader* get_header (String str); ssize length (String const str); b32 starts_with (String const str, StrC substring); b32 starts_with (String const str, String substring); void skip_line (String str); void strip_space (String str); StrC to_strc (String str); void trim (String str, char const* cut_set); void trim_space (String str); String visualize_whitespace(String const str); struct StringHeader { AllocatorInfo Allocator; ssize Capacity; ssize Length; }; #if ! GEN_COMPILER_C && GEN_SUPPORT_CPP_MEMBER_FEATURES struct String { char* Data; forceinline operator char*() { return Data; } forceinline operator char const*() const { return Data; } forceinline operator StrC() const { return { GEN_NS length(* this), Data }; } String const& operator=(String const& other) const { if (this == &other) return *this; String* this_ = ccast(String*, this); this_->Data = other.Data; return *this; } forceinline char& operator[](ssize index) { return Data[index]; } forceinline char const& operator[](ssize index) const { return Data[index]; } bool operator==(std::nullptr_t) const { return Data == nullptr; } bool operator!=(std::nullptr_t) const { return Data != nullptr; } friend bool operator==(std::nullptr_t, const String str) { return str.Data == nullptr; } friend bool operator!=(std::nullptr_t, const String str) { return str.Data != nullptr; } forceinline char* begin() const { return Data; } forceinline char* end() const { return Data + GEN_NS length(* this); } #pragma region Member Mapping forceinline static String make(AllocatorInfo allocator, char const* str) { return GEN_NS string_make(allocator, str); } forceinline static String make(AllocatorInfo allocator, StrC str) { return GEN_NS string_make(allocator, str); } forceinline static String make_reserve(AllocatorInfo allocator, ssize cap) { return GEN_NS string_make_reserve(allocator, cap); } forceinline static String make_length(AllocatorInfo a, char const* s, ssize l) { return GEN_NS string_make_length(a, s, l); } forceinline static String join(AllocatorInfo a, char const** p, ssize n, char const* g) { return GEN_NS string_join(a, p, n, g); } forceinline static usize grow_formula(usize value) { return GEN_NS string_grow_formula(value); } static String fmt(AllocatorInfo allocator, char* buf, ssize buf_size, char const* fmt, ...) { va_list va; va_start(va, fmt); str_fmt_va(buf, buf_size, fmt, va); va_end(va); return GEN_NS string_make(allocator, buf); } static String fmt_buf(AllocatorInfo allocator, char const* fmt, ...) { local_persist thread_local char buf[GEN_PRINTF_MAXLEN] = { 0 }; va_list va; va_start(va, fmt); str_fmt_va(buf, GEN_PRINTF_MAXLEN, fmt, va); va_end(va); return GEN_NS string_make(allocator, buf); } forceinline bool make_space_for(char const* str, ssize add_len) { return GEN_NS make_space_for(this, str, add_len); } forceinline bool append(char c) { return GEN_NS append(this, c); } forceinline bool append(char const* str) { return GEN_NS append(this, str); } forceinline bool append(char const* str, ssize length) { return GEN_NS append(this, str, length); } forceinline bool append(StrC str) { return GEN_NS append(this, str); } forceinline bool append(const String other) { return GEN_NS append(this, other); } forceinline ssize avail_space() const { return GEN_NS avail_space(* this); } forceinline char* back() { return GEN_NS back(* this); } forceinline bool contains(StrC substring) const { return GEN_NS contains(* this, substring); } forceinline bool contains(String const& substring) const { return GEN_NS contains(* this, substring); } forceinline ssize capacity() const { return GEN_NS capacity(* this); } forceinline void clear() { GEN_NS clear(* this); } forceinline String duplicate(AllocatorInfo allocator) const { return GEN_NS duplicate(* this, allocator); } forceinline void free() { GEN_NS free(this); } forceinline bool is_equal(String const& other) const { return GEN_NS are_equal(* this, other); } forceinline bool is_equal(StrC other) const { return GEN_NS are_equal(* this, other); } forceinline ssize length() const { return GEN_NS length(* this); } forceinline b32 starts_with(StrC substring) const { return GEN_NS starts_with(* this, substring); } forceinline b32 starts_with(String substring) const { return GEN_NS starts_with(* this, substring); } forceinline void skip_line() { GEN_NS skip_line(* this); } forceinline void strip_space() { GEN_NS strip_space(* this); } forceinline StrC to_strc() { return { length(), Data}; } forceinline void trim(char const* cut_set) { GEN_NS trim(* this, cut_set); } forceinline void trim_space() { GEN_NS trim_space(* this); } forceinline String visualize_whitespace() const { return GEN_NS visualize_whitespace(* this); } forceinline StringHeader& get_header() { return * GEN_NS get_header(* this); } bool append_fmt(char const* fmt, ...) { ssize res; char buf[GEN_PRINTF_MAXLEN] = { 0 }; va_list va; va_start(va, fmt); res = str_fmt_va(buf, count_of(buf) - 1, fmt, va) - 1; va_end(va); return GEN_NS append(this, buf, res); } #pragma endregion Member Mapping }; #endif inline char* begin(String str) { return ((char*) str); } inline char* end (String str) { return ((char*) str + length(str)); } inline char* next (String str, char* iter) { return ((char*) iter + 1); } #if GEN_SUPPORT_CPP_REFERENCES inline bool make_space_for(String& str, char const* to_append, ssize add_len); inline bool append(String& str, char c); inline bool append(String& str, char const* str_to_append); inline bool append(String& str, char const* str_to_append, ssize length); inline bool append(String& str, StrC str_to_append); inline bool append(String& str, const String other); inline bool append_fmt(String& str, char const* fmt, ...); inline char& back(String& str); inline void clear(String& str); inline void free(String& str); #endif inline usize string_grow_formula(usize value) { // Using a very aggressive growth formula to reduce time mem_copying with recursive calls to append in this library. return 4 * value + 8; } inline String string_make(AllocatorInfo allocator, char const* str) { ssize length = str ? str_len(str) : 0; return string_make_length(allocator, str, length); } inline String string_make(AllocatorInfo allocator, StrC str) { return string_make_length(allocator, str.Ptr, str.Len); } inline String string_fmt(AllocatorInfo allocator, char* buf, ssize buf_size, char const* fmt, ...) { va_list va; va_start(va, fmt); str_fmt_va(buf, buf_size, fmt, va); va_end(va); return string_make(allocator, buf); } inline String string_fmt_buf(AllocatorInfo allocator, char const* fmt, ...) { local_persist thread_local char buf[GEN_PRINTF_MAXLEN] = { 0 }; va_list va; va_start(va, fmt); str_fmt_va(buf, GEN_PRINTF_MAXLEN, fmt, va); va_end(va); return string_make(allocator, buf); } inline String string_join(AllocatorInfo allocator, char const** parts, ssize num_parts, char const* glue) { String result = string_make(allocator, ""); for (ssize idx = 0; idx < num_parts; ++idx) { append(& result, parts[idx]); if (idx < num_parts - 1) append(& result, glue); } return result; } inline bool append(String* str, char c) { GEN_ASSERT(str != nullptr); return append( str, (char const*)& c, (ssize)1); } inline bool append(String* str, char const* str_to_append) { GEN_ASSERT(str != nullptr); return append(str, str_to_append, str_len(str_to_append)); } inline bool append(String* str, char const* str_to_append, ssize append_length) { GEN_ASSERT(str != nullptr); if (sptr(str_to_append) > 0) { ssize curr_len = length(* str); if ( ! make_space_for(str, str_to_append, append_length)) return false; StringHeader* header = get_header(* str); char* Data = * str; mem_copy( Data + curr_len, str_to_append, append_length); Data[curr_len + append_length] = '\0'; header->Length = curr_len + append_length; } return str_to_append != nullptr; } inline bool append(String* str, StrC str_to_append) { GEN_ASSERT(str != nullptr); return append(str, str_to_append.Ptr, str_to_append.Len); } inline bool append(String* str, String const other) { GEN_ASSERT(str != nullptr); return append(str, (char const*)other, length(other)); } bool append_fmt(String* str, char const* fmt, ...) { GEN_ASSERT(str != nullptr); ssize res; char buf[GEN_PRINTF_MAXLEN] = { 0 }; va_list va; va_start(va, fmt); res = str_fmt_va(buf, count_of(buf) - 1, fmt, va) - 1; va_end(va); return append(str, (char const*)buf, res); } inline bool are_equal(String const lhs, String const rhs) { if (length(lhs) != length(rhs)) return false; for (ssize idx = 0; idx < length(lhs); ++idx) if (lhs[idx] != rhs[idx]) return false; return true; } inline bool are_equal(String const lhs, StrC rhs) { if (length(lhs) != (rhs.Len)) return false; for (ssize idx = 0; idx < length(lhs); ++idx) if (lhs[idx] != rhs.Ptr[idx]) return false; return true; } inline ssize avail_space(String const str) { StringHeader const* header = rcast(StringHeader const*, scast(char const*, str) - sizeof(StringHeader)); return header->Capacity - header->Length; } inline char* back(String* str) { return & (*str)[length(* str) - 1]; } inline bool contains(String const str, StrC substring) { StringHeader const* header = rcast(StringHeader const*, scast(char const*, str) - sizeof(StringHeader)); if (substring.Len > header->Length) return false; ssize main_len = header->Length; ssize sub_len = substring.Len; for (ssize idx = 0; idx <= main_len - sub_len; ++idx) { if (str_compare(str + idx, substring.Ptr, sub_len) == 0) return true; } return false; } inline bool contains(String const str, String const substring) { StringHeader const* header = rcast(StringHeader const*, scast(char const*, str) - sizeof(StringHeader)); if (length(substring) > header->Length) return false; ssize main_len = header->Length; ssize sub_len = length(substring); for (ssize idx = 0; idx <= main_len - sub_len; ++idx) { if (str_compare(str + idx, substring, sub_len) == 0) return true; } return false; } inline ssize capacity(String const str) { StringHeader const* header = rcast(StringHeader const*, scast(char const*, str) - sizeof(StringHeader)); return header->Capacity; } inline void clear(String str) { get_header(str)->Length = 0; } inline String duplicate(String const str, AllocatorInfo allocator) { return string_make_length(allocator, str, length(str)); } inline void free(String* str) { GEN_ASSERT(str != nullptr); if (! (* str)) return; StringHeader* header = get_header(* str); GEN_NS free(header->Allocator, header); } inline StringHeader* get_header(String str) { return (StringHeader*)(scast(char*, str) - sizeof(StringHeader)); } inline ssize length(String const str) { StringHeader const& header = *rcast(StringHeader const*, scast(char const*, str) - sizeof(StringHeader)); return header.Length; } inline bool make_space_for(String* str, char const* to_append, ssize add_len) { ssize available = avail_space(* str); if (available >= add_len) { return true; } else { ssize new_len, old_size, new_size; void* ptr; void* new_ptr; AllocatorInfo allocator = get_header(* str)->Allocator; StringHeader* header = nullptr; new_len = string_grow_formula(length(* str) + add_len); ptr = get_header(* str); old_size = size_of(StringHeader) + length(* str) + 1; new_size = size_of(StringHeader) + new_len + 1; new_ptr = resize(allocator, ptr, old_size, new_size); if (new_ptr == nullptr) return false; header = rcast(StringHeader*, new_ptr); header->Allocator = allocator; header->Capacity = new_len; char** Data = rcast(char**, str); * Data = rcast(char*, header + 1); return true; } } inline b32 starts_with(String const str, StrC substring) { if (substring.Len > length(str)) return false; b32 result = str_compare(str, substring.Ptr, substring.Len) == 0; return result; } inline b32 starts_with(String const str, String substring) { if (length(substring) > length(str)) return false; b32 result = str_compare(str, substring, length(substring) - 1) == 0; return result; } inline void skip_line(String str) { #define current (*scanner) char* scanner = str; while (current != '\r' && current != '\n') { ++scanner; } s32 new_length = scanner - str; if (current == '\r') { new_length += 1; } mem_move((char*)str, scanner, new_length); StringHeader* header = get_header(str); header->Length = new_length; #undef current } inline void strip_space(String str) { char* write_pos = str; char* read_pos = str; while (* read_pos) { if (! char_is_space(* read_pos)) { * write_pos = * read_pos; write_pos++; } read_pos++; } write_pos[0] = '\0'; // Null-terminate the modified string // Update the length if needed get_header(str)->Length = write_pos - str; } inline StrC to_strc(String str) { return { length(str), (char const*)str }; } inline void trim(String str, char const* cut_set) { ssize len = 0; char* start_pos = str; char* end_pos = scast(char*, str) + length(str) - 1; while (start_pos <= end_pos && char_first_occurence(cut_set, *start_pos)) start_pos++; while (end_pos > start_pos && char_first_occurence(cut_set, *end_pos)) end_pos--; len = scast(ssize, (start_pos > end_pos) ? 0 : ((end_pos - start_pos) + 1)); if (str != start_pos) mem_move(str, start_pos, len); str[len] = '\0'; get_header(str)->Length = len; } inline void trim_space(String str) { trim(str, " \t\r\n\v\f"); } inline String visualize_whitespace(String const str) { StringHeader* header = (StringHeader*)(scast(char const*, str) - sizeof(StringHeader)); String result = string_make_reserve(header->Allocator, length(str) * 2); // Assume worst case for space requirements. foreach (char*, c, str) switch ( * c ) { case ' ': append(& result, txt("·")); break; case '\t': append(& result, txt("→")); break; case '\n': append(& result, txt("↵")); break; case '\r': append(& result, txt("⏎")); break; case '\v': append(& result, txt("⇕")); break; case '\f': append(& result, txt("⌂")); break; default: append(& result, c); break; } return result; } #pragma endregion String struct String_POD { char* Data; }; static_assert( sizeof( String_POD ) == sizeof( String ), "String is not a POD" ); inline StrC duplicate(StrC str, AllocatorInfo allocator) { String result = string_make_length(allocator, str.Ptr, str.Len); return { get_header(result)->Length, result }; } inline StrC visualize_whitespace(StrC str, AllocatorInfo allocator) { String result = string_make_reserve(allocator, str.Len * 2); // Assume worst case for space requirements. foreach (char const*, c, str) switch ( * c ) { case ' ': append(& result, txt("·")); break; case '\t': append(& result, txt("→")); break; case '\n': append(& result, txt("↵")); break; case '\r': append(& result, txt("⏎")); break; case '\v': append(& result, txt("⇕")); break; case '\f': append(& result, txt("⌂")); break; default: append(& result, c); break; } return to_strc(result); } // Represents strings cached with the string table. // Should never be modified, if changed string is desired, cache_string( str ) another. typedef StrC StringCached; // Implements basic string interning. Data structure is based off the ZPL Hashtable. typedef HashTable StringTable; #pragma endregion Strings