/* BLOAT. This contians all definitions not directly related to the project. */ #pragma once #ifdef BLOAT_IMPL # define ZPL_IMPLEMENTATION #endif // TODO: This will be removed when making the library have zero dependencies. #pragma region ZPL INCLUDE #if __clang__ # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wmissing-braces" # pragma clang diagnostic ignored "-Wbraced-scalar-init" #endif // # define ZPL_HEAP_ANALYSIS # define ZPL_WRAP_IN_NAMESPACE # define ZPL_NO_MATH_H # define ZPL_CUSTOM_MODULES # define ZPL_MODULE_ESSENTIALS # define ZPL_MODULE_CORE # define ZPL_MODULE_TIMER # define ZPL_MODULE_HASHING #include "zpl.h" using zpl::b32; using zpl::s8; using zpl::s16; using zpl::s32; using zpl::s64; using zpl::u8; using zpl::u32; using zpl::u64; using zpl::uw; using zpl::sw; using zpl::sptr; using zpl::uptr; using zpl::AllocType; using zpl::Arena; using zpl::AllocatorInfo; using zpl::ArrayHeader; using zpl::FileInfo; using zpl::FileError; using zpl::Pool; // using zpl::String; using zpl::EAllocation_ALLOC; using zpl::EAllocation_FREE; using zpl::EAllocation_FREE_ALL; using zpl::EAllocation_RESIZE; using zpl::EFileMode_WRITE; using zpl::EFileError_NONE; using zpl::ZPL_ALLOCATOR_FLAG_CLEAR_TO_ZERO; using zpl::align_forward; using zpl::align_forward_i64; using zpl::alloc; using zpl::alloc_align; using zpl::arena_allocator; using zpl::arena_init_from_memory; using zpl::arena_init_from_allocator; using zpl::arena_free; using zpl::assert_crash; using zpl::char_first_occurence; using zpl::char_is_alpha; using zpl::char_is_alphanumeric; using zpl::char_is_digit; using zpl::char_is_hex_digit; using zpl::char_is_space; using zpl::crc32; using zpl::free_all; using zpl::is_power_of_two; using zpl::mem_copy; using zpl::mem_move; using zpl::mem_set; using zpl::pointer_add; using zpl::pool_allocator; using zpl::pool_init; using zpl::pool_free; using zpl::process_exit; using zpl::str_compare; using zpl::str_copy; using zpl::str_fmt_buf; using zpl::str_fmt_va; using zpl::str_fmt_out_va; using zpl::str_fmt_out_err_va; using zpl::str_len; using zpl::zero_size; #if __clang__ # pragma clang diagnostic pop #endif #pragma endregion ZPL INCLUDE #if __clang__ # pragma clang diagnostic ignored "-Wunused-const-variable" # pragma clang diagnostic ignored "-Wswitch" # pragma clang diagnostic ignored "-Wunused-variable" # pragma clang diagnostic ignored "-Wunknown-pragmas" # pragma clang diagnostic ignored "-Wvarargs" # pragma clang diagnostic ignored "-Wunused-function" #endif #include "Banned.define.hpp" #if defined(__GNUC__) || defined(__clang__) // Supports 0-10 arguments #define macro_num_args_impl( _0, \ _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \ _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \ N, ... \ ) N // _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, \ // _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, \ // _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, // ## deletes preceding comma if _VA_ARGS__ is empty (GCC, Clang) #define macro_num_args(...) \ macro_num_args_impl(_, ## __VA_ARGS__, \ 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, \ 0 \ ) // 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, \ // 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, \ // 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, #else // Supports 1-10 arguments #define macro_num_args_impl( \ _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, \ _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, \ N, ... \ ) N #define macro_num_args(...) \ macro_num_args_impl( __VA_ARGS__, \ 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, \ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 \ ) #endif #define macro_expand( Expanded_ ) Expanded_ #define bit( Value_ ) ( 1 << Value_ ) #define bitfield_is_equal( Type_, Field_, Mask_ ) ( (Type_(Mask_) & Type_(Field_)) == Type_(Mask_) ) #define forceinline ZPL_ALWAYS_INLINE #define ccast( Type_, Value_ ) * const_cast< Type_* >( & (Value_) ) #define scast( Type_, Value_ ) static_cast< Type_ >( Value_ ) #define rcast( Type_, Value_ ) reinterpret_cast< Type_ >( Value_ ) #define pcast( Type_, Value_ ) ( * (Type_*)( & (Value_) ) ) #define GEN_STRINGIZE_VA( ... ) #__VA_ARGS__ #define txt( ... ) GEN_STRINGIZE_VA( __VA_ARGS__ ) #define txt_to_StrC( ... ) sizeof( GEN_STRINGIZE_VA( __VA_ARGS__ ) ), GEN_STRINGIZE_VA( __VA_ARGS__ ) #define do_once() \ do \ { \ static \ bool Done = false; \ if ( Done ) \ return; \ Done = true; \ } \ while(0) #define do_once_start \ do \ { \ static \ bool Done = false; \ if ( Done ) \ break; \ Done = true; #define do_once_end \ } \ while(0); constexpr char const* Msg_Invalid_Value = "INVALID VALUE PROVIDED"; #pragma region Memory // TODO : Use it. struct gen_Arena { static void* allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags ); static gen_Arena init_from_memory( void* start, sw size ) { return { { nullptr, nullptr }, start, size, 0, 0 }; } static gen_Arena init_from_allocator( AllocatorInfo backing, sw size ) { gen_Arena result = { backing, alloc( backing, size), size, 0, 0 }; return result; } static gen_Arena init_sub( gen_Arena& parent, sw size ) { return init_from_allocator( parent.Backing, size ); } sw alignment_of( sw alignment ) { sw alignment_offset, result_pointer, mask; ZPL_ASSERT( is_power_of_two( alignment ) ); alignment_offset = 0; result_pointer = (sw) PhysicalStart + TotalUsed; mask = alignment - 1; if ( result_pointer & mask ) alignment_offset = alignment - ( result_pointer & mask ); return alignment_offset; } void check() { ZPL_ASSERT( TempCount == 0 ); } void free() { if ( Backing.proc ) { zpl::free( Backing, PhysicalStart ); PhysicalStart = nullptr; } } sw size_remaining( sw alignment ) { sw result = TotalSize - ( TotalUsed + alignment_of( alignment ) ); return result; } AllocatorInfo Backing; void* PhysicalStart; sw TotalSize; sw TotalUsed; sw TempCount; }; struct gen_Pool { static void* allocator_proc( void* allocator_data, AllocType type, sw size, sw alignment, void* old_memory, sw old_size, u64 flags ); static gen_Pool init( AllocatorInfo backing, sw num_blocks, sw block_size ) { return init_align( backing, num_blocks, block_size, ZPL_DEFAULT_MEMORY_ALIGNMENT ); } static gen_Pool init_align( AllocatorInfo backing, sw num_blocks, sw block_size, sw block_align ); void free() { if ( Backing.proc ) { zpl::free( Backing, PhysicalStart ); } } AllocatorInfo Backing; void* PhysicalStart; void* FreeList; sw BlockSize; sw BlockAlign; sw TotalSize; sw NumBlocks; }; #pragma endregion Memory #pragma region Containers #pragma push_macro("template") #undef template // TODO : Use it. template struct TArray { struct Header { AllocatorInfo Allocator; uw Capacity; uw Num; }; static TArray init( AllocatorInfo allocator ) { return init_reserve( allocator, grow_formula(0) ); } static TArray init_reserve( AllocatorInfo allocator, sw capacity ) { Header* header = rcast( Header*, alloc( allocator, sizeof(Header) + sizeof(Type) )); if ( header == nullptr ) return { nullptr }; header->Allocator = allocator; header->Capacity = capacity; header->Num = 0; return { rcast( Type*, header + 1) }; } static uw grow_formula( uw value ) { return 2 * value * 8; } bool append( Type value ) { Header& header = get_header(); if ( header.Num == header.Capacity ) { if ( ! grow( header.Capacity )) return false; } Data[ header.Num ] = value; header.Num++; return true; } Type& back( void ) { Header& header = get_header(); return Data[ header.Num - 1 ]; } void clear( void ) { Header& header = get_header(); header.Num = 0; } bool fill( uw begin, uw end, Type value ) { Header& header = get_header(); if ( begin < 0 || end >= header.Num ) return false; for ( sw idx = begin; idx < end; idx++ ) { Data[ idx ] = value; } return true; } void free( void ) { Header& header = get_header(); zpl::free( header.Allocator, &header ); } Header& get_header( void ) { return *( reinterpret_cast< Header* >( Data ) - 1 ); } bool grow( uw min_capacity ) { Header& header = get_header(); uw new_capacity = grow_formula( header.Capacity ); if ( new_capacity < min_capacity ) new_capacity = 8; return set_capacity( new_capacity ); } uw num( void ) { return get_header().Num; } bool pop( void ) { Header& header = get_header(); ZPL_ASSERT( header.Num > 0 ); header.Num--; } void remove_at( uw idx ) { Header* header = &get_header(); ZPL_ASSERT( idx < header->Num ); mem_move( header + idx, header + idx + 1, sizeof( Type ) * ( header->Num - idx - 1 ) ); header->Num--; } bool reserve( uw new_capacity ) { Header& header = get_header(); if ( header.Capacity < new_capacity ) return set_capacity( new_capacity ); return true; } bool resize( uw num ) { Header& header = get_header(); if ( num > header.Capacity ) { if ( ! grow( header.Capacity ) ) return false; } header.Num = num; return true; } bool set_capacity( uw new_capacity ) { Header& header = get_header(); if ( new_capacity == header.Capacity ) return true; if ( new_capacity < header.Num ) header.Num = new_capacity; sw size = sizeof( Header ) + sizeof( Type ) * new_capacity; Header* new_header = reinterpret_cast< Header* >( alloc( header.Allocator, size ) ); if ( new_header == nullptr ) return false; mem_move( new_header, &header, sizeof( Header ) + sizeof( Type ) * header.Num ); new_header->Allocator = header.Allocator; new_header->Num = header.Num; new_header->Capacity = new_capacity; zpl::free( header.Allocator, &header ); Data = ( Type* )new_header + 1; return true; } Type* Data; operator Type*() { return Data; } operator Type const*() const { return Data; } }; // TODO : Use it. template struct THashTable { struct FindResult { sw HashIndex; sw PrevIndex; sw EntryIndex; }; struct Entry { u64 Key; sw Next; Type Value; }; static THashTable init( AllocatorInfo allocator ) { THashTable result = {0}; result.Hashes.init( allocator ); result.Entries.init( allocator ); return result; } void clear( void ) { for ( sw idx = 0; idx < Hashes.num(); idx++ ) Hashes[ idx ] = -1; Hashes.clear(); Entries.clear(); } void destroy( void ) { if ( Hashes ) Hashes.free(); if ( Entries ) Entries.free(); } Type* get( u64 key ) { sw idx = find( key ).EntryIndex; if ( idx > 0 ) return & Entries[ idx ].Value; return nullptr; } using MapProc = void (*)( u64 key, Type value ); void map( MapProc map_proc ) { ZPL_ASSERT_NOT_NULL( map_proc ); for ( sw idx = 0; idx < Entries.num(); idx++ ) { map_proc( Entries[ idx ].Key, Entries[ idx ].Value ); } } using MapMutProc = void (*)( u64 key, Type* value ); void map_mut( MapMutProc map_proc ) { ZPL_ASSERT_NOT_NULL( map_proc ); for ( sw idx = 0; idx < Entries.num(); idx++ ) { map_proc( Entries[ idx ].Key, & Entries[ idx ].Value ); } } void grow() { sw new_num = TArray::grow_formula( Entries.num() ) rehash( new_num ); } void rehash( sw new_num ) { sw idx; sw last_added_index; THashTable new_ht = init( Hashes.get_header().Allocator ); new_ht.Hashes.resize( new_num ); new_ht.Entries.reserve( new_ht.Hashes.num() ); for ( idx = 0; idx < new_ht.Hashes.num(); ++idx ) new_ht.Hashes[ idx ] = -1; for ( idx = 0; idx < Entries.num(); ++idx ) { Entry& entry = Entries[ idx ]; FindResult find_result; if ( new_ht.Hashes.num() == 0 ) new_ht.grow(); entry = Entries[ idx ]; find_result = new_ht.find( entry.Key ); last_added_index = new_ht.add_entry( entry.Key ); if ( find_result.PrevIndex < 0 ) new_ht.Hashes[ find_result.HashIndex ] = last_added_index; else new_ht.Entries[ find_result.PrevIndex ].Next = last_added_index; new_ht.Entries[ last_added_index ].Next = find_result.EntryIndex; new_ht.Entries[ last_added_index ].Value = entry.Value; } // *this = new_ht; // old_ht.destroy(); destroy(); Hashes = new_ht.Hashes; Entries = new_ht.Entries; } void rehash_fast() { sw idx; for ( idx = 0; idx < Entries.num(); idx++ ) Entries[ idx ].Next = -1; for ( idx = 0; idx < Hashes.num(); idx++ ) Hashes[ idx ] = -1; for ( idx = 0; idx < Entries.num(); idx++ ) { Entry* entry; FindResult find_result; } } void remove( u64 key ) { FindResult find_result = find( key); if ( find_result.EntryIndex >= 0 ) { Entries.remove_at( find_result.EntryIndex ); rehash_fast(); } } void remove_entry( sw idx ) { Entries.remove_at( idx ); } void set( u64 key, Type value ) { sw idx; FindResult find_result; if ( Hashes.num() == 0 ) grow(); find_result = find( key ); if ( find_result.EntryIndex >= 0 ) { idx = find_result.EntryIndex; } else { idx = add_entry( key ); if ( find_result.PrevIndex >= 0 ) { Entries[ find_result.PrevIndex ].Next = idx; } else { Hashes[ find_result.HashIndex ] = idx; } } Entries[ idx ].Value = value; if ( full() ) grow(); } sw slot( u64 key ) { for ( sw idx = 0; idx < Hashes.num(); ++idx ) if ( Hashes[ idx ] == key ) return idx; return -1; } TArray< sw> Hashes; TArray< Entry> Entries; protected: sw add_entry( u64 key ) { sw idx; Entry entry = { key, -1 }; idx = Entries.num(); Entries.append( entry ); return idx; } FindResult find( u64 key ) { FindResult result = { -1, -1, -1 }; if ( Hashes.num() > 0 ) { result.HashIndex = key % Hashes.num(); result.EntryIndex = Hashes[ result.HashIndex ]; while ( result.EntryIndex >= 0 ) { if ( Entries[ result.EntryIndex ].Key == key ) break; result.PrevIndex = result.EntryIndex; result.EntryIndex = Entries[ result.EntryIndex ].Next; } } return result; } b32 full() { return 0.75f * Hashes.num() < Entries.num(); } }; #pragma pop_macro("template") #pragma endregion Containers #pragma region String // Constant string with length. struct StrC { sw Len; char const* Ptr; static constexpr StrC from( char const* str ) { return { str_len( str ), str }; } operator char const* () const { return Ptr; } }; // Dynamic String // This is directly based off the ZPL string api. // They used a header pattern // I kept it for simplicty of porting but its not necessary to keep it that way. struct String { struct Header { AllocatorInfo Allocator; sw Length; sw Capacity; }; static String make( AllocatorInfo allocator, char const* str ) { sw length = str ? str_len( str ) : 0; return make_length( allocator, str, length ); } static String make( AllocatorInfo allocator, StrC str ) { return make_length( allocator, str.Ptr, str.Len ); } static String make_reserve( AllocatorInfo allocator, sw capacity ) { constexpr sw header_size = sizeof( Header ); s32 alloc_size = header_size + capacity + 1; void* allocation = alloc( allocator, alloc_size ); if ( allocation == nullptr ) return { nullptr }; mem_set( allocation, 0, alloc_size ); Header* header = rcast(Header*, allocation); header->Allocator = allocator; header->Capacity = capacity; header->Length = 0; String result = { (char*)allocation + header_size }; return result; } static String make_length( AllocatorInfo allocator, char const* str, sw length ) { constexpr sw header_size = sizeof( Header ); s32 alloc_size = header_size + length + 1; void* allocation = alloc( allocator, alloc_size ); if ( allocation == nullptr ) return { nullptr }; if ( ! str ) mem_set( allocation, 0, alloc_size ); Header& header = * rcast(Header*, allocation); header = { allocator, length, length }; String result = { rcast( char*, allocation) + header_size }; if ( length && str ) mem_copy( result, str, length ); result[ length ] = '\0'; return result; } static String fmt( AllocatorInfo allocator, char* buf, sw buf_size, char const* fmt, ... ) { va_list va; va_start( va, fmt ); str_fmt_va( buf, buf_size, fmt, va ); va_end( va ); return make( allocator, buf ); } static String fmt_buf( AllocatorInfo allocator, char const* fmt, ... ) { local_persist thread_local char buf[ ZPL_PRINTF_MAXLEN ] = { 0 }; va_list va; va_start( va, fmt ); str_fmt_va( buf, ZPL_PRINTF_MAXLEN, fmt, va ); va_end( va ); return make( allocator, buf ); } static String join( AllocatorInfo allocator, char const** parts, sw num_parts, char const* glue ) { String result = make( allocator, "" ); for ( sw idx = 0; idx < num_parts; ++idx ) { result.append( parts[ idx ] ); if ( idx < num_parts - 1 ) result.append( glue ); } return result; } static bool are_equal( String lhs, String rhs ) { if ( lhs.length() != rhs.length() ) return false; for ( sw idx = 0; idx < lhs.length(); ++idx ) if ( lhs[ idx ] != rhs[ idx ] ) return false; return true; } bool make_space_for( char const* str, sw add_len ) { sw available = avail_space(); // NOTE: Return if there is enough space left if ( available >= add_len ) { return true; } else { sw new_len, old_size, new_size; void* ptr; void* new_ptr; AllocatorInfo allocator = get_header().Allocator; Header* header = nullptr; new_len = length() + add_len; ptr = & get_header(); old_size = size_of( Header ) + length() + 1; new_size = size_of( Header ) + new_len + 1; new_ptr = resize( allocator, ptr, old_size, new_size ); if ( new_ptr == nullptr ) return false; header = zpl_cast( Header* ) new_ptr; header->Allocator = allocator; header->Capacity = new_len; Data = rcast( char*, header + 1 ); return str; } } bool append( char const* str ) { return append( str, str_len( str ) ); } bool append( char const* str, sw length ) { if ( sptr(str) > 0 ) { sw curr_len = this->length(); if ( ! make_space_for( str, length ) ) return false; Header& header = get_header(); mem_copy( Data + curr_len, str, length ); Data[ curr_len + length ] = '\0'; header.Length = curr_len + length; } return str; } bool append( StrC str) { return append( str.Ptr, str.Len ); } bool append( const String other ) { return append( other.Data, other.length() ); } bool append_fmt( char const* fmt, ... ) { sw res; char buf[ ZPL_PRINTF_MAXLEN ] = { 0 }; va_list va; va_start( va, fmt ); res = str_fmt_va( buf, count_of( buf ) - 1, fmt, va ) - 1; va_end( va ); return append( buf, res ); } sw avail_space() const { Header const& header = * rcast( Header const*, Data - sizeof( Header )); return header.Capacity - header.Length; } sw capacity() const { Header const& header = * rcast( Header const*, Data - sizeof( Header )); return header.Capacity; } void clear() { get_header().Length = 0; } String duplicate( AllocatorInfo allocator ) { return make_length( allocator, Data, length() ); } void free() { if ( ! Data ) return; Header& header = get_header(); zpl::free( header.Allocator, & header ); } Header& get_header() { return *(Header*)(Data - sizeof(Header)); } sw length() const { Header const& header = * rcast( Header const*, Data - sizeof( Header )); return header.Length; } void trim( char const* cut_set ) { sw len = 0; char* start_pos = Data; char* end_pos = Data + length() - 1; while ( start_pos <= end_pos && char_first_occurence( cut_set, *start_pos ) ) start_pos++; while ( end_pos > start_pos && char_first_occurence( cut_set, *end_pos ) ) end_pos--; len = scast( sw, ( start_pos > end_pos ) ? 0 : ( ( end_pos - start_pos ) + 1 ) ); if ( Data != start_pos ) mem_move( Data, start_pos, len ); Data[ len ] = '\0'; get_header().Length = len; } void trim_space() { return trim( " \t\r\n\v\f" ); } operator bool() { return Data; } operator char* () { return Data; } operator char const* () const { return Data; } operator StrC() const { return { length(), Data }; } // Used with cached strings // Essentially makes the string a string view. String const& operator = ( String const& other ) const { if ( this == & other ) return *this; String& this_ = ccast( String, *this ); this_.Data = other.Data; return this_; } char& operator [] ( sw index ) { return Data[ index ]; } char const& operator [] ( sw index ) const { return Data[ index ]; } char* Data = nullptr; }; struct String_POD { char* Data; operator String() { return * rcast(String*, this); } }; static_assert( sizeof( String_POD ) == sizeof( String ), "String is not a POD" ); #pragma endregion String namespace Memory { // NOTE: This limits the size of the string that can be read from a file or generated to 10 megs. // If you are generating a string larger than this, increase the size of the bucket here. constexpr uw BucketSize = megabytes(10); // Global allocator used for data with process lifetime. extern AllocatorInfo GlobalAllocator; // Heap allocator is being used for now to isolate errors from being memory related (tech debt till ready to address) // #define g_allocator heap() void setup(); void cleanup(); } inline sw log_fmt(char const* fmt, ...) { sw res; va_list va; va_start(va, fmt); res = str_fmt_out_va(fmt, va); va_end(va); return res; } inline sw fatal(char const* fmt, ...) { local_persist thread_local char buf[ZPL_PRINTF_MAXLEN] = { 0 }; va_list va; #if Build_Debug va_start(va, fmt); str_fmt_va(buf, ZPL_PRINTF_MAXLEN, fmt, va); va_end(va); assert_crash(buf); return -1; #else va_start(va, fmt); str_fmt_out_err_va( fmt, va); va_end(va); exit(1); return -1; #endif }