/* WATL Exercise Version: 0 (From Scratch, 1-Stage Compilation, LLVM & WinAPI Only, Win CRT Multi-threaded Static Linkage) Host: Windows 11 (x86-64) Toolchain: LLVM (2025-08-30), C-Stanard: 11 Based on: Neokineogfx - Fixing C https://youtu.be/RrL7121MOeA */ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunused-const-variable" #pragma clang diagnostic ignored "-Wunused-but-set-variable" #pragma clang diagnostic ignored "-Wswitch" #pragma clang diagnostic ignored "-Wunused-variable" #pragma clang diagnostic ignored "-Wunknown-pragmas" #pragma clang diagnostic ignored "-Wvarargs" #pragma clang diagnostic ignored "-Wunused-function" #pragma clang diagnostic ignored "-Wbraced-scalar-init" #pragma clang diagnostic ignored "-W#pragma-messages" #pragma clang diagnostic ignored "-Wstatic-in-inline" #pragma clang diagnostic ignored "-Wkeyword-macro" #pragma clang diagnostic ignored "-Wc23-compat" #pragma clang diagnostic ignored "-Wreserved-identifier" #pragma clang diagnostic ignored "-Wpre-c11-compat" #pragma clang diagnostic ignored "-Wc23-extensions" #pragma clang diagnostic ignored "-Wunused-macros" #pragma region Header #pragma region DSL #if 0 // Original macros #define A_(x) __attribute__((aligned (x))) #define E_(x,y) __builtin_expect(x,y) #define S_ static #define I_ static inline __attribute__((always_inline)) #define N_ static __attribute__((noinline)) #define R_ __restrict #define V_ volatile // #define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__)) #endif // Ones I'm deciding to use.. #define align_(value) __attribute__((aligned (value))) // for easy alignment #define expect_(x, y) __builtin_expect(x, y) // so compiler knows the common path #define finline static inline __attribute__((always_inline)) // force inline #define noinline static __attribute__((noinline)) // force no inline [used in thread api] #define r_ __restrict // pointers are either restricted or volatile and nothing else #define v_ volatile // pointers are either restricted or volatile and nothing else // #define W_ __attribute((__stdcall__)) __attribute__((__force_align_arg_pointer__)) #define glue_impl(A, B) A ## B #define glue(A, B) glue_impl(A, B) #define stringify_impl(S) #S #define stringify(S) stringify_impl(S) #define tmpl(prefix, type) prefix ## _ ## type #define local_persist static #define global static #define static_assert _Static_assert #define typeof __typeof__ #define typeof_ptr(ptr) typeof(ptr[0]) #define typeof_same(a, b) _Generic((a), typeof((b)): 1, default: 0) typedef __UINT8_TYPE__ U1; typedef __INT8_TYPE__ S1; typedef __UINT16_TYPE__ U2; typedef __INT16_TYPE__ S2; typedef __UINT32_TYPE__ U4; typedef __INT32_TYPE__ S4; typedef __UINT64_TYPE__ U8; typedef __INT64_TYPE__ S8; typedef unsigned char B1; typedef __UINT16_TYPE__ B2; typedef __UINT32_TYPE__ B4; enum { false = 0, true = 1, true_overflow, }; #define farray_len(array) (SSIZE)sizeof(array) / size_of( typeof((array)[0])) #define farray_init(type, ...) (type[]){__VA_ARGS__} #define def_farray_impl(_type, _len) _type A ## _len ## _ ## _type[_len] #define def_farray(type, len) def_farray_impl(type, len) #define def_enum(underlying_type, symbol) underlying_type symbol; enum symbol #define def_struct(symbol) struct symbol symbol; struct symbol #define def_union(symbol) union symbol symbol; union symbol #define def_proc(symbol) symbol #define opt_args(symbol, ...) &(symbol){__VA_ARGS__} #define alignas _Alignas #define alignof _Alignof #define cast(type, data) ((type)(data)) #define pcast(type, data) * cast(type*, & (data)) #define nullptr cast(void*, 0) #define offset_of(type, member) cast(U8, & (((type*) 0)->member)) #define size_of(data) cast(U8, sizeof(data)) #define kilo(n) (cast(U8, n) << 10) #define mega(n) (cast(U8, n) << 20) #define giga(n) (cast(U8, n) << 30) #define tera(n) (cast(U8, n) << 40) // Back to lottes.. #define s1_(value) cast(S1, value) #define s2_(value) cast(S2, value) #define s4_(value) cast(S4, value) #define s8_(value) cast(S8, value) #define sop_1(op, a, b) cast(U1, s1_(a) op s1_(b)) #define sop_2(op, a, b) cast(U2, s2_(a) op s2_(b)) #define sop_4(op, a, b) cast(U4, s4_(a) op s4_(b)) #define sop_8(op, a, b) cast(U8, s8_(a) op s8_(b)) #define def_signed_op(id, op, width) finline U ## width id ## _s ## width(U ## width a, U ## width b) {return sop_ ## width(op, a, b); } #define def_signed_ops(id, op) def_signed_op(id, op, 1) def_signed_op(id, op, 2) def_signed_op(id, op, 4) def_signed_op(id, op, 8) def_signed_ops(add, +) def_signed_ops(sub, -) def_signed_ops(mut, *) def_signed_ops(div, /) def_signed_ops(gt, >) def_signed_ops(lt, <) def_signed_ops(ge, >=) def_signed_ops(le, <=) #define def_generic_sop(op, a, ...) _Generic((a), U1: op ## _s1, U2: op ## _s2, U4: op ## _s4, U8: op ## _s8) (a, __VA_ARGS__) #define ge_s(a,b) def_generic_sop(ge, a, b) #define le_s(a,b) def_generic_sop(le, a, b) #pragma region DSL #pragma region Strings typedef unsigned char UTF8; typedef def_struct(Str8) { UTF8* ptr; U8 len; }; typedef Str8 Slice_UTF8; typedef def_struct(Slice_Str8) { Str8* ptr; U8 len; }; #define lit(string_literal) (Str8){ (UTF8*) string_literal, size_of(string_literal) - 1 } #pragma endregion Strings #pragma region Debug #define debug_trap() __debugbreak() #define assert_trap(cond) do { if (cond) __debug_trap(); } while(0) #define assert_msg(cond, msg, ...) do { \ if (! (cond)) \ { \ assert_handler( \ stringify(cond), \ __FILE__, \ __func__, \ cast(S4, __LINE__), \ msg, \ ## __VA_ARGS__); \ debug_trap(); \ } \ } while(0) void assert_handler(UTF8* condition, UTF8* file, UTF8* function, S4 line, UTF8* msg, ... ); #pragma endregion Debug #pragma region Memory typedef def_farray(B1, 1); typedef def_farray(B1, 2); typedef def_farray(B1, 4); typedef def_farray(B1, 8); inline U8 align_pow2(U8 x, U8 b); #define align_struct(type_width) ((U8)(((type_width) + 7) / 8 * 8)) #define assert_bounds(point, start, end) do { \ assert(pos_start <= pos_point); \ assert(pos_point <= pos_end); \ } while(0) U8 mem_copy (U8 dest, U8 src, U8 length); U8 mem_copy_overlapping(U8 dest, U8 src, U8 length); B4 mem_zero (U8 dest, U8 length); #define check_nil(nil, p) ((p) == 0 || (p) == nil) #define set_nil(nil, p) ((p) = nil) #define sll_stack_push_n(f, n, next) do { (n)->next = (f); (f) = (n); } while(0) #define sll_queue_push_nz(nil, f, l, n, next) \ ( \ check_nil(nil, f) ? ( \ (f) = (l) = (n), \ set_nil(nil, (n)->next) \ ) \ : ( \ (l)->next=(n), \ (l) = (n), \ set_nil(nil,(n)->next) \ ) \ ) #define sll_queue_push_n(f, l, n, next) sll_queue_push_nz(0, f, l, n, next) typedef def_struct(Slice_Mem) { U8 ptr; U8 len; }; // TODO(Ed): Not sure about these yet.. #if 0 #define def_Slice(type) def_struct(tmpl(Slice,type)) { type* ptr; U8 len; } #define slice_assert(slice) do { assert((slice).ptr != nullptr); assert((slice).len > 0); } while(0) #define slice_end(slice) ((slice).ptr + (slice).len) #define size_of_slice_type(slice) size_of( * (slice).ptr ) typedef def_Slice(void); typedef def_Slice(B1); #define slice_byte(slice) ((Slice_B1){cast(B1, (slice).ptr), (slice).len * size_of_slice_type(slice)}) #define slice_fmem(mem) ((Slice_B1){ mem, size_of(mem) }) void slice__copy(Slice_B1 dest, U8 dest_typewidth, Slice_B1 src, U8 src_typewidth); void slice__zero(Slice_B1 mem, U8 typewidth); #define slice_copy(dest, src) do { \ static_assert(typeof_same(dest, src)); \ slice__copy(slice_byte(dest), size_of_slice_type(dest), slice_byte(src), size_of_slice_type(src)); \ } while (0) #define slice_zero(slice) slice__zero(slice_byte(slice), size_of_slice_type(slice)) #define slice_iter(container, iter) typeof((container).ptr) iter = (container).ptr; iter != slice_end(container); ++ iter #define slice_arg_from_array(type, ...) & (tmpl(Slice,type)) { .ptr = farray_init(type, __VA_ARGS__), .len = farray_len( farray_init(type, __VA_ARGS__)) } #endif #pragma endregion Memory #pragma region Math #define min(A, B) (((A) < (B)) ? (A) : (B)) #define max(A, B) (((A) > (B)) ? (A) : (B)) #define clamp_bot(X, B) max(X, B) #pragma endregion Math #pragma region Allocator Interface typedef def_enum(U4, AllocatorOp) { AllocatorOp_Alloc_NoZero = 0, // If Alloc exist, so must No_Zero AllocatorOp_Alloc, AllocatorOp_Free, AllocatorOp_Reset, AllocatorOp_Grow_NoZero, AllocatorOp_Grow, AllocatorOp_Shrink, AllocatorOp_Rewind, AllocatorOp_SavePoint, AllocatorOp_Query, // Must always be implemented }; typedef def_enum(U4, AllocatorQueryFlags) { AllocatorQuery_Alloc = (1 << 0), AllocatorQuery_Free = (1 << 1), // Wipe the allocator's state AllocatorQuery_Reset = (1 << 2), // Supports both grow and shrink AllocatorQuery_Shrink = (1 << 4), AllocatorQuery_Grow = (1 << 5), AllocatorQuery_Resize = AllocatorQuery_Grow | AllocatorQuery_Shrink, // Ability to rewind to a save point (ex: arenas, stack), must also be able to save such a point AllocatorQuery_Rewind = (1 << 6), }; typedef struct AllocatorProc_In AllocatorProc_In; typedef struct AllocatorProc_Out AllocatorProc_Out; typedef struct AllocatorSP AllocatorSP; typedef void def_proc(AllocatorProc) (AllocatorProc_In In, AllocatorProc_Out* Out); struct AllocatorSP { U8 type_sig; S8 slot; }; struct AllocatorProc_In { U8 data; U8 requested_size; U8 alignment; union { Slice_Mem old_allocation; AllocatorSP save_point; }; AllocatorOp op; A4_B1 _PAD_; }; struct AllocatorProc_Out { union { Slice_Mem allocation; AllocatorSP save_point; }; AllocatorQueryFlags features; A4_B1 _PAD_; U8 left; // Contiguous memory left U8 max_alloc; U8 min_alloc; B4 continuity_break; // Whether this allocation broke continuity with the previous (address space wise) A4_B1 _PAD_2; }; typedef def_struct(AllocatorInfo) { AllocatorProc* proc; void* data; }; static_assert(size_of(AllocatorSP) <= size_of(Slice_Mem)); typedef def_struct(AllocatorQueryInfo) { AllocatorSP save_point; AllocatorQueryFlags features; A4_B1 _PAD_; U8 left; // Contiguous memory left U8 max_alloc; U8 min_alloc; B4 continuity_break; // Whether this allocation broke continuity with the previous (address space wise) A4_B1 _PAD_2; }; static_assert(size_of(AllocatorProc_Out) == size_of(AllocatorQueryInfo)); #define MEMORY_ALIGNMENT_DEFAULT (2 * size_of(void*)) AllocatorQueryInfo allocator_query(AllocatorInfo ainfo); void mem_free (AllocatorInfo ainfo, Slice_Mem mem); void mem_reset (AllocatorInfo ainfo); void mem_rewind (AllocatorInfo ainfo, AllocatorSP save_point); AllocatorSP mem_save_point(AllocatorInfo ainfo); typedef def_struct(Opts_mem_alloc) { U8 alignment; B4 no_zero; A4_B1 _PAD_; }; typedef def_struct(Opts_mem_grow) { U8 alignment; B4 no_zero; A4_B1 _PAD_; }; typedef def_struct(Opts_mem_shrink) { U8 alignment; }; typedef def_struct(Opts_mem_resize) { U8 alignment; B4 no_zero; A4_B1 _PAD_; }; Slice_Mem mem__alloc (AllocatorInfo ainfo, U8 size, Opts_mem_alloc* opts); Slice_Mem mem__grow (AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_grow* opts); Slice_Mem mem__resize(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_resize* opts); Slice_Mem mem__shrink(AllocatorInfo ainfo, Slice_Mem mem, U8 size, Opts_mem_shrink* opts); #define mem_alloc(ainfo, size, ...) mem__alloc (ainfo, size, opt_args(Opts_mem_alloc, __VA_ARGS__)) #define mem_grow(ainfo, mem, size, ...) mem__grow (ainfo, mem, size, opt_args(Opts_mem_grow, __VA_ARGS__)) #define mem_resize(ainfo, mem, size, ...) mem__resize(ainfo, mem, size, opt_args(Opts_mem_resize, __VA_ARGS__)) #define mem_shrink(ainfo, mem, size, ...) mem__shrink(ainfo, mem, size, opt_args(Opts_mem_shrink, __VA_ARGS__)) #define alloc_type(ainfo, type, ...) (type*) mem__alloc(ainfo, size_of(type), opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr #define alloc_slice(ainfo, type, num, ...) (tmpl(Slice,type)){ mem__alloc(ainfo, size_of(type) * num, opt_args(Opts_mem_alloc, __VA_ARGS__)).ptr, num } #pragma endregion Allocator Interface #pragma region FArena (Fixed-Sized Arena) typedef def_struct(Opts_farena) { Str8 type_name; U8 alignment; }; typedef def_struct(FArena) { void* start; U8 capacity; U8 used; }; FArena farena_make (Slice_Mem mem); void farena_init (FArena* arena, Slice_Mem byte); Slice_Mem farena__push (FArena* arena, U8 amount, U8 type_width, Opts_farena* opts); void farena_reset (FArena* arena); void farena_rewind(FArena* arena, AllocatorSP save_point); AllocatorSP farena_save (FArena arena); void farena_allocator_proc(AllocatorProc_In in, AllocatorProc_Out* out); #define ainfo_farena(arena) (AllocatorInfo){ .proc = farena_allocator_proc, .data = & arena } #define farena_push(arena, type, ...) \ cast(type*, farena__push(arena, size_of(type), 1, opt_args(Opts_farena_push, lit(stringify(type)), __VA_ARGS__))).ptr #define farena_push_array(arena, type, amount, ...) \ (Slice ## type){ farena__push(arena, size_of(type), amount, opt_args(Opts_farena_push, lit(stringify(type)), __VA_ARGS__)).ptr, amount } #pragma endregion FArena #pragma endregion Header #pragma region Implementation #pragma endrgion Implementation int main(void) { U8 a = 4; U8 b = 2; U8 test = ge_s(a, b); return 0; } #pragma clang diagnostic pop