188 lines
5.1 KiB
Odin
188 lines
5.1 KiB
Odin
package sectr
|
|
|
|
import rl "vendor:raylib"
|
|
|
|
// The points to pixels and pixels to points are our only reference to accurately converting
|
|
// an object from world space to screen-space.
|
|
// This prototype engine will have all its spacial unit base for distances in centimetres.
|
|
|
|
Inches_To_CM :: cast(f32)2.54
|
|
Points_Per_CM :: cast(f32)28.3465
|
|
CM_Per_Point :: cast(f32)1.0 / 28.3465 // Precalculated reciprocal for multiplication
|
|
DPT_DPC :: cast(f32)72.0 * Inches_To_CM
|
|
|
|
when ODIN_OS == OS_Type.Windows {
|
|
os_default_dpc :: 96 * Inches_To_CM
|
|
// 1 inch = 2.54 cm, 96 inch * 2.54 = 243.84 DPC
|
|
}
|
|
|
|
cm_to_pixels :: proc {
|
|
f32_cm_to_pixels,
|
|
vec2_cm_to_pixels,
|
|
}
|
|
|
|
pixels_to_cm :: proc {
|
|
f32_pixels_to_cm,
|
|
vec2_pixels_to_cm,
|
|
}
|
|
|
|
points_to_pixels :: proc {
|
|
f32_points_to_pixels,
|
|
vec2_points_to_pixels,
|
|
}
|
|
|
|
|
|
//region Unit Conversion Impl
|
|
|
|
// cm_to_points :: proc ( cm : f32 ) -> f32 {
|
|
|
|
// }
|
|
|
|
// points_to_cm :: proc( points : f32 ) -> f32 {
|
|
// screen_dpc := get_state().app_window.dpc
|
|
// cm_per_pixel := 1.0 / screen_dpc
|
|
// pixels := points * DPT_DPC * cm_per_pixel
|
|
// return points *
|
|
// }
|
|
|
|
f32_cm_to_pixels :: proc(cm: f32) -> f32 {
|
|
screen_dpc := get_state().app_window.dpc
|
|
return cm * screen_dpc
|
|
}
|
|
|
|
f32_pixels_to_cm :: proc(pixels: f32) -> f32 {
|
|
screen_dpc := get_state().app_window.dpc
|
|
cm_per_pixel := 1.0 / screen_dpc
|
|
return pixels * cm_per_pixel
|
|
}
|
|
|
|
f32_points_to_pixels :: proc(points: f32) -> f32 {
|
|
screen_dpc := get_state().app_window.dpc
|
|
cm_per_pixel := 1.0 / screen_dpc
|
|
return points * DPT_DPC * cm_per_pixel
|
|
}
|
|
|
|
f32_pixels_to_points :: proc(pixels: f32) -> f32 {
|
|
screen_dpc := get_state().app_window.dpc
|
|
cm_per_pixel := 1.0 / screen_dpc
|
|
return pixels * cm_per_pixel * Points_Per_CM
|
|
}
|
|
|
|
vec2_cm_to_pixels :: proc(v: Vec2) -> Vec2 {
|
|
screen_dpc := get_state().app_window.dpc
|
|
return v * screen_dpc
|
|
}
|
|
|
|
vec2_pixels_to_cm :: proc(v: Vec2) -> Vec2 {
|
|
screen_dpc := get_state().app_window.dpc
|
|
cm_per_pixel := 1.0 / screen_dpc
|
|
return v * cm_per_pixel
|
|
}
|
|
|
|
vec2_points_to_pixels :: proc(vpoints: Vec2) -> Vec2 {
|
|
screen_dpc := get_state().app_window.dpc
|
|
cm_per_pixel := 1.0 / screen_dpc
|
|
return vpoints * DPT_DPC * cm_per_pixel
|
|
}
|
|
|
|
|
|
// vec2_points_to_cm :: proc ( vpoints : Vec2 ) -> Vec2 {
|
|
|
|
// }
|
|
|
|
//endregion
|
|
|
|
Camera :: rl.Camera2D
|
|
|
|
// TODO(Ed) : I'm not sure making the size and extent types distinct has made things easier or more difficult in Odin..
|
|
// The lack of operator overloads is going to make any sort of nice typesystem
|
|
// for doing lots of math or phyiscs more error prone or filled with proc wrappers
|
|
AreaSize :: distinct Vec2
|
|
|
|
Bounds2 :: struct {
|
|
top_left, bottom_right: Vec2,
|
|
}
|
|
|
|
BoundsCorners2 :: struct {
|
|
top_left, top_right, bottom_left, bottom_right: Vec2,
|
|
}
|
|
|
|
Extents2 :: distinct Vec2
|
|
Extents2i :: distinct Vec2i
|
|
|
|
WS_Pos :: struct {
|
|
tile_id : Vec2i,
|
|
rel : Vec2,
|
|
}
|
|
|
|
bounds2_radius :: proc(bounds: Bounds2) -> f32 {
|
|
return max(bounds.bottom_right.x, bounds.top_left.y)
|
|
}
|
|
|
|
extent_from_size :: proc(size: AreaSize) -> Extents2 {
|
|
return transmute(Extents2)size * 2.0
|
|
}
|
|
|
|
screen_size :: proc "contextless" () -> AreaSize {
|
|
extent := get_state().app_window.extent
|
|
return transmute(AreaSize)(extent * 2.0)
|
|
}
|
|
|
|
screen_get_corners :: proc() -> BoundsCorners2 {
|
|
state := get_state();using state
|
|
screen_extent := state.app_window.extent
|
|
top_left := Vec2{-screen_extent.x, screen_extent.y}
|
|
top_right := Vec2{screen_extent.x, screen_extent.y}
|
|
bottom_left := Vec2{-screen_extent.x, -screen_extent.y}
|
|
bottom_right := Vec2{screen_extent.x, -screen_extent.y}
|
|
return {top_left, top_right, bottom_left, bottom_right}
|
|
}
|
|
|
|
view_get_bounds :: proc() -> Bounds2 {
|
|
state := get_state();using state
|
|
cam := &project.workspace.cam
|
|
screen_extent := state.app_window.extent
|
|
top_left := cam.target + Vec2{-screen_extent.x, screen_extent.y}
|
|
bottom_right := cam.target + Vec2{screen_extent.x, -screen_extent.y}
|
|
return {top_left, bottom_right}
|
|
}
|
|
|
|
view_get_corners :: proc() -> BoundsCorners2 {
|
|
state := get_state();using state
|
|
cam := &project.workspace.cam
|
|
cam_zoom_ratio := 1.0 / cam.zoom
|
|
screen_extent := state.app_window.extent * cam_zoom_ratio
|
|
top_left := cam.target + Vec2{-screen_extent.x, screen_extent.y}
|
|
top_right := cam.target + Vec2{screen_extent.x, screen_extent.y}
|
|
bottom_left := cam.target + Vec2{-screen_extent.x, -screen_extent.y}
|
|
bottom_right := cam.target + Vec2{screen_extent.x, -screen_extent.y}
|
|
return {top_left, top_right, bottom_left, bottom_right}
|
|
}
|
|
|
|
screen_to_world :: proc(pos: Vec2) -> Vec2 {
|
|
state := get_state();using state
|
|
cam := &project.workspace.cam
|
|
return vec2_pixels_to_cm(cam.target + pos * (1 / cam.zoom))
|
|
}
|
|
|
|
screen_to_render :: proc(pos: Vec2) -> Vec2 {
|
|
screen_extent := transmute(Vec2)get_state().project.workspace.cam.offset
|
|
return pos + {screen_extent.x, -screen_extent.y}
|
|
}
|
|
|
|
world_screen_extent :: proc() -> Extents2 {
|
|
state := get_state();using state
|
|
cam_zoom_ratio := 1.0 / project.workspace.cam.zoom
|
|
return app_window.extent * cam_zoom_ratio
|
|
}
|
|
|
|
world_to_screen_pos :: proc(position: Vec2) -> Vec2 {
|
|
return {position.x, position.y * -1}
|
|
}
|
|
|
|
world_to_screen_no_zoom :: proc(position: Vec2) -> Vec2 {
|
|
state := get_state();using state
|
|
cam_zoom_ratio := 1.0 / state.project.workspace.cam.zoom
|
|
return {position.x, position.y * -1} * cam_zoom_ratio
|
|
}
|