SectrPrototype/code/parser_whitespace.odin
2024-03-12 20:55:29 -04:00

371 lines
8.9 KiB
Odin

/* Parser: Whitespace
This is a prototype parser meant to only parse whitespace from visible blocks of code.
Its meant to be the most minimal useful AST with coupling to traditional text file formatting.
All symbols related directly to the parser are prefixed with the PWS_ namespace.
The AST is composed of the following node types:
* Visible
* Spaces
* Tabs
* Line
AST_Visible tracks a slice of visible codepoints.
It tracks a neighboring ASTs (left or right) which should always be Spaces, or Tabs.
AST_Spaces tracks a slice of singluar or consecutive Spaces.
Neighboring ASTS should either be Visible, Tabs.
AST_Tabs tracks a slice of singlar or consectuive Tabs.
Neighboring ASTS should be either Visible or Spaces.
AST_Line tracks a slice of AST nodes of Visible, Spaces, or Tabs that terminate with a New-Line token.
Neighboring ASTS are only Lines.
The ParseData struct will contain an Array of AST_Line. This represents the entire AST where the root is the first entry.
ASTs keep track of neighboring ASTs in double-linked list pattern for ease of use.
This may be removed in the future for perforamance reasons,
since this is a prototype it will only be removed if there is a performance issue.
Because this parser is so primtive, it can only be
manually constructed via an AST editor or from parsed text.
So there is only a parser directly dealing with text.
If its constructed from an AST-Editor. There will not be a content string referencable or runes derived fromt hat content string.
Instead the AST's content will directly contain the runes associated.
*/
package sectr
import "core:os"
Rune_Space :: ' '
Rune_Tab :: '\t'
Rune_Carriage_Return :: '\r'
Rune_Line_Feed :: '\n'
// Rune_Tab_Vertical :: '\v'
PWS_TokenType :: enum u32 {
Invalid,
Visible,
Spaces,
Tabs,
New_Line,
End_Of_File,
Count,
}
// TODO(Ed) : The runes and token arrays should be handled by a slab allocator
// This can grow in undeterministic ways, persistent will get very polluted otherwise.
PWS_LexResult :: struct {
tokens : Array(PWS_Token),
}
PWS_Token :: struct {
type : PWS_TokenType,
line, column : u32,
content : StringCached,
}
PWS_AST_Type :: enum u32 {
Invalid,
Visible,
Spaces,
Tabs,
Line,
Count,
}
PWS_AST :: struct {
using links : DLL_NodeFull(PWS_AST),
type : PWS_AST_Type,
line, column : u32,
content : StringCached,
}
PWS_ParseError :: struct {
token : ^PWS_Token,
msg : string,
}
PWS_ParseError_Max :: 32
PWS_NodeArray_ReserveSize :: Kilobyte * 4
PWS_LineArray_RserveSize :: Kilobyte
// TODO(Ed) : The ast arrays should be handled by a slab allocator dedicated to PWS_ASTs
// This can grow in undeterministic ways, persistent will get very polluted otherwise.
PWS_ParseResult :: struct {
content : string,
tokens : Array(PWS_Token),
nodes : Array(PWS_AST), // Nodes should be dumped in a pool.
lines : Array( ^PWS_AST),
errors : [PWS_ParseError_Max] PWS_ParseError,
}
PWS_LexerData :: struct {
using result : PWS_LexResult,
content : string,
previous_rune : rune,
current_rune : rune,
previous : PWS_TokenType,
line : u32,
column : u32,
start : int,
length : int,
current : PWS_Token,
}
pws_parser_lex :: proc ( text : string, allocator : Allocator ) -> ( PWS_LexResult, AllocatorError )
{
bytes := transmute([]byte) text
log( str_fmt_tmp( "lexing: %v ...", (len(text) > 30 ? transmute(string) bytes[ :30] : text) ))
profile(#procedure)
using lexer : PWS_LexerData
context.user_ptr = & lexer
content = text
if len(text) == 0 {
ensure( false, "Attempted to lex nothing")
return result, .None
}
rune_type :: proc( codepoint : rune ) -> PWS_TokenType
{
using self := context_ext( PWS_LexerData)
switch codepoint
{
case Rune_Space:
return PWS_TokenType.Spaces
case Rune_Tab:
return PWS_TokenType.Tabs
case Rune_Line_Feed:
return PWS_TokenType.New_Line
// Support for CRLF format
case Rune_Carriage_Return:
{
if previous_rune == 0 {
return PWS_TokenType.Invalid
}
// Assume for now its a new line
return PWS_TokenType.New_Line
}
}
// Everything that isn't the supported whitespace code points is considered 'visible'
// Eventually we should support other types of whitespace
return PWS_TokenType.Visible
}
alloc_error : AllocatorError
tokens, alloc_error = array_init_reserve( PWS_Token, allocator, 8 )
if alloc_error != AllocatorError.None {
ensure(false, "Failed to allocate token's array")
return result, alloc_error
}
line = 0
column = 0
make_token :: proc ( byte_offset : int ) -> AllocatorError
{
self := context_ext( PWS_LexerData); using self
if previous_rune == Rune_Carriage_Return && current_rune != Rune_Line_Feed {
ensure(false, "Rouge Carriage Return")
}
start_ptr := uintptr( raw_data(content)) + uintptr(start)
token_slice := transmute(string) byte_slice( rawptr(start_ptr), length )
current.content = str_intern( token_slice )
start = byte_offset
length = 0
line += cast(u32) (current.type == .New_Line)
column = 0
return array_append( & tokens, current )
}
last_rune : rune
last_byte_offset : int
for codepoint, byte_offset in text
{
type := rune_type( codepoint )
current_rune = codepoint
if (current.type != type && previous != .Invalid) ||
( previous_rune != Rune_Carriage_Return && current.type == .New_Line )
{
alloc_error = make_token( byte_offset )
if alloc_error != AllocatorError.None {
ensure(false, "Failed to append token to token array")
return lexer, alloc_error
}
}
current.type = type
current.line = line
current.column = column
column += 1
length += 1
previous = current.type
previous_rune = codepoint
last_byte_offset = byte_offset
}
make_token( last_byte_offset )
return result, alloc_error
}
PWS_ParseData :: struct {
using result : PWS_ParseResult,
left : u32,
head : [^]PWS_Token,
line : PWS_AST,
prev_line : ^PWS_AST,
}
pws_parser_parse :: proc( text : string, allocator : Allocator ) -> ( PWS_ParseResult, AllocatorError )
{
bytes := transmute([]byte) text
log( str_fmt_tmp( "parsing: %v ...", (len(text) > 30 ? transmute(string) bytes[ :30] : text) ))
profile(#procedure)
using parser : PWS_ParseData
context.user_ptr = & result
if len(text) == 0 {
ensure( false, "Attempted to lex nothing")
return result, .None
}
lex, alloc_error := pws_parser_lex( text, allocator = allocator )
verify( alloc_error == nil, "Allocation faiure in lex")
tokens = lex.tokens
nodes, alloc_error = array_init_reserve( PWS_AST, allocator, 8 )
verify( alloc_error == nil, "Allocation failure creating nodes array")
parser.lines, alloc_error = array_init_reserve( ^PWS_AST, allocator, 8 )
verify( alloc_error == nil, "Allocation failure creating line array")
//region Helper procs
eat_line :: #force_inline proc()
{
self := context_ext( PWS_ParseData); using self
tok := cast( ^PWS_Token) head
line.type = .Line
line.line = tok.line
line.column = tok.column
line.content = tok.content
alloc_error := array_append( & nodes, line )
verify( alloc_error == nil, "Allocation failure appending node")
node := & nodes.data[ nodes.num - 1 ]
// TODO(Ed): Review this with multiple line test
dll_push_back( & prev_line, node )
prev_line = node
// Debug build compile error
// alloc_error = array_append( & lines, prev_line )
// verify( alloc_error == nil, "Allocation failure appending node")
line = {}
}
//endregion
head = & tokens.data[0]
left = u32(tokens.num)
// Parse Line
for ; left > 0;
{
type : PWS_AST_Type
#partial switch head[0].type
{
case .Tabs:
type = .Tabs
case .Spaces:
type = .Spaces
case .Visible:
type = .Visible
case .New_Line:
eat_line()
alloc_error = array_append( & parser.lines, prev_line )
verify( alloc_error == nil, "Allocation failure appending node")
case PWS_TokenType.End_Of_File:
}
if type != .Line
{
tok := cast( ^PWS_Token) head
ast : PWS_AST
ast.type = type
ast.line = tok.line
ast.column = tok.column
ast.content = tok.content
// Compiler Error (-Debug)
// prev_node = array_back( nodes )
prev_node : ^PWS_AST = nil
if nodes.num > 0 {
prev_node = & nodes.data[ nodes.num - 1 ]
}
alloc_error := array_append( & nodes, ast )
verify( alloc_error == nil, "Allocation failure appending node")
node := & nodes.data[ nodes.num - 1 ]
// dll_push_back( & prev_node, last_node )
{
if prev_node != nil
{
node.prev = prev_node
prev_node.next = node
}
}
// dll_fl_append( & line, last_node )
if line.first == nil {
line.first = node
line.last = node
}
else {
line.last = node
}
}
head = head[ 1:]
left -= 1
}
if line.first != nil {
eat_line()
alloc_error = array_append( & parser.lines, prev_line )
verify( alloc_error == nil, "Allocation failure appending node")
}
return result, alloc_error
}