// Based on gencpp's and thus zpl's Array implementation // Made becasue of the map issue with fonts during hot-reload. // I didn't want to make the HMapZPL impl with the [dynamic] array for now to isolate // what in the world is going on with the memory... package sectr import "core:c/libc" import "core:mem" import "core:slice" Array :: struct ( $ Type : typeid ) { allocator : Allocator, capacity : u64, num : u64, data : [^]Type, } // @(private=file) // Array :: Array_ZPL array_to_slice :: proc( using self : Array( $ Type) ) -> []Type { return slice_ptr( data, num ) } array_grow_formula :: proc( value : u64 ) -> u64 { return 2 * value + 8 } array_init :: proc( $ Type : typeid, allocator : Allocator ) -> ( Array(Type), AllocatorError ) { return array_init_reserve( Type, allocator, array_grow_formula(0) ) } array_init_reserve :: proc( $ Type : typeid, allocator : Allocator, capacity : u64 ) -> ( Array(Type), AllocatorError ) { raw_data, result_code := alloc( int(capacity) * size_of(Type), allocator = allocator ) result : Array( Type); result.data = cast( [^] Type ) raw_data result.allocator = allocator result.capacity = capacity return result, result_code } array_append :: proc( using self : ^ Array( $ Type), value : Type ) -> AllocatorError { if num == capacity { grow_result := array_grow( self, capacity ) if grow_result != AllocatorError.None { return grow_result } } data[ num ] = value num += 1 return AllocatorError.None } array_append_slice :: proc( using self : ^ Array( $ Type ), items : []Type ) -> AllocatorError { if num + len(items) > capacity { grow_result := array_grow( self, capacity ) if grow_result != AllocatorError.None { return grow_result } } // Note(Ed) : Original code from gencpp // libc.memcpy( ptr_offset(data, num), raw_data(items), len(items) * size_of(Type) ) // TODO(Ed) : VERIFY VIA DEBUG THIS COPY IS FINE. target := ptr_offset( data, num ) copy( slice_ptr(target, capacity - num), items ) num += len(items) return AllocatorError.None } array_append_at :: proc( using self : ^ Array( $ Type ), item : Type, id : u64 ) -> AllocatorError { id := id if id >= num { id = num - 1 } if id < 0 { id = 0 } if capacity < num + 1 { grow_result := array_grow( self, capacity ) if grow_result != AllocatorError.None { return grow_result } } target := & data[id] // TODO(Ed) : VERIFY VIA DEBUG THIS COPY IS FINE. dst = slice_ptr( ptr_offset(target) + 1, num - id - 1 ) src = slice_ptr( target, num - id ) copy( dst, src ) // Note(Ed) : Original code from gencpp // libc.memmove( ptr_offset(target, 1), target, (num - idx) * size_of(Type) ) data[id] = item num += 1 return AllocatorError.None } array_append_at_slice :: proc( using self : ^ Array( $ Type ), items : []Type, id : u64 ) -> AllocatorError { id := id if id >= num { return array_append_slice( items ) } if len(items) > capacity { grow_result := array_grow( self, capacity ) if grow_result != AllocatorError.None { return grow_result } } // Note(Ed) : Original code from gencpp // target := ptr_offset( data, id + len(items) ) // src := ptr_offset( data, id ) // libc.memmove( target, src, num - id * size_of(Type) ) // libc.memcpy ( src, raw_data(items), len(items) * size_of(Type) ) // TODO(Ed) : VERIFY VIA DEBUG THIS COPY IS FINE target := & data[id + len(items)] dst := slice_ptr( target, num - id - len(items) ) src := slice_ptr( & data[id], num - id ) copy( dst, src ) copy( src, items ) num += len(items) return AllocatorError.None } array_back :: proc( using self : ^ Array( $ Type ) ) -> ^ Type { return & data[ num - 1 ] } array_clear :: proc( using self : ^ Array( $ Type ), zero_data : b32 ) { if zero_data { mem.set( raw_data( data ), 0, num ) } num = 0 } array_fill :: proc( using self : ^ Array( $ Type ), begin, end : u64, value : Type ) -> b32 { if begin < 0 || end >= num { return false } // TODO(Ed) : Bench this? // data_slice := slice_ptr( ptr_offset( data, begin ), end - begin ) // slice.fill( data_slice, cast(int) value ) for id := begin; id < end; id += 1 { data[ id ] = value } return true } array_free :: proc( using self : ^ Array( $ Type ) ) { free( data, allocator ) data = nil } array_grow :: proc( using self : ^ Array( $ Type ), min_capacity : u64 ) -> AllocatorError { new_capacity := array_grow_formula( capacity ) if new_capacity < min_capacity { new_capacity = min_capacity } return array_set_capacity( self, new_capacity ) } array_pop :: proc( using self : ^ Array( $ Type ) ) { verify( num != 0, "Attempted to pop an array with no elements" ) num -= 1 } array_remove_at :: proc( using self : ^ Array( $ Type ), id : u64 ) { verify( id >= num, "Attempted to remove from an index larger than the array" ) left = slice_ptr( data, id ) right = slice_ptr( ptr_offset( memory_after(left), 1), num - len(left) - 1 ) copy( left, right ) num -= 1 } array_reserve :: proc( using self : ^ Array( $ Type ), new_capacity : u64 ) -> AllocatorError { if capacity < new_capacity { return array_set_capacity( self, new_capacity ) } return AllocatorError.None } array_resize :: proc( array : ^ Array( $ Type ), num : u64 ) -> AllocatorError { if array.capacity < num { grow_result := array_grow( array, array.capacity ) if grow_result != AllocatorError.None { return grow_result } } array.num = num return AllocatorError.None } array_set_capacity :: proc( using self : ^ Array( $ Type ), new_capacity : u64 ) -> AllocatorError { if new_capacity == capacity { return AllocatorError.None } if new_capacity < num { num = new_capacity return AllocatorError.None } raw_data, result_code := alloc( cast(int) new_capacity * size_of(Type), allocator = allocator ) ensure( result_code == AllocatorError.None, "Failed to allocate for new array capacity" ) data = cast( [^] Type ) raw_data capacity = new_capacity return result_code }