WIP: Getting some of the math sorted out and setting up tick_frametime

This commit is contained in:
2025-10-15 17:21:37 -04:00
parent a0f51913dc
commit fa25081d63
7 changed files with 643 additions and 33 deletions

305
code2/sectr/math.odin Normal file
View File

@@ -0,0 +1,305 @@
package sectr
/*
This is heavy work-in-progress personalized math definitions.
Desire is for the definitions to be from a geo alg / clifford alg lens instead of linear alg.
Want to maximize use of optimal linear alg operations in the defs though already defined by odin's linear alg library.
I apologize if this looks terrible my intuiton for math is very sub-par symbolically.
*/
import "base:intrinsics"
import "core:math"
import la "core:math/linalg"
Axis2 :: enum i32 {
Invalid = -1,
X = 0,
Y = 1,
Count,
}
f32_Infinity :: 0x7F800000
f32_Min :: 0x00800000
// Note(Ed) : I don't see an intrinsict available anywhere for this. So I'll be using the Terathon non-sse impl
// Inverse Square Root
// C++ Source https://github.com/EricLengyel/Terathon-Math-Library/blob/main/TSMath.cpp#L191
inverse_sqrt_f32 :: proc "contextless" ( value: f32 ) -> f32
{
if ( value < f32_Min) { return f32_Infinity }
value_u32 := transmute(u32) value
initial_approx := 0x5F375A86 - (value_u32 >> 1)
refined_approx := transmute(f32) initial_approx
// NewtonRaphson method for getting better approximations of square roots
// Done twice for greater accuracy.
refined_approx = refined_approx * (1.5 - value * 0.5 * refined_approx * refined_approx )
refined_approx = refined_approx * (1.5 - value * 0.5 * refined_approx * refined_approx )
// refined_approx = (0.5 * refined_approx) * (3.0 - value * refined_approx * refined_approx)
// refined_approx = (0.5 * refined_approx) * (3.0 - value * refined_approx * refined_approx)
return refined_approx
}
is_power_of_two_u32 :: #force_inline proc "contextless" (value: u32) -> b32 { return value != 0 && ( value & ( value - 1 )) == 0 }
mov_avg_exp_f32 := #force_inline proc "contextless" (alpha, delta_interval, last_value: f32) -> f32 { return (delta_interval * alpha) + (delta_interval * (1.0 - alpha)) }
mov_avg_exp_f64 := #force_inline proc "contextless" (alpha, delta_interval, last_value: f64) -> f64 { return (delta_interval * alpha) + (delta_interval * (1.0 - alpha)) }
Q_F4 :: quaternion128
V2_S4 :: [2]i32
V3_S4 :: [3]i32
M2_F4 :: matrix [2, 2] f32 // Column Major
R2_F4 :: struct { p0, p1: V2_F4 } // Column Major (they are equivalnet)
UR2_F4 :: distinct R2_F4
r2f4_zero :: R2_F4 {}
r2f4 :: #force_inline proc "contextless" (a, b: V2_F4) -> R2_F4 { return R2_F4{a, b} }
m2f4_from_r2f4 :: #force_inline proc "contextless" (range: R2_F4) -> M2_F4 { return transmute(M2_F4)range }
r2f4_from_m2f4 :: #force_inline proc "contextless" (m: M2_F4) -> R2_F4 { return transmute(R2_F4)m }
add_r2f4 :: #force_inline proc "contextless" (a, b: R2_F4) -> R2_F4 { return r2f4_from_m2f4(m2f4_from_r2f4(a) + m2f4_from_r2f4(b)) }
sub_r2f4 :: #force_inline proc "contextless" (a, b: R2_F4) -> R2_F4 { return r2f4_from_m2f4(m2f4_from_r2f4(a) - m2f4_from_r2f4(b)) }
equal_r2f4 :: #force_inline proc "contextless" (a, b: R2_F4) -> b32 { result := a.p0 == b.p0 && a.p1 == b.p1; return b32(result) }
// Will resolve the largest range possible given a & b.
join_r2f4 :: #force_inline proc "contextless" (a, b: R2_F4) -> (joined : R2_F4) { joined.p0 = min( a.min, b.min ); joined.p1 = max( a.max, b.max ); return }
size_range2 :: #force_inline proc "contextless" (value: R2_F4) -> V2_F4 { return { abs( value.p1.x - value.p0.x ), abs( value.p0.y - value.p1.y ) } }
cross_s :: la.scalar_cross
/*
V2_F2: 2D Vector (4-Byte Float) 4D Extension (x, y, z : 0, w : 0)
BV2_F2: 2D Bivector (4-Byte Float)
T2_F2: 3x3 Matrix (4-Byte Float) where 3rd row is always (0, 0, 1)
Rotor2_F4: Rotor 2D (4-Byte Float) s is scalar.
*/
V2_F4 :: [2]f32
BiV2_F4 :: distinct f32
T2_F4 :: matrix [3, 3] f32
UV2_F4 :: distinct V2_F4
Rotor2_F4 :: struct { bv: BiV2_F4, s: f32 }
rotor2f4_to_complex64 :: #force_inline proc "contextless" (rotor: Rotor2_F4) -> complex64 { return transmute(complex64) rotor; }
v2f4_from_f32s :: #force_inline proc "contextless" (x, y: f32 ) -> V2_F4 { return {x, y} }
v2f4_from_scalar :: #force_inline proc "contextless" (scalar: f32 ) -> V2_F4 { return {scalar, scalar}}
v2f4_from_v2s4 :: #force_inline proc "contextless" (v2i: V2_S4) -> V2_F4 { return {f32(v2i.x), f32(v2i.y)}}
v2s4_from_v2f4 :: #force_inline proc "contextless" (v2: V2_F4) -> V2_S4 { return {i32(v2.x), i32(v2.y) }}
// vec2_64_from_vec2 :: #force_inline proc "contextless" ( v2 : Vec2 ) -> Vec2_64 { return { f64(v2.x), f64(v2.y) }}
// dot_v2f4 :: #force_inline proc "contextless" (a, b: V2_F4) -> (s: f32) {
// x := a.x * b.x
// y := a.y + b.y
// s = x + y
// return
// }
sdot :: la.scalar_dot
vdot :: la.vector_dot
qdot_f2 :: la.quaternion64_dot
qdot_f4 :: la.quaternion128_dot
qdot_f8 :: la.quaternion256_dot
inner_product :: dot
outer_product :: intrinsics.outer_product
cross_v2 :: la.vector_cross2
/*
PointFlat2 : CGA: 2D flat point (x, y, z)
Line : PGA: 2D line (x, y, z)
*/
P2_F4 :: distinct V2_F4
PF2_F4 :: distinct V3_F4
L2_F4 :: distinct V3_F4
//endregion PGA 2
//region PGA 3
/*
V3_F4: 3D Vector (x, y, z) (3x1) 4D Expression : (x, y, z, 0)
BiV3_F4: 3D Bivector (yz, zx, xy) (3x1)
TriV3_F4: 3D Trivector (xyz) (1x1)
Rotor3: 3D Rotation Versor-Transform (4x1)
Motor3: 3D Rotation & Translation Transform (4x2)
*/
V3_F4 :: [3]f32
V4_F4 :: [4]f32
BiV3_F4 :: struct #raw_union {
using _ : struct { yz, zx, xy : f32 },
using xyz : V3_F4,
}
TriV3_F4 :: distinct f32
Rotor3_F4 :: struct {
using bv: BiV3_F4,
s: f32, // Scalar
}
Shifter3_F4 :: struct {
using bv: BiV3_F4,
s: f32, // Scalar
}
Motor3 :: struct {
rotor: Rotor3_F4,
md: Shifter3_F4,
}
UV3_F4 :: distinct V3_F4
UV4_F4 :: distinct V4_F4
UBiV3_F4 :: distinct BiV3_F4
//region Vec3
v3f4_via_f32s :: #force_inline proc "contextless" (x, y, z: f32) -> V3_F4 { return {x, y, z} }
// complement_vec3 :: #force_inline proc "contextless" ( v : Vec3 ) -> Bivec3 {return transmute(Bivec3) v}
cross_v3 :: la.vector_cross3
inverse_mag_v3f4 :: #force_inline proc "contextless" (v: V3_F4) -> (result : f32) { square := pow2_v3f4(v); result = inverse_sqrt_f32( square ); return }
magnitude_v3f4 :: #force_inline proc "contextless" (v: V3_F4) -> (mag: f32) { square := pow2_v3f4(v); mag = sqrt(square); return }
normalize_v3f4 :: #force_inline proc "contextless" (v: V3_F4) -> (unit_v: UV3_F4) { unit_v = transmute(UnitVec3) (v * inverse_mag_v3f4(v)); return }
pow2_v3f4 :: #force_inline proc "contextless" (v: V3_F4) -> (s: f32) { return dot_v3f4(v, v) }
project_v3f4 :: proc "contextless" (a, b: V3_F4) -> (a_to_b: V3_F4) { panic_contextless("not implemented"); return }
reject_v3f4 :: proc "contextless" (a, b: V3_F4 ) -> (a_from_b: V3_F4) { panic_contextless("not implemented"); return }
project_v3f4_uv3f4 :: #force_inline proc "contextless" (v: V3_F4, u: UV3_F4) -> (v_to_u: V3_F4) { inner := dot_v3f4(v, u); v_to_u = (transmute(V3_F4) u) * inner; return }
project_uv3f4_v3f4 :: #force_inline proc "contextless" (u : UV3_F4, v : V3_F4) -> (u_to_v: V3_F4) { inner := dot_v3f4(u, v); u_to_v = v * inner; return }
// Anti-wedge of vectors
regress_v3f4 :: #force_inline proc "contextless" (a, b : V3_F4) -> f32 { return a.x * b.y - a.y * b.x }
reject_v3f4_uv3f4 :: #force_inline proc "contextless" (v: V3_F4, u: UV3_F4) -> ( v_from_u: V3_F4) { inner := dot_v3f4(v, u); v_from_u = (v - (transmute(Vec3) u)) * inner; return }
reject_uv3f4_v3f4 :: #force_inline proc "contextless" (v: V3_F4, u: UV3_F4) -> ( u_from_v: V3_F4) { inner := dot_v3f4(u, v); u_from_v = ((transmute(Vec3) u) - v) * inner; return }
// Combines the deimensions that are present in a & b
wedge_v3f4 :: #force_inline proc "contextless" (a, b: V3_F4) -> (bv : BiV3_F4) {
yzx_zxy := a.yzx * b.zxy
zxy_yzx := a.zxy * b.yzx
bv = transmute(Bivec3) (yzx_zxy - zxy_yzx)
return
}
//endregion Vec3
//region Bivec3
biv3f4_via_f32s :: #force_inline proc "contextless" (yz, zx, xy : f32) -> BiV3_F4 {return { xyz = {yz, zx, xy} }}
complement_biv3f4 :: #force_inline proc "contextless" (b : BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) b.xyz}
//region Operations isomoprhic to vectors
negate_biv3f4 :: #force_inline proc "contextless" (b : BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) -b.xyz}
add_biv3f4 :: #force_inline proc "contextless" (a, b: BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) (a.xyz + b.xyz)}
sub_biv3f4 :: #force_inline proc "contextless" (a, b: BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) (a.xyz - b.xyz)}
mul_biv3f4 :: #force_inline proc "contextless" (a, b: BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) (a.xyz * b.xyz)}
mul_biv3f4_f32 :: #force_inline proc "contextless" (b: BiV3_F4, s: f32) -> BiV3_F4 {return transmute(BiV3_F4) (b.xyz * s)}
mul_f32_biv3f4 :: #force_inline proc "contextless" (s: f32, b: BiV3_F4) -> BiV3_F4 {return transmute(BiV3_F4) (s * b.xyz)}
div_biv3f4_f32 :: #force_inline proc "contextless" (b: BiV3_F4, s: f32) -> BiV3_F4 {return transmute(BiV3_F4) (b.xyz / s)}
inverse_mag_biv3f4 :: #force_inline proc "contextless" (b: BiV3_F4) -> f32 {return inverse_mag_vec3(b.xyz)}
magnitude_biv3f4 :: #force_inline proc "contextless" (b: BiV3_F4) -> f32 {return magnitude_vec3 (b.xyz)}
normalize_biv3f4 :: #force_inline proc "contextless" (b: BiV3_F4) -> UBiV3_F4 {return transmute(UBiV3_F4) normalize_vec3(b.xyz)}
squared_mag_biv3f4 :: #force_inline proc "contextless" (b: BiV3_F4) -> f32 {return pow2_vec3(b.xyz)}
//endregion Operations isomoprhic to vectors
// The wedge of a bi-vector in 3D vector space results in a Trivector represented as a scalar.
// This scalar usually resolves to zero with six possible exceptions that lead to the negative volume element.
wedge_biv3f4 :: #force_inline proc "contextless" (a, b: BiV3_F4) -> f32 { s := a.yz + b.yz + a.zx + b.zx + a.xy + b.xy; return s }
// anti-wedge (Combines dimensions that are absent from a & b)
regress_biv3f4 :: #force_inline proc "contextless" (a, b: BiV3_F4) -> V3_F4 {return wedge_vec3(vec3(a), vec3(b))}
regress_biv3f4_v3f4 :: #force_inline proc "contextless" (b: BiV3_F4, v: V3_F4) -> f32 {return regress_vec3(b.xyz, v)}
regress_v3_biv3f4 :: #force_inline proc "contextless" (v: V3_F4, b: BiV3_F4) -> f32 {return regress_vec3(b.xyz, v)}
//endregion biv3f4
//region Rotor3
rotor3f4_via_comps_f4 :: proc "contextless" (yz, zx, xy, scalar : f32) -> Rotor3_F4 { return Rotor3 {biv3f4_via_f32s(yz, zx, xy), scalar} }
rotor3f4_via_bv_s_f4 :: #force_inline proc "contextless" (bv: BiV3_F4, scalar: f32) -> (rotor : Rotor3_F4) { return Rotor3_F4 {bv, scalar} }
// rotor3f4_via_from_to_v3f4 :: #force_inline proc "contextless" (from, to: V3_F4) -> (rotor : Rotor3_F4) { rotor.scalar := 1 + dot( from, to ); return }
inverse_mag_rotor3f4 :: proc "contextless" (rotor : Rotor3_F4) -> (s : f32) { panic("not implemented"); return }
magnitude_rotor3f4 :: proc "contextless" (rotor : Rotor3_F4) -> (s : f32) { panic("not implemented"); return }
squared_mag_f4 :: proc "contextless" (rotor : Rotor3_F4) -> (s : f32) { panic("not implemented"); return }
reverse_rotor3_f4 :: proc "contextless" (rotor : Rotor3_F4) -> (reversed : Rotor3_F4) { reversed = { negate_biv3f4(rotor.bv), rotor.s }; return }
//endregion Rotor3
//region Flat Projective Geometry
Point3_F4 :: distinct V3_F4
PointFlat3_F4 :: distinct V4_F4
Line3_F4 :: struct {
weight : V3_F4,
bulk : BiV3_F4,
}
Plane3_F4 :: distinct V4_F4 // 4D Anti-vector
// aka: wedge operation for points
join_point3_f4 :: proc "contextless" (p, q : Point3_F4) -> (l : Line3_F4) {
weight := sub(q, p)
bulk := wedge(vec3(p), vec3(q))
l = {weight, bulk}
return
}
join_pointflat3_f4 :: proc "contextless" (p, q : PointFlat3_F4) -> (l : Line3_F4) {
weight := vec3(
p.w * q.x - p.x * q.w,
p.w * q.y - p.y * q.w,
p.w * q.z - p.z * q.w
)
bulk := wedge(vec3(p), vec3(q))
l = { weight, bulk}
return
}
sub_point3_f4 :: #force_inline proc "contextless" (a, b : Point3_F4) -> (v : V3_F4) { v = v3f4(a) - v3f4(b); return }
//endregion Flat Projective Geometry
//region Rational Trig
quadrance :: proc "contextless" (a, b : Point3_F4) -> (q : f32) { q = pow2( sub(a, b)); return }
// Assumes the weight component is normalized.
spread :: proc "contextless" (l, m : Line3_F4) -> (s : f32) { s = dot(l.weight, m.weight); return }
//endregion Rational Trig
//region Grime
// A dump of equivalent symbol generatioon (because the toolchain can't do it yet)
// Symbol alias tables are in grim.odin
v3f4_to_biv3f4 :: #force_inline proc "contextless" (v: V3_F4) -> BiV3_F4 {return transmute(Bivec3) v }
biv3f4_to_v3f4 :: #force_inline proc "contextless" (bv: BiV3_F4) -> V3_F4 {return transmute(Vec3) bv }
quatf4_from_rotor3f4 :: #force_inline proc "contextless" (rotor: Rotor3_F4) -> Q_F4 {return transmute(Quat128) rotor}
uv3f4_to_v3f4 :: #force_inline proc "contextless" (v: UV3_F4) -> V3_F4 {return transmute(Vec3) v }
uv4f4_to_v4f4 :: #force_inline proc "contextless" (v: UV4_F4) -> V4_F4 {return transmute(Vec4) v }
// plane_to_v4f4 :: #force_inline proc "contextless" (p : Plane3_F4) -> V4_F4 {return transmute(V4_F4) p}
point3f4_to_v3f4 :: #force_inline proc "contextless" (p: Point3_F4) -> V3_F4 {return transmute(Vec3) p}
pointflat3f4_to_v3f4 :: #force_inline proc "contextless" (p: PointFlat3_F4) -> V3_F4 {return { p.x, p.y, p.z }}
v3f4_to_point3f4 :: #force_inline proc "contextless" (v: V3_F4) -> Point3_F4 {return transmute(Point3) v}
cross_v3f4_uv3f4 :: #force_inline proc "contextless" (v: V3_F4, u: UV3_F4) -> V3_F4 {return cross_v3f4(v, transmute(Vec3) u)}
cross_u3f4_v3f4 :: #force_inline proc "contextless" (u: UV3_F4, v: V3_F4) -> V3_F4 {return cross_v3f4(transmute(Vec3) u, v)}
dot_v3f4_uv3f4 :: #force_inline proc "contextless" (v: V3_F4, unit_v: UV3_F4) -> f32 {return dot_v3f4(v, transmute(Vec3) unit_v)}
dot_uv3f4_vs :: #force_inline proc "contextless" (unit_v: UV3_F4, v: V3_F4) -> f32 {return dot_v3f4(v, transmute(Vec3) unit_v)}
wedge_v3f4_uv3f4 :: #force_inline proc "contextless" (v : V3_F4, unit_v: UV3_F4) -> BiV3_F4 {return wedge_v3f4(v, transmute(Vec3) unit_v)}
wedge_uv3f4_vs :: #force_inline proc "contextless" (unit_v: UV3_F4, v: V3_F4) -> BiV3_F4 {return wedge_v3f4(transmute(Vec3) unit_v, v)}
//endregion Grime