HandmadeHero/project/platform/platform_win32.cpp
2023-09-23 21:16:10 -04:00

1175 lines
37 KiB
C++

/*
TODO : This is not a final platform layer
- Saved game locations
- Getting a handle to our own executable file
- Asset loading path
- Threading (launch a thread)
- Raw Input (support for multiple keyboards)
- Sleep / timeBeginPeriod
- ClipCursor() (for multimonitor support)
- Fullscreen support
- WM_SETCURSOR (control cursor visibility)
- QueryCancelAutoplay
- WM_ACTIVATEAPP (for when not active)
- Blit speed improvemnts (BitBlt)
- Hardware acceleration ( OpenGL or Direct3D or both )
- GetKeyboardLayout (for French keyboards, international WASD support)
*/
// Platform Layer headers
#include "platform.h"
#include "jsl.h" // Using this to get dualsense controllers
#include "win32.h"
#include <malloc.h>
// Engine layer headers
#include "engine.h"
#include "platform_engine_api.h"
// TOOD(Ed): Redo these macros properly later.
#if 1
#define congrats( message ) do { \
JslSetLightColour( 0, (255 << 16) | (215 << 8) ); \
MessageBoxA( 0, message, "Congratulations!", MB_OK | MB_ICONEXCLAMATION ); \
JslSetLightColour( 0, (255 << 8 ) ); \
} while (0)
#define ensure( condition, message ) ensure_impl( condition, message )
inline bool
ensure_impl( bool condition, char const* message ) {
if ( ! condition ) {
JslSetLightColour( 0, (255 << 16) );
MessageBoxA( 0, message, "Ensure Failure", MB_OK | MB_ICONASTERISK );
JslSetLightColour( 0, ( 255 << 8 ) );
}
return condition;
}
#define fatal(message) do { \
JslSetLightColour( 0, (255 << 16) ); \
MessageBoxA( 0, message, "Fatal Error", MB_OK | MB_ICONERROR ); \
JslSetLightColour( 0, (255 << 8 ) ); \
} while (0)
#endif
NS_PLATFORM_BEGIN
using namespace win32;
struct OffscreenBuffer
{
BITMAPINFO Info;
char _PAD_[4];
void* Memory; // Lets use directly mess with the "pixel's memory buffer"
s32 Width;
s32 Height;
s32 Pitch;
s32 BytesPerPixel;
};
struct WinDimensions
{
u32 Width;
u32 Height;
};
// TODO : This will def need to be looked over.
struct DirectSoundBuffer
{
LPDIRECTSOUNDBUFFER SecondaryBuffer;
s16* Samples;
u32 SecondaryBufferSize;
u32 SamplesPerSecond;
u32 BytesPerSample;
DWORD IsPlaying;
u32 RunningSampleIndex;
u32 LatencySampleCount;
};
#pragma region Static Data
// TODO(Ed) : This is a global for now.
global bool Running;
// Max controllers for the platform layer and thus for all other layers is 4. (Sanity and xinput limit)
constexpr u32 Max_Controllers = 4;
global WinDimensions Window_Dimensions;
global OffscreenBuffer Surface_Back_Buffer;
using DirectSoundCreateFn = HRESULT WINAPI (LPGUID lpGuid, LPDIRECTSOUND* ppDS, LPUNKNOWN pUnkOuter );
global DirectSoundCreateFn* direct_sound_create;
constexpr u64 Tick_To_Millisecond = 1000;
constexpr u64 Tick_To_Microsecond = 1000 * 1000;
global u64 Performance_Counter_Frequency;
// As of 2023 the highest refreshrate on the market is 500 hz. I'll just make this higher if something comes out beyond that...
constexpr u32 Monitor_Refresh_Max_Supported = 500;
// Anything at or below the high performance frame-time is too low latency to sleep against the window's scheduler.
constexpr f32 High_Perf_Frametime_MS = 1000.f / 240.f;
global u32 Monitor_Refresh_Hz = 60;
global u32 Engine_Refresh_Hz = Monitor_Refresh_Hz / 2;
global f32 Engine_Frame_Target_MS = 1000.f / scast(f32, Engine_Refresh_Hz);
#pragma endregion Static Data
#if Build_Debug
struct DebugTimeMarker
{
DWORD PlayCursor;
DWORD WriteCursor;
};
void debug_file_free_content( Debug_FileContent* content )
{
if ( content->Data)
{
VirtualFree( content->Data, 0, MEM_Release);
*content = {};
}
}
Debug_FileContent debug_file_read_content( char const* file_path )
{
Debug_FileContent result {};
HANDLE file_handle = CreateFileA( file_path
, GENERIC_READ, FILE_SHARE_READ, 0
, OPEN_EXISTING, 0, 0
);
if ( file_handle == INVALID_HANDLE_VALUE )
{
// TODO(Ed) : Logging
return result;
}
GetFileSizeEx( file_handle, rcast(LARGE_INTEGER*, &result.Size) );
if ( result.Size == 0 )
{
// TODO(Ed) : Logging
return result;
}
result.Data = VirtualAlloc( 0, result.Size, MEM_Commit_Zeroed | MEM_Reserve, Page_Read_Write );
u32 bytes_read;
if ( ReadFile( file_handle, result.Data, result.Size, rcast(LPDWORD, &bytes_read), 0 ) == false )
{
// TODO(Ed) : Logging
return {};
}
if ( bytes_read != result.Size )
{
// TODO : Logging
return {};
}
CloseHandle( file_handle );
return result;
}
b32 debug_file_write_content( char const* file_path, u32 content_size, void* content_memory )
{
HANDLE file_handle = CreateFileA( file_path
, GENERIC_WRITE, 0, 0
, CREATE_ALWAYS, 0, 0
);
if ( file_handle == INVALID_HANDLE_VALUE )
{
// TODO : Logging
return false;
}
DWORD bytes_written;
if ( WriteFile( file_handle, content_memory, content_size, & bytes_written, 0 ) == false )
{
// TODO : Logging
return false;
}
CloseHandle( file_handle );
return true;
}
internal void
debug_draw_vertical( u32 x_pos, u32 top, u32 bottom, u32 color )
{
u8*
pixel_byte = rcast(u8*, Surface_Back_Buffer.Memory);
pixel_byte += x_pos * Surface_Back_Buffer.BytesPerPixel;
pixel_byte += top * Surface_Back_Buffer.Pitch;
for ( u32 y = top; y < bottom; ++ y )
{
u32* pixel = rcast(u32*, pixel_byte);
*pixel = color;
pixel_byte += Surface_Back_Buffer.Pitch;
}
}
inline void
debug_draw_sound_buffer_marker( DirectSoundBuffer* sound_buffer, f32 coefficient
, u32 pad_x, u32 pad_y
, u32 top, u32 bottom
, DWORD value, u32 color )
{
assert( value < sound_buffer->SecondaryBufferSize );
u32 x = pad_x + scast(u32, coefficient * scast(f32, value ));
debug_draw_vertical( x, top, bottom, color );
}
internal void
debug_sync_display( DirectSoundBuffer* sound_buffer
, u32 num_markers, DebugTimeMarker* markers
, f32 ms_per_frame )
{
u32 pad_x = 16;
u32 pad_y = 16;
f32 coefficient = scast(f32, Surface_Back_Buffer.Width) / scast(f32, sound_buffer->SecondaryBufferSize);
u32 top = pad_y;
u32 bottom = Surface_Back_Buffer.Height - pad_y;
for ( u32 marker_index = 0; marker_index < num_markers; ++ marker_index )
{
DebugTimeMarker* marker = & markers[marker_index];
debug_draw_sound_buffer_marker( sound_buffer, coefficient, pad_x, pad_y, top, bottom, marker->PlayCursor, 0xFFFFFFFF );
debug_draw_sound_buffer_marker( sound_buffer, coefficient, pad_x, pad_y, top, bottom, marker->WriteCursor, 0xFFFF0000 );
}
}
#endif
inline u64
timing_get_wall_clock()
{
u64 clock;
QueryPerformanceCounter( rcast( LARGE_INTEGER*, & clock) );
return clock;
}
inline f32
timing_get_seconds_elapsed( u64 start, u64 end )
{
u64 delta = end - start;
f32 result = scast(f32, delta) / scast(f32, Performance_Counter_Frequency);
return result;
}
inline f32
timing_get_ms_elapsed( u64 start, u64 end )
{
u64 delta = (end - start) * Tick_To_Millisecond;
f32 result = scast(f32, delta) / scast(f32, Performance_Counter_Frequency);
return result;
}
inline f32
timing_get_us_elapsed( u64 start, u64 end )
{
u64 delta = (end - start) * Tick_To_Microsecond;
f32 result = scast(f32, delta) / scast(f32, Performance_Counter_Frequency);
return result;
}
internal void
input_process_digital_btn( engine::DigitalBtn* old_state, engine::DigitalBtn* new_state, u32 raw_btns, u32 btn_flag )
{
#define had_transition() ( old_state->EndedDown == new_state->EndedDown )
new_state->EndedDown = (raw_btns & btn_flag) > 0;
new_state->HalfTransitions = had_transition() ? 1 : 0;
#undef had_transition
}
internal f32
xinput_process_axis_value( s16 value, s16 deadzone_threshold )
{
f32 result = 0;
if ( value < -deadzone_threshold )
{
result = scast(f32, value + deadzone_threshold) / (32768.0f - scast(f32, deadzone_threshold));
}
else if ( value > deadzone_threshold )
{
result = scast(f32, value + deadzone_threshold) / (32767.0f - scast(f32, deadzone_threshold));
}
return result;
}
internal f32
input_process_axis_value( f32 value, f32 deadzone_threshold )
{
f32 result = 0;
if ( value < -deadzone_threshold )
{
result = (value + deadzone_threshold ) / (1.0f - deadzone_threshold );
if (result < -1.0f)
result = -1.0f; // Clamp to ensure it doesn't go below -1
}
else if ( value > deadzone_threshold )
{
result = (value - deadzone_threshold ) / (1.0f - deadzone_threshold );
if (result > 1.0f)
result = 1.0f; // Clamp to ensure it doesn't exceed 1
}
return result;
}
internal void
poll_input( engine::InputState* input )
{
}
internal void
init_sound(HWND window_handle, DirectSoundBuffer* sound_buffer )
{
// Load library
HMODULE sound_library = LoadLibraryA( "dsound.dll" );
if ( ! ensure(sound_library, "Failed to load direct sound library" ) )
{
// TOOD : Diagnostic
return;
}
// Get direct sound object
#pragma warning( push )
#pragma warning( disable: 4191 )
direct_sound_create = rcast( DirectSoundCreateFn*, GetProcAddress( sound_library, "DirectSoundCreate" ));
if ( ! ensure( direct_sound_create, "Failed to get direct_sound_create_procedure" ) )
{
// TOOD : Diagnostic
return;
}
#pragma warning( pop )
LPDIRECTSOUND direct_sound;
if ( ! SUCCEEDED(direct_sound_create( 0, & direct_sound, 0 )) )
{
// TODO : Diagnostic
}
if ( ! SUCCEEDED( direct_sound->SetCooperativeLevel(window_handle, DSSCL_PRIORITY) ) )
{
// TODO : Diagnostic
}
WAVEFORMATEX
wave_format {};
wave_format.wFormatTag = WAVE_FORMAT_PCM; /* format type */
wave_format.nChannels = 2; /* number of channels (i.e. mono, stereo...) */
wave_format.nSamplesPerSec = scast(u32, sound_buffer->SamplesPerSecond); /* sample rate */
wave_format.wBitsPerSample = 16; /* number of bits per sample of mono data */
wave_format.nBlockAlign = wave_format.nChannels * wave_format.wBitsPerSample / 8 ; /* block size of data */
wave_format.nAvgBytesPerSec = wave_format.nSamplesPerSec * wave_format.nBlockAlign; /* for buffer estimation */
wave_format.cbSize = 0; /* the count in bytes of the size of */
LPDIRECTSOUNDBUFFER primary_buffer;
{
DSBUFFERDESC
buffer_description { sizeof(buffer_description) };
buffer_description.dwFlags = DSBCAPS_PRIMARYBUFFER;
buffer_description.dwBufferBytes = 0;
if ( ! SUCCEEDED( direct_sound->CreateSoundBuffer( & buffer_description, & primary_buffer, 0 ) ))
{
// TODO : Diagnostic
}
if ( ! SUCCEEDED( primary_buffer->SetFormat( & wave_format ) ) )
{
// TODO : Diagnostic
}
}
DSBUFFERDESC
buffer_description { sizeof(buffer_description) };
buffer_description.dwFlags = DSBCAPS_GETCURRENTPOSITION2;
buffer_description.dwBufferBytes = sound_buffer->SecondaryBufferSize;
buffer_description.lpwfxFormat = & wave_format;
if ( ! SUCCEEDED( direct_sound->CreateSoundBuffer( & buffer_description, & sound_buffer->SecondaryBuffer, 0 ) ))
{
// TODO : Diagnostic
}
if ( ! SUCCEEDED( sound_buffer->SecondaryBuffer->SetFormat( & wave_format ) ) )
{
// TODO : Diagnostic
}
}
internal void
ds_clear_sound_buffer( DirectSoundBuffer* sound_buffer )
{
LPVOID region_1;
DWORD region_1_size;
LPVOID region_2;
DWORD region_2_size;
HRESULT ds_lock_result = sound_buffer->SecondaryBuffer->Lock( 0, sound_buffer->SecondaryBufferSize
, & region_1, & region_1_size
, & region_2, & region_2_size
, 0 );
if ( ! SUCCEEDED( ds_lock_result ) )
{
return;
}
u8* sample_out = rcast( u8*, region_1 );
for ( DWORD byte_index = 0; byte_index < region_1_size; ++ byte_index )
{
*sample_out = 0;
++ sample_out;
}
sample_out = rcast( u8*, region_2 );
for ( DWORD byte_index = 0; byte_index < region_2_size; ++ byte_index )
{
*sample_out = 0;
++ sample_out;
}
if ( ! SUCCEEDED( sound_buffer->SecondaryBuffer->Unlock( region_1, region_1_size, region_2, region_2_size ) ))
{
return;
}
}
internal void
ds_fill_sound_buffer( DirectSoundBuffer* sound_buffer, DWORD byte_to_lock, DWORD bytes_to_write )
{
LPVOID region_1;
DWORD region_1_size;
LPVOID region_2;
DWORD region_2_size;
HRESULT ds_lock_result = sound_buffer->SecondaryBuffer->Lock( byte_to_lock, bytes_to_write
, & region_1, & region_1_size
, & region_2, & region_2_size
, 0 );
if ( ! SUCCEEDED( ds_lock_result ) )
{
return;
}
// TODO : Assert that region sizes are valid
DWORD region_1_sample_count = region_1_size / sound_buffer->BytesPerSample;
s16* sample_out = rcast( s16*, region_1 );
s16* sample_in = sound_buffer->Samples;
for ( DWORD sample_index = 0; sample_index < region_1_sample_count; ++ sample_index )
{
*sample_out = *sample_in;
++ sample_out;
++ sample_in;
*sample_out = *sample_in;
++ sample_out;
++ sample_in;
++ sound_buffer->RunningSampleIndex;
}
DWORD region_2_sample_count = region_2_size / sound_buffer->BytesPerSample;
sample_out = rcast( s16*, region_2 );
for ( DWORD sample_index = 0; sample_index < region_2_sample_count; ++ sample_index )
{
*sample_out = *sample_in;
++ sample_out;
++ sample_in;
*sample_out = *sample_in;
++ sample_out;
++ sample_in;
++ sound_buffer->RunningSampleIndex;
}
if ( ! SUCCEEDED( sound_buffer->SecondaryBuffer->Unlock( region_1, region_1_size, region_2, region_2_size ) ))
{
return;
}
}
internal WinDimensions
get_window_dimensions( HWND window_handle )
{
RECT client_rect;
GetClientRect( window_handle, & client_rect );
WinDimensions result;
result.Width = client_rect.right - client_rect.left;
result.Height = client_rect.bottom - client_rect.top;
return result;
}
internal void
resize_dib_section( OffscreenBuffer* buffer, u32 width, u32 height )
{
// TODO(Ed) : Bulletproof memory handling here for the bitmap memory
if ( buffer->Memory )
{
VirtualFree( buffer->Memory, 0, MEM_RELEASE );
}
buffer->Width = width;
buffer->Height = height;
buffer->BytesPerPixel = 4;
buffer->Pitch = buffer->Width * buffer->BytesPerPixel;
// Negative means top-down in the context of the biHeight
# define Top_Down -
BITMAPINFOHEADER&
header = buffer->Info.bmiHeader;
header.biSize = sizeof( buffer->Info.bmiHeader );
header.biWidth = buffer->Width;
header.biHeight = Top_Down buffer->Height;
header.biPlanes = 1;
header.biBitCount = 32; // Need 24, but want 32 ( alignment )
header.biCompression = BI_RGB_Uncompressed;
// header.biSizeImage = 0;
// header.biXPelsPerMeter = 0;
// header.biYPelsPerMeter = 0;
// header.biClrUsed = 0;
// header.biClrImportant = 0;
# undef Top_Down
// We want to "touch" a pixel on every 4-byte boundary
u32 BitmapMemorySize = (buffer->Width * buffer->Height) * buffer->BytesPerPixel;
buffer->Memory = VirtualAlloc( NULL, BitmapMemorySize, MEM_Commit_Zeroed | MEM_Reserve, Page_Read_Write );
// TODO(Ed) : Clear to black
}
internal void
display_buffer_in_window( HDC device_context, u32 window_width, u32 window_height, OffscreenBuffer* buffer
, u32 x, u32 y
, u32 width, u32 height )
{
// TODO(Ed) : Aspect ratio correction
StretchDIBits( device_context
#if 0
, x, y, width, height
, x, y, width, height
#endif
, 0, 0, window_width, window_height
, 0, 0, buffer->Width, buffer->Height
, buffer->Memory, & buffer->Info
, DIB_ColorTable_RGB, RO_Source_To_Dest );
}
internal LRESULT CALLBACK
main_window_callback( HWND handle
, UINT system_messages
, WPARAM w_param
, LPARAM l_param )
{
LRESULT result = 0;
switch ( system_messages )
{
case WM_ACTIVATEAPP:
{
OutputDebugStringA( "WM_ACTIVATEAPP\n" );
}
break;
case WM_CLOSE:
{
// TODO(Ed) : Handle with a message to the user
Running = false;
}
break;
case WM_DESTROY:
{
// TODO(Ed) : Handle with as an error and recreate the window
Running = false;
}
break;
case WM_PAINT:
{
PAINTSTRUCT info;
HDC device_context = BeginPaint( handle, & info );
u32 x = info.rcPaint.left;
u32 y = info.rcPaint.top;
u32 width = info.rcPaint.right - info.rcPaint.left;
u32 height = info.rcPaint.bottom - info.rcPaint.top;
WinDimensions dimensions = get_window_dimensions( handle );
display_buffer_in_window( device_context, dimensions.Width, dimensions.Height, &Surface_Back_Buffer
, x, y
, width, height );
EndPaint( handle, & info );
}
break;
case WM_SIZE:
{
}
break;
default:
{
result = DefWindowProc( handle, system_messages, w_param, l_param );
}
}
return result;
}
internal void
process_pending_window_messages( engine::KeyboardState* keyboard )
{
MSG window_msg_info;
while ( PeekMessageA( & window_msg_info, 0, 0, 0, PM_Remove_Messages_From_Queue ) )
{
if ( window_msg_info.message == WM_QUIT )
{
OutputDebugStringA("WM_QUIT\n");
Running = false;
}
// Keyboard input handling
switch (window_msg_info.message)
{
// I rather do this with GetAsyncKeyState...
case WM_SYSKEYDOWN:
case WM_SYSKEYUP:
{
WPARAM vk_code = window_msg_info.wParam;
b32 is_down = scast(b32, (window_msg_info.lParam >> 31) == 0 );
b32 was_down = scast(b32, (window_msg_info.lParam >> 30) );
b32 alt_down = scast(b32, (window_msg_info.lParam & (1 << 29)) );
switch ( vk_code )
{
case VK_F4:
{
if ( alt_down )
Running = false;
}
break;
}
}
break;
default:
TranslateMessage( & window_msg_info );
DispatchMessageW( & window_msg_info );
}
}
}
NS_PLATFORM_END
int CALLBACK
WinMain( HINSTANCE instance, HINSTANCE prev_instance, LPSTR commandline, int show_command )
{
using namespace win32;
using namespace platform;
// Timing
#if Build_Development
u64 launch_clock = timing_get_wall_clock();
u64 launch_cycle = __rdtsc();
#endif
// Sets the windows scheduler granulaity for this process to 1 ms
constexpr u32 desired_scheduler_ms = 1;
b32 sleep_is_granular = ( timeBeginPeriod( desired_scheduler_ms ) == TIMERR_NOERROR );
// If its a high-perofmrance frame-time (a refresh rate that produces a target frametime at or below 4.16~ ms, we cannot allow the scheduler to mess things up)
b32 sub_ms_granularity_required = scast(f32, Engine_Refresh_Hz) <= High_Perf_Frametime_MS;
QueryPerformanceFrequency( rcast(LARGE_INTEGER*, & Performance_Counter_Frequency) );
// Memory
engine::Memory engine_memory {};
{
engine_memory.PersistentSize = megabytes( 64 );
// engine_memory.FrameSize = megabytes( 64 );
engine_memory.TransientSize = gigabytes( 2 );
u64 total_size = engine_memory.PersistentSize
// + engine_memory.FrameSize
+ engine_memory.TransientSize;
#if Build_Debug
void* base_address = rcast(void*, terabytes( 1 ));
#else
void* base_address = 0;
#endif
engine_memory.Persistent = VirtualAlloc( base_address, total_size , MEM_Commit_Zeroed | MEM_Reserve, Page_Read_Write );
engine_memory.Transient = rcast( u8*, engine_memory.Persistent ) + engine_memory.PersistentSize;
if ( engine_memory.Persistent == nullptr
|| engine_memory.Transient == nullptr )
{
// TODO : Diagnostic Logging
return -1;
}
}
WNDCLASSW window_class {};
HWND window_handle = nullptr;
{
window_class.style = CS_Horizontal_Redraw | CS_Vertical_Redraw;
window_class.lpfnWndProc = main_window_callback;
// window_class.cbClsExtra = ;
// window_class.cbWndExtra = ;
window_class.hInstance = instance;
// window_class.hIcon = ;
// window_class.hCursor = ;
// window_class.hbrBackground = ;
window_class.lpszMenuName = L"Handmade Hero!";
window_class.lpszClassName = L"HandmadeHeroWindowClass";
if ( ! RegisterClassW( & window_class ) )
{
// TODO : Diagnostic Logging
return 0;
}
window_handle = CreateWindowExW(
0,
window_class.lpszClassName,
L"Handmade Hero",
WS_Overlapped_Window | WS_Initially_Visible,
CW_Use_Default, CW_Use_Default, // x, y
CW_Use_Default, CW_Use_Default, // width, height
0, 0, // parent, menu
instance, 0 // instance, param
);
if ( ! window_handle )
{
// TODO : Diagnostic Logging
return 0;
}
}
// WinDimensions dimensions = get_window_dimensions( window_handle );
resize_dib_section( &Surface_Back_Buffer, 1280, 720 );
DWORD last_play_cursor = 0;
b32 sound_is_valid = false;
DirectSoundBuffer ds_sound_buffer;
{
ds_sound_buffer.IsPlaying = 0;
ds_sound_buffer.SamplesPerSecond = 48000;
ds_sound_buffer.BytesPerSample = sizeof(s16) * 2;
ds_sound_buffer.SecondaryBufferSize = ds_sound_buffer.SamplesPerSecond * ds_sound_buffer.BytesPerSample;
init_sound( window_handle, & ds_sound_buffer );
ds_sound_buffer.Samples = rcast( s16*, VirtualAlloc( 0, 48000 * 2 * sizeof(s16)
, MEM_Commit_Zeroed | MEM_Reserve, Page_Read_Write ));
assert( ds_sound_buffer.Samples );
ds_sound_buffer.RunningSampleIndex = 0;
// ds_clear_sound_buffer( & sound_output );
ds_sound_buffer.SecondaryBuffer->Play( 0, 0, DSBPLAY_LOOPING );
// Direct sound requires 3 frames of audio latency for no bugs to show u
constexpr u32 frames_of_audio_latency = 3;
ds_sound_buffer.LatencySampleCount = frames_of_audio_latency * ( ds_sound_buffer.SamplesPerSecond / Engine_Refresh_Hz );
}
#if Build_Development
u32 debug_marker_index = 0;
DebugTimeMarker debug_markers[ Monitor_Refresh_Max_Supported ] {};
u32 debug_marker_history_size = Engine_Refresh_Hz / 2;
assert( debug_marker_history_size <= Monitor_Refresh_Max_Supported )
#endif
engine::InputState input {};
// There can be 4 of any of each input API type : KB & Mouse, XInput, JSL.
#if 0
using EngineKeyboardStates = engine::KeyboardState[ Max_Controllers ];
EngineKeyboardStates keyboard_states[2] {};
EngineKeyboardStates* old_keyboards = & keyboard_states[0];
EngineKeyboardStates* new_keyboards = & keyboard_states[1];
#endif
engine::KeyboardState keyboard_states[2] {};
engine::KeyboardState* old_keyboard = & keyboard_states[0];
engine::KeyboardState* new_keyboard = & keyboard_states[1];
// Important: Assuming keyboard always connected for now, and assigning to first controller.
using EngineXInputPadStates = engine::XInputPadState[ Max_Controllers ];
EngineXInputPadStates xpad_states[2] {};
EngineXInputPadStates* old_xpads = & xpad_states[0];
EngineXInputPadStates* new_xpads = & xpad_states[1];
using EngineDSPadStates = engine::DualsensePadState[Max_Controllers];
EngineDSPadStates ds_pad_states[2] {};
EngineDSPadStates* old_ds_pads = & ds_pad_states[0];
EngineDSPadStates* new_ds_pads = & ds_pad_states[1];
using JSL_DeviceHandle = int;
u32 jsl_num_devices = JslConnectDevices();
JSL_DeviceHandle jsl_device_handles[4] {};
{
xinput_load_library_bindings();
u32 jsl_getconnected_found = JslGetConnectedDeviceHandles( jsl_device_handles, jsl_num_devices );
{
if ( jsl_getconnected_found != jsl_num_devices )
{
OutputDebugStringA( "Error: JSLGetConnectedDeviceHandles didn't find as many as were stated with JslConnectDevices\n");
}
if ( jsl_num_devices > 0 )
{
OutputDebugStringA( "JSL Connected Devices:\n" );
for ( u32 jsl_device_index = 0; jsl_device_index < jsl_num_devices; ++ jsl_device_index )
{
JslSetLightColour( jsl_device_handles[ jsl_device_index ], (255 << 8) );
}
}
}
if ( jsl_num_devices > 4 )
{
jsl_num_devices = 4;
MessageBoxA( window_handle, "More than 4 JSL devices found, this engine will only support the first four found.", "Warning", MB_ICONEXCLAMATION );
}
}
u64 last_frame_clock = timing_get_wall_clock();
u64 last_frame_cycle = __rdtsc();
#if Build_Development
u64 startup_cycles = last_frame_cycle - launch_cycle;
f32 startup_ms = timing_get_ms_elapsed( launch_clock, last_frame_clock );
#endif
Running = true;
#if 0
// This tests the play & write cursor update frequency.
while ( Running )
{
DWORD play_cursor;
DWORD write_cursor;
ds_sound_buffer.SecondaryBuffer->GetCurrentPosition( & play_cursor, & write_cursor );
char text_buffer[256];
sprintf_s( text_buffer, sizeof(text_buffer), "PC:%u WC:%u\n", (u32)play_cursor, (u32)write_cursor );
OutputDebugStringA( text_buffer );
}
#endif
while( Running )
{
process_pending_window_messages( new_keyboard );
// TODO(Ed): Offload polling to these functions later.
// poll_xinput( & input, old_xpads, new_xpads );
// poll_jsl( & input, old_jsl_pads, new_jsl_pads );
// or
// poll_input();
// Input
// void poll_input();
{
// TODO(Ed) : Setup user definable deadzones for triggers and sticks.
// Swapping at the beginning of the input frame instead of the end.
swap( old_keyboard, new_keyboard );
swap( old_xpads, new_xpads );
swap( old_ds_pads, new_ds_pads );
// Keyboard Polling
// Keyboards are unified for now.
{
constexpr u32 is_down = 0x8000;
input_process_digital_btn( & old_keyboard->Q, & new_keyboard->Q, GetAsyncKeyState( 'Q' ), is_down );
input_process_digital_btn( & old_keyboard->E, & new_keyboard->E, GetAsyncKeyState( 'E' ), is_down );
input_process_digital_btn( & old_keyboard->W, & new_keyboard->W, GetAsyncKeyState( 'W' ), is_down );
input_process_digital_btn( & old_keyboard->A, & new_keyboard->A, GetAsyncKeyState( 'A' ), is_down );
input_process_digital_btn( & old_keyboard->S, & new_keyboard->S, GetAsyncKeyState( 'S' ), is_down );
input_process_digital_btn( & old_keyboard->D, & new_keyboard->D, GetAsyncKeyState( 'D' ), is_down );
input_process_digital_btn( & old_keyboard->Escape, & new_keyboard->Escape, GetAsyncKeyState( VK_ESCAPE ), is_down );
input_process_digital_btn( & old_keyboard->Backspace, & new_keyboard->Backspace, GetAsyncKeyState( VK_BACK ), is_down );
input_process_digital_btn( & old_keyboard->Up, & new_keyboard->Up, GetAsyncKeyState( VK_UP ), is_down );
input_process_digital_btn( & old_keyboard->Down, & new_keyboard->Down, GetAsyncKeyState( VK_DOWN ), is_down );
input_process_digital_btn( & old_keyboard->Left, & new_keyboard->Left, GetAsyncKeyState( VK_LEFT ), is_down );
input_process_digital_btn( & old_keyboard->Right, & new_keyboard->Right, GetAsyncKeyState( VK_RIGHT ), is_down );
input_process_digital_btn( & old_keyboard->Space, & new_keyboard->Space, GetAsyncKeyState( VK_SPACE ), is_down );
input.Controllers[0].Keyboard = new_keyboard;
}
// XInput Polling
// TODO(Ed) : Should we poll this more frequently?
for ( DWORD controller_index = 0; controller_index < Max_Controllers; ++ controller_index )
{
XINPUT_STATE controller_state;
b32 xinput_detected = xinput_get_state( controller_index, & controller_state ) == XI_PluggedIn;
if ( xinput_detected )
{
XINPUT_GAMEPAD* xpad = & controller_state.Gamepad;
engine::XInputPadState* old_xpad = old_xpads[ controller_index ];
engine::XInputPadState* new_xpad = new_xpads[ controller_index ];
input_process_digital_btn( & old_xpad->DPad.Up, & new_xpad->DPad.Up, xpad->wButtons, XINPUT_GAMEPAD_DPAD_UP );
input_process_digital_btn( & old_xpad->DPad.Down, & new_xpad->DPad.Down, xpad->wButtons, XINPUT_GAMEPAD_DPAD_DOWN );
input_process_digital_btn( & old_xpad->DPad.Left, & new_xpad->DPad.Left, xpad->wButtons, XINPUT_GAMEPAD_DPAD_LEFT );
input_process_digital_btn( & old_xpad->DPad.Right, & new_xpad->DPad.Right, xpad->wButtons, XINPUT_GAMEPAD_DPAD_RIGHT );
input_process_digital_btn( & old_xpad->Y, & new_xpad->Y, xpad->wButtons, XINPUT_GAMEPAD_Y );
input_process_digital_btn( & old_xpad->A, & new_xpad->A, xpad->wButtons, XINPUT_GAMEPAD_A );
input_process_digital_btn( & old_xpad->B, & new_xpad->B, xpad->wButtons, XINPUT_GAMEPAD_B );
input_process_digital_btn( & old_xpad->X, & new_xpad->X, xpad->wButtons, XINPUT_GAMEPAD_X );
input_process_digital_btn( & old_xpad->Back, & new_xpad->Back, xpad->wButtons, XINPUT_GAMEPAD_BACK );
input_process_digital_btn( & old_xpad->Start, & new_xpad->Start, xpad->wButtons, XINPUT_GAMEPAD_START );
input_process_digital_btn( & old_xpad->LeftShoulder, & new_xpad->LeftShoulder, xpad->wButtons, XINPUT_GAMEPAD_LEFT_SHOULDER );
input_process_digital_btn( & old_xpad->RightShoulder, & new_xpad->RightShoulder, xpad->wButtons, XINPUT_GAMEPAD_RIGHT_SHOULDER );
new_xpad->Stick.Left.X.Start = old_xpad->Stick.Left.X.End;
new_xpad->Stick.Left.Y.Start = old_xpad->Stick.Left.Y.End;
f32 left_x = xinput_process_axis_value( xpad->sThumbLX, XINPUT_GAMEPAD_LEFT_THUMB_DEADZONE );
f32 left_y = xinput_process_axis_value( xpad->sThumbLY, XINPUT_GAMEPAD_LEFT_THUMB_DEADZONE );
// TODO(Ed) : Min/Max macros!!!
new_xpad->Stick.Left.X.Min = new_xpad->Stick.Left.X.Max = new_xpad->Stick.Left.X.End = left_x;
new_xpad->Stick.Left.Y.Min = new_xpad->Stick.Left.Y.Max = new_xpad->Stick.Left.Y.End = left_y;
// TODO(Ed): Make this actually an average for later
new_xpad->Stick.Left.X.Average = left_x;
new_xpad->Stick.Left.Y.Average = left_y;
input.Controllers[ controller_index ].XPad = new_xpad;
}
else
{
input.Controllers[ controller_index ].XPad = nullptr;
}
}
// JSL Input Polling
for ( u32 jsl_device_index = 0; jsl_device_index < jsl_num_devices; ++ jsl_device_index )
{
if ( ! JslStillConnected( jsl_device_handles[ jsl_device_index ] ) )
{
OutputDebugStringA( "Error: JSLStillConnected returned false\n" );
continue;
}
// TODO : Won't support more than 4 for now... (or prob ever)
if ( jsl_device_index > 4 )
break;
JOY_SHOCK_STATE state = JslGetSimpleState( jsl_device_handles[ jsl_device_index ] );
// For now we're assuming anything that is detected via JSL is a dualsense pad.
// We'll eventually add support possibly for the nintendo pro controller.
engine::DualsensePadState* old_ds_pad = old_ds_pads[ jsl_device_index ];
engine::DualsensePadState* new_ds_pad = new_ds_pads[ jsl_device_index ];
input_process_digital_btn( & old_ds_pad->DPad.Up, & new_ds_pad->DPad.Up, state.buttons, JSMASK_UP );
input_process_digital_btn( & old_ds_pad->DPad.Down, & new_ds_pad->DPad.Down, state.buttons, JSMASK_DOWN );
input_process_digital_btn( & old_ds_pad->DPad.Left, & new_ds_pad->DPad.Left, state.buttons, JSMASK_LEFT );
input_process_digital_btn( & old_ds_pad->DPad.Right, & new_ds_pad->DPad.Right, state.buttons, JSMASK_RIGHT );
input_process_digital_btn( & old_ds_pad->Triangle, & new_ds_pad->Triangle, state.buttons, JSMASK_N );
input_process_digital_btn( & old_ds_pad->X, & new_ds_pad->X, state.buttons, JSMASK_S );
input_process_digital_btn( & old_ds_pad->Square, & new_ds_pad->Square, state.buttons, JSMASK_W );
input_process_digital_btn( & old_ds_pad->Circle, & new_ds_pad->Circle, state.buttons, JSMASK_E );
input_process_digital_btn( & old_ds_pad->Share, & new_ds_pad->Share, state.buttons, JSMASK_SHARE );
input_process_digital_btn( & old_ds_pad->Options, & new_ds_pad->Options, state.buttons, JSMASK_OPTIONS );
input_process_digital_btn( & old_ds_pad->L1, & new_ds_pad->L1, state.buttons, JSMASK_L );
input_process_digital_btn( & old_ds_pad->R1, & new_ds_pad->R1, state.buttons, JSMASK_R );
new_ds_pad->Stick.Left.X.Start = old_ds_pad->Stick.Left.X.End;
new_ds_pad->Stick.Left.Y.Start = old_ds_pad->Stick.Left.Y.End;
// Joyshock abstracts the sticks to a float value already for us of -1.f to 1.f.
// We'll assume a deadzone of 10% for now.
f32 left_x = input_process_axis_value( state.stickLX, 0.1f );
f32 left_y = input_process_axis_value( state.stickLY, 0.1f );
new_ds_pad->Stick.Left.X.Min = new_ds_pad->Stick.Left.X.Max = new_ds_pad->Stick.Left.X.End = left_x;
new_ds_pad->Stick.Left.Y.Min = new_ds_pad->Stick.Left.Y.Max = new_ds_pad->Stick.Left.Y.End = left_y;
// TODO(Ed): Make this actually an average for later
new_ds_pad->Stick.Left.X.Average = left_x;
new_ds_pad->Stick.Left.Y.Average = left_y;
input.Controllers[ jsl_device_index ].DSPad = new_ds_pad;
}
}
// Pain...
// DWORD ds_play_cursor;
// DWORD ds_write_cursor;
DWORD byte_to_lock = 0;
DWORD bytes_to_write = 0;
DWORD target_cursor = 0;
// if ( SUCCEEDED( ds_sound_buffer.SecondaryBuffer->GetCurrentPosition( & ds_play_cursor, & ds_write_cursor ) ))
if ( sound_is_valid )
{
byte_to_lock = (ds_sound_buffer.RunningSampleIndex * ds_sound_buffer.BytesPerSample) % ds_sound_buffer.SecondaryBufferSize;
target_cursor = (last_play_cursor + (ds_sound_buffer.LatencySampleCount * ds_sound_buffer.BytesPerSample)) % ds_sound_buffer.SecondaryBufferSize;
if ( byte_to_lock > target_cursor)
{
// Infront of play cursor |--play--byte_to_write-->--|
bytes_to_write = ds_sound_buffer.SecondaryBufferSize - byte_to_lock;
bytes_to_write += target_cursor;
}
else
{
// Behind play cursor |--byte_to_write-->--play--|
bytes_to_write = target_cursor - byte_to_lock;
}
// sound_is_valid = true;
}
// s16 samples[ 48000 * 2 ];
engine::SoundBuffer sound_buffer {};
sound_buffer.NumSamples = bytes_to_write / ds_sound_buffer.BytesPerSample;
sound_buffer.RunningSampleIndex = ds_sound_buffer.RunningSampleIndex;
sound_buffer.SamplesPerSecond = ds_sound_buffer.SamplesPerSecond;
sound_buffer.Samples = ds_sound_buffer.Samples;
engine::update_and_render( & input, rcast(engine::OffscreenBuffer*, & Surface_Back_Buffer.Memory), & sound_buffer, & engine_memory );
// Update audio buffer
do {
DWORD ds_status = 0;
if ( SUCCEEDED( ds_sound_buffer.SecondaryBuffer->GetStatus( & ds_status ) ) )
{
ds_sound_buffer.IsPlaying = ds_status & DSBSTATUS_PLAYING;
}
if ( ! sound_is_valid )
break;
ds_fill_sound_buffer( & ds_sound_buffer, byte_to_lock, bytes_to_write );
#if Build_Development && 0
DWORD play_cursor;
DWORD write_cursor;
ds_sound_buffer.SecondaryBuffer->GetCurrentPosition( & play_cursor, & write_cursor );
char text_buffer[256];
sprintf_s( text_buffer, sizeof(text_buffer), "LPC:%u BTL:%u TC:%u BTW:%u - PC:%u WC:%u\n"
, (u32)last_play_cursor, (u32)byte_to_lock, (u32)target_cursor, (u32)bytes_to_write, (u32)play_cursor, (u32)write_cursor );
OutputDebugStringA( text_buffer );
#endif
if ( ds_sound_buffer.IsPlaying )
break;
ds_sound_buffer.SecondaryBuffer->Play( 0, 0, DSBPLAY_LOOPING );
} while(0);
u64 work_frame_end_cycle = __rdtsc();
u64 work_frame_end_clock = timing_get_wall_clock();
f32 work_frame_ms = timing_get_ms_elapsed( last_frame_clock, work_frame_end_clock ); // WorkSecondsElapsed
f32 work_cycles = timing_get_ms_elapsed( last_frame_cycle, work_frame_end_cycle );
f32 frame_elapsed_ms = work_frame_ms; // SecondsElapsedForFrame
if ( frame_elapsed_ms < Engine_Frame_Target_MS )
{
s32 sleep_ms = scast(DWORD, (Engine_Frame_Target_MS - frame_elapsed_ms)) - 1;
if ( sleep_ms > 0 && ! sub_ms_granularity_required && sleep_is_granular )
{
Sleep( scast(DWORD, sleep_ms) );
}
u64 frame_clock = timing_get_wall_clock();
frame_elapsed_ms = timing_get_ms_elapsed( last_frame_clock, frame_clock );
if ( frame_elapsed_ms < Engine_Frame_Target_MS )
{
// TODO(Ed) : Log ms discrepancy here.
}
assert( frame_elapsed_ms < Engine_Frame_Target_MS );
while ( frame_elapsed_ms < Engine_Frame_Target_MS )
{
frame_clock = timing_get_wall_clock();
frame_elapsed_ms = timing_get_ms_elapsed( last_frame_clock, frame_clock );
}
}
else
{
// TODO(Ed) : Missed the display sync window!
}
last_frame_clock = timing_get_wall_clock(); // LastCouner
last_frame_cycle = __rdtsc();
// Update surface back buffer
{
WinDimensions dimensions = get_window_dimensions( window_handle );
HDC device_context = GetDC( window_handle );
#if Build_Development
debug_sync_display( & ds_sound_buffer, debug_marker_history_size, debug_markers, Engine_Frame_Target_MS );
#endif
display_buffer_in_window( device_context, dimensions.Width, dimensions.Height, &Surface_Back_Buffer
, 0, 0
, dimensions.Width, dimensions.Height );
}
{
DWORD play_cursor = 0;
DWORD write_cursor = 0;
if ( SUCCEEDED( ds_sound_buffer.SecondaryBuffer->GetCurrentPosition( & play_cursor, & write_cursor ) ) )
{
last_play_cursor = play_cursor;
if ( ! sound_is_valid )
{
ds_sound_buffer.RunningSampleIndex = write_cursor / ds_sound_buffer.BytesPerSample;
sound_is_valid = true;
}
}
else
{
sound_is_valid = false;
}
#if Build_Development
assert( debug_marker_index < debug_marker_history_size )
debug_markers[debug_marker_index] = { play_cursor, write_cursor };
debug_marker_index++;
if ( debug_marker_index >= debug_marker_history_size )
debug_marker_index = 0;
#endif
}
}
engine::shutdown();
if ( jsl_num_devices > 0 )
{
for ( u32 jsl_device_index = 0; jsl_device_index < jsl_num_devices; ++ jsl_device_index )
{
JslSetLightColour( jsl_device_handles[ jsl_device_index ], 0 );
}
}
return 0;
}