#pragma once #include "JoyShockLibrary.h" #include #include "hidapi.h" #include #include #include #include #include "tools.cpp" #include #ifdef __GNUC__ #define _wcsdup wcsdup #endif enum ControllerType { n_switch, s_ds4, s_ds }; // PS5 stuff #define DS_VENDOR 0x054C #define DS_USB 0x0CE6 #define DS_USB_V2 0x0DF2 // DualSense Edge // PS4 stuff // http://www.psdevwiki.com/ps4/DS4-USB // http://www.psdevwiki.com/ps4/DS4-BT // http://eleccelerator.com/wiki/index.php?title=DualShock_4 // and a little bit of https://github.com/chrippa/ds4drv #define DS4_VENDOR 0x054C #define DS4_USB 0x05C4 #define DS4_USB_V2 0x09CC #define DS4_USB_DONGLE 0x0BA0 #define DS4_BT 0x081F // DS4 compatible controllers #define BROOK_DS4_VENDOR 0x0C12 #define BROOK_DS4_USB 0x0E20 // Joycon and Pro conroller stuff is mostly from // https://github.com/mfosse/JoyCon-Driver // https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering/ #define JOYCON_VENDOR 0x057e #define JOYCON_L_BT 0x2006 #define JOYCON_R_BT 0x2007 #define PRO_CONTROLLER 0x2009 #define JOYCON_CHARGING_GRIP 0x200e #define L_OR_R(lr) (lr == 1 ? 'L' : (lr == 2 ? 'R' : '?')) class JoyShock { public: hid_device * handle; int intHandle = 0; std::string path; wchar_t *serial; std::string name; int deviceNumber = 0;// left(0) or right(1) vjoy int left_right = 0;// 1: left joycon, 2: right joycon, 3: pro controller std::chrono::steady_clock::time_point last_polled; float delta_time = 1.0; JOY_SHOCK_STATE simple_state = {}; JOY_SHOCK_STATE last_simple_state = {}; IMU_STATE imu_state = {}; IMU_STATE last_imu_state = {}; TOUCH_STATE touch_state = {}; TOUCH_STATE last_touch_state = {}; GamepadMotion motion; float cumulative_gyro_x = 0.f; float cumulative_gyro_y = 0.f; float cumulative_gyro_z = 0.f; int num_cumulative_gyro_samples = 0; int gyroSpace = 0; std::mutex modifying_lock; int8_t dstick; uint8_t battery; int global_count = 0; // calibration data: struct brcm_hdr { uint8_t cmd; uint8_t rumble[9]; }; struct brcm_cmd_01 { uint8_t subcmd; uint32_t offset; uint8_t size; }; int timing_byte = 0x0; float acc_cal_coeff[3] = {0.0f, 0.0f, 0.0f}; float gyro_cal_coeff[3] = {0.0f, 0.0f, 0.0f}; float cal_x[1] = { 0.0f }; float cal_y[1] = { 0.0f }; bool initialised = false; bool has_user_cal_stick_l = false; bool has_user_cal_stick_r = false; bool has_user_cal_sensor = false; ControllerType controller_type = ControllerType::n_switch; bool is_usb = false; unsigned char small_rumble = 0; unsigned char big_rumble = 0; unsigned char led_r = 0; unsigned char led_g = 0; unsigned char led_b = 0; unsigned int body_colour = 0xFFFFFF; unsigned int button_colour = 0xFFFFFF; unsigned int left_grip_colour = 0xFFFFFF; unsigned int right_grip_colour = 0xFFFFFF; int player_number = 0; int reuse_counter = 0; bool cancel_thread = false; bool delete_on_finish = false; bool remove_on_finish = true; std::thread* thread = nullptr; // for calibration: bool use_continuous_calibration = false; bool cue_motion_reset = false; unsigned char factory_stick_cal[0x12]; unsigned char device_colours[0xC]; unsigned char user_stick_cal[0x16]; unsigned char sensor_model[0x6]; unsigned char stick_model[0x24]; unsigned char factory_sensor_cal[0x18]; unsigned char user_sensor_cal[0x1A]; uint16_t factory_sensor_cal_calm[0xC]; uint16_t user_sensor_cal_calm[0xC]; int16_t sensor_cal[0x2][0x3]; uint16_t stick_cal_x_l[0x3]; uint16_t stick_cal_y_l[0x3]; uint16_t stick_cal_x_r[0x3]; uint16_t stick_cal_y_r[0x3]; uint32_t crc_table[256] = { 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D }; //// https://docs.microsoft.com/en-us/openspecs/office_protocols/ms-abs/06966aa2-70da-4bf9-8448-3355f277cd77 uint32_t crc_32(unsigned char* buf, int length) { uint32_t result = 0xFFFFFFFF; int index = 0; while (index < length) { result = crc_table[(result & 0xFF) ^ buf[index]] ^ (result >> 8); index++; } return result ^ 0xFFFFFFFF; } void enable_gyro_ds4_bt(unsigned char *buf, int bufLength) { // gyro is enabled by getting feature report 0x05 on BT controllers. // in addition, this request is also responsible for getting current calibration info. buf[0] = 0x05; // controller calibration request for BT hid_get_feature_report(handle, buf, 41); //hid_write(handle, buf, 38); //hid_read_timeout(handle, buf, bufLength, 100); } public: void init(struct hid_device_info *dev, hid_device* inHandle, int uniqueHandle, const std::string &inPath) { this->path = inPath; if (dev->product_id == JOYCON_CHARGING_GRIP) { if (dev->interface_number == 0 || dev->interface_number == -1) { this->name = std::string("Joy-Con (R)"); this->left_right = 2;// right joycon this->is_usb = true; } else if (dev->interface_number == 1) { this->name = std::string("Joy-Con (L)"); this->left_right = 1;// left joycon this->is_usb = true; } } if (dev->product_id == JOYCON_L_BT) { this->name = std::string("Joy-Con (L)"); this->left_right = 1;// left joycon } else if (dev->product_id == JOYCON_R_BT) { this->name = std::string("Joy-Con (R)"); this->left_right = 2;// right joycon } else if (dev->product_id == PRO_CONTROLLER) { this->name = std::string("Pro Controller"); this->left_right = 3;// left joycon } if (dev->product_id == DS4_BT || dev->product_id == DS4_USB || dev->product_id == DS4_USB_DONGLE || dev->product_id == DS4_USB_V2) { this->name = std::string("DualShock 4"); this->left_right = 3; // left and right? this->controller_type = ControllerType::s_ds4; this->is_usb = (dev->product_id != DS4_BT); } if (dev->product_id == BROOK_DS4_USB) { this->name = std::string("DualShock 4"); this->left_right = 3; // left and right? this->controller_type = ControllerType::s_ds4; this->is_usb = true; // this controller is wired } if (dev->product_id == DS_USB || dev->product_id == DS_USB_V2) { this->name = std::string("DualSense"); this->left_right = 3; // left and right? this->controller_type = ControllerType::s_ds; this->is_usb = true; // for now, only usb } this->serial = _wcsdup(dev->serial_number); this->intHandle = uniqueHandle; //printf("Found device %c: %ls %s\n", L_OR_R(this->left_right), this->serial, dev->path); this->handle = inHandle; if (this->controller_type == ControllerType::s_ds4) { unsigned char buf[64]; memset(buf, 0, 64); enable_gyro_ds4_bt(buf, 64); hid_read_timeout(handle, buf, 64, 100); // choose between BT and USB if (buf[0] == 0x11) { this->is_usb = false; } } else if (this->controller_type == ControllerType::s_ds) { unsigned char buf[64]; memset(buf, 0, 64); // We can reuse the same command on the DS5 to enable Full Mode. enable_gyro_ds4_bt(buf, 64); hid_read_timeout(handle, buf, 64, 100); // The DS's protocol is literally so similar to the DS4 that we can reuse the same reports to get the same results. // Meet the new boss - the same as the old boss. if (buf[0] == 0x31) { this->is_usb = false; } } } JoyShock(struct hid_device_info* dev, hid_device* inHandle, int uniqueHandle, const std::string& inPath) { init(dev, inHandle, uniqueHandle, inPath); // initialise continuous calibration windows reset_continuous_calibration(); } ~JoyShock() { if (handle != nullptr) { hid_close(handle); } } void push_cumulative_gyro(float gyroX, float gyroY, float gyroZ) { modifying_lock.lock(); if (num_cumulative_gyro_samples == 0) { cumulative_gyro_x = 0.f; cumulative_gyro_y = 0.f; cumulative_gyro_z = 0.f; } cumulative_gyro_x += gyroX; cumulative_gyro_y += gyroY; cumulative_gyro_z += gyroZ; num_cumulative_gyro_samples++; modifying_lock.unlock(); } void get_and_flush_cumulative_gyro(float& gyroX, float& gyroY, float& gyroZ) { modifying_lock.lock(); if (num_cumulative_gyro_samples == 0) { gyroX = cumulative_gyro_x; gyroX = cumulative_gyro_y; gyroX = cumulative_gyro_z; } else { gyroX = cumulative_gyro_x / num_cumulative_gyro_samples; gyroY = cumulative_gyro_y / num_cumulative_gyro_samples; gyroZ = cumulative_gyro_z / num_cumulative_gyro_samples; num_cumulative_gyro_samples = 0; // so that we don't return zeroes before we receive a new sample, store this for next time: cumulative_gyro_x = gyroX; cumulative_gyro_y = gyroY; cumulative_gyro_z = gyroZ; } float gravX, gravY, gravZ; motion.GetGravity(gravX, gravY, gravZ); modifying_lock.unlock(); switch (gyroSpace) { default: case 0: break; case 1: GamepadMotion::CalculateWorldSpaceGyro(gyroX, gyroY, gyroX, gyroY, gyroZ, gravX, gravY, gravZ); gyroZ = 0.f; break; case 2: GamepadMotion::CalculatePlayerSpaceGyro(gyroX, gyroY, gyroX, gyroY, gyroZ, gravX, gravY, gravZ); gyroZ = 0.f; break; } } void reset_continuous_calibration() { modifying_lock.lock(); motion.ResetContinuousCalibration(); modifying_lock.unlock(); } void push_sensor_samples(float gyroX, float gyroY, float gyroZ, float accelX, float accelY, float accelZ, float deltaTime) { motion.ProcessMotion(gyroX, gyroY, gyroZ, accelX, accelY, accelZ, deltaTime); } void get_calibrated_gyro(float& gyroX, float& gyroY, float& gyroZ) { motion.GetCalibratedGyro(gyroX, gyroY, gyroZ); } MOTION_STATE get_motion_state() { MOTION_STATE motionState = MOTION_STATE(); modifying_lock.lock(); motion.GetProcessedAcceleration(motionState.accelX, motionState.accelY, motionState.accelZ); motion.GetOrientation(motionState.quatW, motionState.quatX, motionState.quatY, motionState.quatZ); motion.GetGravity(motionState.gravX, motionState.gravY, motionState.gravZ); modifying_lock.unlock(); return motionState; } IMU_STATE get_transformed_imu_state(IMU_STATE& imu_state) { float gyroX, gyroY, gyroZ, gravX, gravY, gravZ; modifying_lock.lock(); motion.GetGravity(gravX, gravY, gravZ); gyroX = imu_state.gyroX; gyroY = imu_state.gyroY; gyroZ = imu_state.gyroZ; modifying_lock.unlock(); switch (gyroSpace) { default: case 0: break; case 1: GamepadMotion::CalculateWorldSpaceGyro(gyroX, gyroY, gyroX, gyroY, gyroZ, gravX, gravY, gravZ); gyroZ = 0.f; break; case 2: GamepadMotion::CalculatePlayerSpaceGyro(gyroX, gyroY, gyroX, gyroY, gyroZ, gravX, gravY, gravZ); gyroZ = 0.f; break; } IMU_STATE transformedState = IMU_STATE(); transformedState.accelX = imu_state.accelX; transformedState.accelY = imu_state.accelY; transformedState.accelZ = imu_state.accelZ; transformedState.gyroX = gyroX; transformedState.gyroY = gyroY; transformedState.gyroZ = gyroZ; return transformedState; } bool hid_exchange(hid_device *handle, unsigned char *buf, int len) { if (!handle) return false; int res; res = hid_write(handle, buf, len); res = hid_read_timeout(handle, buf, 0x40, 1000); if (res == 0) { return false; } return true; } bool send_command(int command, uint8_t *data, int len) { unsigned char buf[0x40]; memset(buf, 0, 0x40); if (is_usb) { buf[0x00] = 0x80; buf[0x01] = 0x92; buf[0x03] = 0x31; } buf[is_usb ? 0x8 : 0x0] = command; if (data != nullptr && len != 0) { memcpy(buf + (is_usb ? 0x9 : 0x1), data, len); } if (!hid_exchange(this->handle, buf, len + (is_usb ? 0x9 : 0x1))) { return false; } if (data) { memcpy(data, buf, 0x40); } return true; } bool send_subcommand(int command, int subcommand, uint8_t *data, int len) { unsigned char buf[0x40]; memset(buf, 0, 0x40); uint8_t rumble_base[9] = { std::uint8_t((++global_count) & 0xF), 0x00, 0x01, 0x40, 0x40, 0x00, 0x01, 0x40, 0x40 }; memcpy(buf, rumble_base, 9); if (global_count > 0xF) { global_count = 0x0; } // set neutral rumble base only if the command is vibrate (0x01) // if set when other commands are set, might cause the command to be misread and not executed //if (subcommand == 0x01) { // uint8_t rumble_base[9] = { (++global_count) & 0xF, 0x00, 0x01, 0x40, 0x40, 0x00, 0x01, 0x40, 0x40 }; // memcpy(buf + 10, rumble_base, 9); //} buf[9] = subcommand; if (data && len != 0) { memcpy(buf + 10, data, len); } if (!send_command(command, buf, 10 + len)) { return false; } if (data) { memcpy(data, buf, 0x40); //TODO } return true; } void rumble(int frequency, int intensity) { unsigned char buf[0x400]; memset(buf, 0, 0x40); // intensity: (0, 8) // frequency: (0, 255) // X AA BB Y CC DD //[0 1 x40 x40 0 1 x40 x40] is neutral. //for (int j = 0; j <= 8; j++) { // buf[1 + intensity] = 0x1;//(i + j) & 0xFF; //} buf[1 + 0 + intensity] = 0x1; buf[1 + 4 + intensity] = 0x1; // Set frequency to increase if (this->left_right == 1) { buf[1 + 0] = frequency;// (0, 255) } else { buf[1 + 4] = frequency;// (0, 255) } // set non-blocking: hid_set_nonblocking(this->handle, 1); send_command(0x10, (uint8_t*)buf, 0x9); } bool get_switch_controller_info() { bool result = false; memset(factory_stick_cal, 0, 0x12); memset(device_colours, 0, 0xC); memset(user_stick_cal, 0, 0x16); memset(sensor_model, 0, 0x6); memset(stick_model, 0, 0x12); memset(factory_sensor_cal, 0, 0x18); memset(user_sensor_cal, 0, 0x1A); memset(factory_sensor_cal_calm, 0, 0xC); memset(user_sensor_cal_calm, 0, 0xC); memset(sensor_cal, 0, sizeof(sensor_cal)); memset(stick_cal_x_l, 0, sizeof(stick_cal_x_l)); memset(stick_cal_y_l, 0, sizeof(stick_cal_y_l)); memset(stick_cal_x_r, 0, sizeof(stick_cal_x_r)); memset(stick_cal_y_r, 0, sizeof(stick_cal_y_r)); if (!get_spi_data(0x6020, 0x18, factory_sensor_cal)) { return false; } if (!get_spi_data(0x603D, 0x12, factory_stick_cal)) { return false; } if (!get_spi_data(0x6050, 0xC, device_colours)) { return false; } if (!get_spi_data(0x6080, 0x6, sensor_model)) { return false; } if (!get_spi_data(0x6086, 0x12, stick_model)) { return false; } if (!get_spi_data(0x6098, 0x12, &stick_model[0x12])) { return false; } if (!get_spi_data(0x8010, 0x16, user_stick_cal)) { return false; } if (!get_spi_data(0x8026, 0x1A, user_sensor_cal)) { return false; } // get stick calibration data: // factory calibration: if (this->left_right == 1 || this->left_right == 3) { stick_cal_x_l[1] = (factory_stick_cal[4] << 8) & 0xF00 | factory_stick_cal[3]; stick_cal_y_l[1] = (factory_stick_cal[5] << 4) | (factory_stick_cal[4] >> 4); stick_cal_x_l[0] = stick_cal_x_l[1] - ((factory_stick_cal[7] << 8) & 0xF00 | factory_stick_cal[6]); stick_cal_y_l[0] = stick_cal_y_l[1] - ((factory_stick_cal[8] << 4) | (factory_stick_cal[7] >> 4)); stick_cal_x_l[2] = stick_cal_x_l[1] + ((factory_stick_cal[1] << 8) & 0xF00 | factory_stick_cal[0]); stick_cal_y_l[2] = stick_cal_y_l[1] + ((factory_stick_cal[2] << 4) | (factory_stick_cal[2] >> 4)); } if (this->left_right == 2 || this->left_right == 3) { stick_cal_x_r[1] = (factory_stick_cal[10] << 8) & 0xF00 | factory_stick_cal[9]; stick_cal_y_r[1] = (factory_stick_cal[11] << 4) | (factory_stick_cal[10] >> 4); stick_cal_x_r[0] = stick_cal_x_r[1] - ((factory_stick_cal[13] << 8) & 0xF00 | factory_stick_cal[12]); stick_cal_y_r[0] = stick_cal_y_r[1] - ((factory_stick_cal[14] << 4) | (factory_stick_cal[13] >> 4)); stick_cal_x_r[2] = stick_cal_x_r[1] + ((factory_stick_cal[16] << 8) & 0xF00 | factory_stick_cal[15]); stick_cal_y_r[2] = stick_cal_y_r[1] + ((factory_stick_cal[17] << 4) | (factory_stick_cal[16] >> 4)); } // if there is user calibration data: if ((user_stick_cal[0] | user_stick_cal[1] << 8) == 0xA1B2) { stick_cal_x_l[1] = (user_stick_cal[6] << 8) & 0xF00 | user_stick_cal[5]; stick_cal_y_l[1] = (user_stick_cal[7] << 4) | (user_stick_cal[6] >> 4); stick_cal_x_l[0] = stick_cal_x_l[1] - ((user_stick_cal[9] << 8) & 0xF00 | user_stick_cal[8]); stick_cal_y_l[0] = stick_cal_y_l[1] - ((user_stick_cal[10] << 4) | (user_stick_cal[9] >> 4)); stick_cal_x_l[2] = stick_cal_x_l[1] + ((user_stick_cal[3] << 8) & 0xF00 | user_stick_cal[2]); stick_cal_y_l[2] = stick_cal_y_l[1] + ((user_stick_cal[4] << 4) | (user_stick_cal[3] >> 4)); //FormJoy::myform1->textBox_lstick_ucal->Text = String::Format(L"L Stick User:\r\nCenter X,Y: ({0:X3}, {1:X3})\r\nX: [{2:X3} - {4:X3}] Y: [{3:X3} - {5:X3}]", //stick_cal_x_l[1], stick_cal_y_l[1], stick_cal_x_l[0], stick_cal_y_l[0], stick_cal_x_l[2], stick_cal_y_l[2]); } else { //FormJoy::myform1->textBox_lstick_ucal->Text = L"L Stick User:\r\nNo calibration"; //printf("no user Calibration data for left stick.\n"); } if ((user_stick_cal[0xB] | user_stick_cal[0xC] << 8) == 0xA1B2) { stick_cal_x_r[1] = (user_stick_cal[14] << 8) & 0xF00 | user_stick_cal[13]; stick_cal_y_r[1] = (user_stick_cal[15] << 4) | (user_stick_cal[14] >> 4); stick_cal_x_r[0] = stick_cal_x_r[1] - ((user_stick_cal[17] << 8) & 0xF00 | user_stick_cal[16]); stick_cal_y_r[0] = stick_cal_y_r[1] - ((user_stick_cal[18] << 4) | (user_stick_cal[17] >> 4)); stick_cal_x_r[2] = stick_cal_x_r[1] + ((user_stick_cal[20] << 8) & 0xF00 | user_stick_cal[19]); stick_cal_y_r[2] = stick_cal_y_r[1] + ((user_stick_cal[21] << 4) | (user_stick_cal[20] >> 4)); //FormJoy::myform1->textBox_rstick_ucal->Text = String::Format(L"R Stick User:\r\nCenter X,Y: ({0:X3}, {1:X3})\r\nX: [{2:X3} - {4:X3}] Y: [{3:X3} - {5:X3}]", //stick_cal_x_r[1], stick_cal_y_r[1], stick_cal_x_r[0], stick_cal_y_r[0], stick_cal_x_r[2], stick_cal_y_r[2]); } else { //FormJoy::myform1->textBox_rstick_ucal->Text = L"R Stick User:\r\nNo calibration"; //printf("no user Calibration data for right stick.\n"); } // get gyro / accelerometer calibration data: // factory calibration: // Acc cal origin position sensor_cal[0][0] = uint16_to_int16(factory_sensor_cal[0] | factory_sensor_cal[1] << 8); sensor_cal[0][1] = uint16_to_int16(factory_sensor_cal[2] | factory_sensor_cal[3] << 8); sensor_cal[0][2] = uint16_to_int16(factory_sensor_cal[4] | factory_sensor_cal[5] << 8); // Gyro cal origin position sensor_cal[1][0] = uint16_to_int16(factory_sensor_cal[0xC] | factory_sensor_cal[0xD] << 8); sensor_cal[1][1] = uint16_to_int16(factory_sensor_cal[0xE] | factory_sensor_cal[0xF] << 8); sensor_cal[1][2] = uint16_to_int16(factory_sensor_cal[0x10] | factory_sensor_cal[0x11] << 8); //hex_dump(user_sensor_cal, 0x14); // user calibration: if ((user_sensor_cal[0x0] | user_sensor_cal[0x1] << 8) == 0xA1B2) { //printf("User calibration available\n"); //if (true) { //FormJoy::myform1->textBox_6axis_ucal->Text = L"6-Axis User (XYZ):\r\nAcc: "; //for (int i = 0; i < 0xC; i = i + 6) { // FormJoy::myform1->textBox_6axis_ucal->Text += String::Format(L"{0:X4} {1:X4} {2:X4}\r\n ", // user_sensor_cal[i + 2] | user_sensor_cal[i + 3] << 8, // user_sensor_cal[i + 4] | user_sensor_cal[i + 5] << 8, // user_sensor_cal[i + 6] | user_sensor_cal[i + 7] << 8); //} // Acc cal origin position sensor_cal[0][0] = uint16_to_int16(user_sensor_cal[2] | user_sensor_cal[3] << 8); sensor_cal[0][1] = uint16_to_int16(user_sensor_cal[4] | user_sensor_cal[5] << 8); sensor_cal[0][2] = uint16_to_int16(user_sensor_cal[6] | user_sensor_cal[7] << 8); //FormJoy::myform1->textBox_6axis_ucal->Text += L"\r\nGyro: "; //for (int i = 0xC; i < 0x18; i = i + 6) { // FormJoy::myform1->textBox_6axis_ucal->Text += String::Format(L"{0:X4} {1:X4} {2:X4}\r\n ", // user_sensor_cal[i + 2] | user_sensor_cal[i + 3] << 8, // user_sensor_cal[i + 4] | user_sensor_cal[i + 5] << 8, // user_sensor_cal[i + 6] | user_sensor_cal[i + 7] << 8); //} // Gyro cal origin position sensor_cal[1][0] = uint16_to_int16(user_sensor_cal[0xE] | user_sensor_cal[0xF] << 8); sensor_cal[1][1] = uint16_to_int16(user_sensor_cal[0x10] | user_sensor_cal[0x11] << 8); sensor_cal[1][2] = uint16_to_int16(user_sensor_cal[0x12] | user_sensor_cal[0x13] << 8); } else { //FormJoy::myform1->textBox_6axis_ucal->Text = L"\r\n\r\nUser:\r\nNo calibration"; } // Internal scaling and unit conversions as per https://github.com/dekuNukem/Nintendo_Switch_Reverse_Engineering/blob/master/imu_sensor_notes.md // Use SPI calibration and convert them to Gs acc_cal_coeff[0] = (float)(1.0 / (float)(16384 - uint16_to_int16(sensor_cal[0][0]))) * 4.0f; acc_cal_coeff[1] = (float)(1.0 / (float)(16384 - uint16_to_int16(sensor_cal[0][1]))) * 4.0f; acc_cal_coeff[2] = (float)(1.0 / (float)(16384 - uint16_to_int16(sensor_cal[0][2]))) * 4.0f; // Use SPI calibration and convert them to degrees per second gyro_cal_coeff[0] = (float)(936.0 / (float)(13371 - uint16_to_int16(sensor_cal[1][0]))); gyro_cal_coeff[1] = (float)(936.0 / (float)(13371 - uint16_to_int16(sensor_cal[1][1]))); gyro_cal_coeff[2] = (float)(936.0 / (float)(13371 - uint16_to_int16(sensor_cal[1][2]))); // Device colours body_colour = (((int)device_colours[0]) << 16) + (((int)device_colours[1]) << 8) + (((int)device_colours[2])); button_colour = (((int)device_colours[3]) << 16) + (((int)device_colours[4]) << 8) + (((int)device_colours[5])); left_grip_colour = (((int)device_colours[6]) << 16) + (((int)device_colours[7]) << 8) + (((int)device_colours[8])); right_grip_colour = (((int)device_colours[9]) << 16) + (((int)device_colours[10]) << 8) + (((int)device_colours[11])); printf("Body: %#08x; Buttons: %#08x; Left Grip: %#08x; Right Grip: %#08x;\n", body_colour, button_colour, left_grip_colour, right_grip_colour); //hex_dump(reinterpret_cast(sensor_cal[0]), 6); //hex_dump(reinterpret_cast(sensor_cal[1]), 6); return true; } void enable_IMU(unsigned char *buf, int bufLength) { memset(buf, 0, bufLength); // Enable IMU data printf("Enabling IMU data...\n"); if (controller_type == ControllerType::s_ds4) { if (is_usb) { init_ds4_bt(); enable_gyro_ds4_bt(buf, bufLength); } else { init_ds4_usb(); } } else { buf[0] = 0x01; // Enabled send_subcommand(0x1, 0x40, buf, 1); } } bool init_usb() { unsigned char buf[0x400]; memset(buf, 0, 0x400); // set blocking: // this insures we get the MAC Address hid_set_nonblocking(this->handle, 0); //Get MAC Left printf("Getting MAC...\n"); memset(buf, 0x00, 0x40); buf[0] = 0x80; buf[1] = 0x01; hid_exchange(this->handle, buf, 0x2); //if (buf[2] == 0x3) { // printf("%s disconnected!\n", this->name.c_str()); //} //else { // printf("Found %s, MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", this->name.c_str(), buf[9], buf[8], buf[7], buf[6], buf[5], buf[4]); //} // set non-blocking: //hid_set_nonblocking(jc->handle, 1); // Do handshaking printf("Doing handshake...\n"); memset(buf, 0x00, 0x40); buf[0] = 0x80; buf[1] = 0x02; hid_exchange(this->handle, buf, 0x2); // Switch baudrate to 3Mbit printf("Switching baudrate...\n"); memset(buf, 0x00, 0x40); buf[0] = 0x80; buf[1] = 0x03; hid_exchange(this->handle, buf, 0x2); //Do handshaking again at new baudrate so the firmware pulls pin 3 low? printf("Doing handshake...\n"); memset(buf, 0x00, 0x40); buf[0] = 0x80; buf[1] = 0x02; hid_exchange(this->handle, buf, 0x2); //Only talk HID from now on printf("Only talk HID...\n"); memset(buf, 0x00, 0x40); buf[0] = 0x80; buf[1] = 0x04; hid_exchange(this->handle, buf, 0x2); // Enable vibration printf("Enabling vibration...\n"); memset(buf, 0x00, 0x400); buf[0] = 0x01; // Enabled send_subcommand(0x1, 0x48, buf, 1); enable_IMU(buf, 0x400); printf("Getting calibration data...\n"); bool result = get_switch_controller_info(); if (result) { printf("Successfully initialized %s!\n", this->name.c_str()); } else { printf("Could not initialise %s! Will try again later.\n", this->name.c_str()); } return result; } bool init_bt() { bool result = true; unsigned char buf[0x40]; memset(buf, 0, 0x40); printf("Initialising Bluetooth connection...\n"); // set blocking to ensure command is recieved: hid_set_nonblocking(this->handle, 0); // first, check if this is a USB connection buf[0] = 0x80; buf[1] = 0x01; hid_write(this->handle, buf, 2); // wait for up to 5 messages for a USB acknowledgement for (int idx = 0; idx < 5; idx++) { if (hid_read_timeout(this->handle, buf, 0x40, 200) && buf[0] == 0x81) { //printf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", // buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10]); printf("Attempting USB connection\n"); // it's usb! is_usb = true; init_usb(); return 1; break; } //printf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", // buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10]); printf("Not a USB response...\n"); } memset(buf, 0, 0x40); //if (hid_exchange(this->handle, buf, 2)) //{ // printf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", // buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10]); // printf("Attempting USB connection\n"); // // it's usb! // is_usb = true; // // init_usb(); // return 1; //} buf[1] = 0x00; // Enable vibration printf("Enabling vibration...\n"); buf[0] = 0x01; // Enabled send_subcommand(0x1, 0x48, buf, 1); //printf("Set vibration\n"); // Enable IMU data enable_IMU(buf, 0x40); // Set input report mode (to push at 60hz) // x00 Active polling mode for IR camera data. Answers with more than 300 bytes ID 31 packet // x01 Active polling mode // x02 Active polling mode for IR camera data.Special IR mode or before configuring it ? // x21 Unknown.An input report with this ID has pairing or mcu data or serial flash data or device info // x23 MCU update input report ? // 30 NPad standard mode. Pushes current state @60Hz. Default in SDK if arg is not in the list // 31 NFC mode. Pushes large packets @60Hz printf("Set input report mode to 0x30...\n"); buf[0] = 0x30; send_subcommand(0x01, 0x03, buf, 1); // @CTCaer // get calibration data: printf("Getting calibration data...\n"); result = get_switch_controller_info(); return result; } void init_ds4_bt() { printf("initialise, set colour\n"); unsigned char buf[78]; memset(buf, 0, 78); //buf[0] = 0x11; //buf[1] = 0x80; //buf[3] = 0xff; // https://github.com/Ryochan7/DS4Windows/blob/jay/DS4Windows/DS4Library/DS4Device.cs buf[0] = 0x15; buf[1] = 0xC0 | 1; buf[2] = 0xA0; buf[3] = 0xf7; buf[4] = 0x04; //// https://github.com/chrippa/ds4drv/blob/master/ds4drv/device.py //buf[0] = 0xa2; // 0x80; ////buf[1] = 0xff; //// trying to do colour stuff //// http://eleccelerator.com/wiki/index.php?title=DualShock_4 //// this is only for bt //buf[1] = 0x11; //buf[2] = 0xc0; //buf[3] = 0x20; //buf[4] = 0xf3; //buf[5] = 0x04; //// rumble //buf[7] = 0xFF; //buf[8] = 0x00; //// colour //buf[9] = 0x00; //buf[10] = 0x00; //buf[11] = 0x00; //// flash time //buf[12] = 0xff; //buf[13] = 0x00; //// now we need a CRC-32 of previous bytes //uint32_t crc = crc_32(buf, 75); //buf[75] = (crc >> 24) & 0xFF; //buf[76] = (crc >> 16) & 0xFF; //buf[77] = (crc >> 8) & 0xFF; //buf[78] = crc & 0xFF; //// https://github.com/chrippa/ds4drv/blob/master/ds4drv/device.py //buf[0] = 0x80; //buf[1] = 0xff; //// trying to do colour stuff //// http://eleccelerator.com/wiki/index.php?title=DualShock_4 //// this is only for bt //buf[2] = 0x11; //// rumble //buf[6] = 0xFF; //buf[7] = 0xFF; //// colour //buf[8] = 0xFF; // 0x00; //buf[9] = 0x80; // 0x00; //buf[10] = 0x00; //// flash time //buf[11] = 0xff; //buf[12] = 0x00; //// now we need a CRC-32 of previous bytes //uint32_t crc = crc_32(buf, 75); //buf[75] = (crc >> 24) & 0xFF; //buf[76] = (crc >> 16) & 0xFF; //buf[77] = (crc >> 8) & 0xFF; //buf[78] = crc & 0xFF; // set blocking: // this insures we get the MAC Address hid_set_nonblocking(this->handle, 0); hid_write(handle, buf, 78); // initialise stuff memset(factory_stick_cal, 0, 0x12); memset(device_colours, 0, 0xC); memset(user_stick_cal, 0, 0x16); memset(sensor_model, 0, 0x6); memset(stick_model, 0, 0x12); memset(factory_sensor_cal, 0, 0x18); memset(user_sensor_cal, 0, 0x1A); memset(factory_sensor_cal_calm, 0, 0xC); memset(user_sensor_cal_calm, 0, 0xC); memset(sensor_cal, 0, sizeof(sensor_cal)); memset(stick_cal_x_l, 0, sizeof(stick_cal_x_l)); memset(stick_cal_y_l, 0, sizeof(stick_cal_y_l)); memset(stick_cal_x_r, 0, sizeof(stick_cal_x_r)); memset(stick_cal_y_r, 0, sizeof(stick_cal_y_r)); stick_cal_x_l[0] = stick_cal_y_l[0] = stick_cal_x_r[0] = stick_cal_y_r[0] = 0; stick_cal_x_l[1] = stick_cal_y_l[1] = stick_cal_x_r[1] = stick_cal_y_r[1] = 127; stick_cal_x_l[2] = stick_cal_y_l[2] = stick_cal_x_r[2] = stick_cal_y_r[2] = 255; //// Acc cal origin position //sensor_cal[0][0] = 0; //sensor_cal[0][1] = 0; //sensor_cal[0][2] = 0; // //// Gyro cal origin position //sensor_cal[1][0] = 0; //sensor_cal[1][1] = 0; //sensor_cal[1][2] = 0; enable_gyro_ds4_bt(buf, 78); initialised = true; } // placeholder to get things working quickly. overdue for a refactor void init_ds_usb() { // initialise stuff memset(factory_stick_cal, 0, 0x12); memset(device_colours, 0, 0xC); memset(user_stick_cal, 0, 0x16); memset(sensor_model, 0, 0x6); memset(stick_model, 0, 0x12); memset(factory_sensor_cal, 0, 0x18); memset(user_sensor_cal, 0, 0x1A); memset(factory_sensor_cal_calm, 0, 0xC); memset(user_sensor_cal_calm, 0, 0xC); memset(sensor_cal, 0, sizeof(sensor_cal)); memset(stick_cal_x_l, 0, sizeof(stick_cal_x_l)); memset(stick_cal_y_l, 0, sizeof(stick_cal_y_l)); memset(stick_cal_x_r, 0, sizeof(stick_cal_x_r)); memset(stick_cal_y_r, 0, sizeof(stick_cal_y_r)); stick_cal_x_l[0] = stick_cal_y_l[0] = stick_cal_x_r[0] = stick_cal_y_r[0] = 0; stick_cal_x_l[1] = stick_cal_y_l[1] = stick_cal_x_r[1] = stick_cal_y_r[1] = 127; stick_cal_x_l[2] = stick_cal_y_l[2] = stick_cal_x_r[2] = stick_cal_y_r[2] = 255; initialised = true; } // this is mostly copied from init_usb() below, but modified to speak DS4 void init_ds4_usb() { unsigned char buf[31]; memset(buf, 0, 31); // report id? buf[0] = 0x05; // I dunno what this is buf[1] = 0xf7; buf[2] = 0x04; //// http://eleccelerator.com/wiki/index.php?title=DualShock_4 //// https://github.com/chrippa/ds4drv/blob/master/ds4drv/device.py //// rumble //buf[4] = 0x00; //buf[5] = 0x00; //// colour //buf[6] = 0x00; ////buf[7] = 0xff; //buf[7] = 0x00; //buf[8] = 0x00; //// flash time //buf[9] = 0xff; //buf[10] = 0x00; // now we need a CRC-32 of previous bytes //uint32_t = crc_32(buf, 75); //buf[75] = // set blocking: // this insures we get the MAC Address hid_set_nonblocking(this->handle, 0); hid_write(handle, buf, 31); // initialise stuff memset(factory_stick_cal, 0, 0x12); memset(device_colours, 0, 0xC); memset(user_stick_cal, 0, 0x16); memset(sensor_model, 0, 0x6); memset(stick_model, 0, 0x12); memset(factory_sensor_cal, 0, 0x18); memset(user_sensor_cal, 0, 0x1A); memset(factory_sensor_cal_calm, 0, 0xC); memset(user_sensor_cal_calm, 0, 0xC); memset(sensor_cal, 0, sizeof(sensor_cal)); memset(stick_cal_x_l, 0, sizeof(stick_cal_x_l)); memset(stick_cal_y_l, 0, sizeof(stick_cal_y_l)); memset(stick_cal_x_r, 0, sizeof(stick_cal_x_r)); memset(stick_cal_y_r, 0, sizeof(stick_cal_y_r)); stick_cal_x_l[0] = stick_cal_y_l[0] = stick_cal_x_r[0] = stick_cal_y_r[0] = 0; stick_cal_x_l[1] = stick_cal_y_l[1] = stick_cal_x_r[1] = stick_cal_y_r[1] = 127; stick_cal_x_l[2] = stick_cal_y_l[2] = stick_cal_x_r[2] = stick_cal_y_r[2] = 255; //// Acc cal origin position //sensor_cal[0][0] = 0; //sensor_cal[0][1] = 0; //sensor_cal[0][2] = 0; // //// Gyro cal origin position //sensor_cal[1][0] = 0; //sensor_cal[1][1] = 0; //sensor_cal[1][2] = 0; initialised = true; } void deinit_ds4_bt() { // TODO. For now, init, which stops rumbling and disables light init_ds4_bt(); initialised = false; } // TODO: implement this void deinit_ds4_usb() { unsigned char buf[40]; memset(buf, 0, 40); // report id? buf[0] = 0x05; // don't know what this is buf[1] = 0xff; // rumble buf[4] = 0x00; buf[5] = 0x00; // colour buf[6] = 0x00; buf[7] = 0x00; buf[8] = 0x00; // flash time buf[9] = 0x00; buf[10] = 0x00; // now we need a CRC-32 of previous bytes //uint32_t = crc_32(buf, 75); //buf[75] = // set non-blocking hid_set_nonblocking(this->handle, 1); hid_write(handle, buf, 31); initialised = false; } void deinit_usb() { unsigned char buf[0x40]; memset(buf, 0x00, 0x40); //Let the Joy-Con talk BT again buf[0] = 0x80; buf[1] = 0x05; hid_set_nonblocking(this->handle, 1); hid_write(handle, buf, 0x2); initialised = false; } void set_ds5_rumble_light(unsigned char smallRumble, unsigned char bigRumble, unsigned char colourR, unsigned char colourG, unsigned char colourB, unsigned char playerlights) { if(!is_usb) { set_ds5_rumble_light_bt(smallRumble, bigRumble, colourR, colourG, colourB, playerlights); } else { set_ds5_rumble_light_usb(smallRumble, bigRumble, colourR, colourG, colourB, playerlights); } } void set_ds4_rumble_light(unsigned char smallRumble, unsigned char bigRumble, unsigned char colourR, unsigned char colourG, unsigned char colourB) { if (!is_usb) { set_ds4_rumble_light_bt(smallRumble, bigRumble, colourR, colourG, colourB); } else { set_ds4_rumble_light_usb(smallRumble, bigRumble, colourR, colourG, colourB); } } void set_ds4_rumble_light_usb(unsigned char smallRumble, unsigned char bigRumble, unsigned char colourR, unsigned char colourG, unsigned char colourB) { // todo: based on bluetoothness, switch report id to 0x11, offset everything by 2 -- basically use init stuff as basis unsigned char buf[40]; memset(buf, 0, 40); // report id? buf[0] = 0x05; // don't know what this is buf[1] = 0xff; // rumble buf[4] = smallRumble; buf[5] = bigRumble; // colour buf[6] = colourR; buf[7] = colourG; buf[8] = colourB; // flash time buf[9] = 0xff; buf[10] = 0x00; // now we need a CRC-32 of previous bytes //uint32_t = crc_32(buf, 75); //buf[75] = hid_write(handle, buf, 31); } void set_ds4_rumble_light_bt(unsigned char smallRumble, unsigned char bigRumble, unsigned char colourR, unsigned char colourG, unsigned char colourB) { unsigned char buf[79]; memset(buf, 0, 79); // https://github.com/chrippa/ds4drv/blob/master/ds4drv/device.py //buf[0] = 0xa2; // 0x80; //buf[1] = 0xff; // trying to do colour stuff // http://eleccelerator.com/wiki/index.php?title=DualShock_4 // this is only for bt buf[0] = 0xa2; // Output report header, needs to be included in crc32 buf[1] = 0x11; // Output report 0x11 buf[2] = 0xc0; // HID + CRC according to hid-sony buf[3] = 0x20; // ???? buf[4] = 0x07; // Set blink + leds + motor buf[5] = 0x00; buf[6] = 0x00; // rumble buf[7] = smallRumble; buf[8] = bigRumble; // colour buf[9] = colourR; buf[10] = colourG; buf[11] = colourB; // flash time buf[12] = 0xff; buf[13] = 0x00; // now we need a CRC-32 of previous bytes /* // test buf[0] = 0xa2; // Output report header, needs to be included in crc32 buf[1] = 0x11; // Output report 0x11 buf[2] = 0xc0; // HID + CRC according to hid-sony buf[3] = 0x00; // ???? buf[4] = 0x07; // Set blink + leds + motor buf[5] = 0x00; buf[6] = 0x00; buf[7] = 0xff; buf[8] = 0xff; buf[9] = 0xff; buf[10] = 0xff; buf[11] = 0xff; buf[12] = 0xff; buf[22] = 0x43; buf[23] = 0x43; buf[25] = 0x4d; buf[26] = 0x85; */ uint32_t crc = crc_32(buf, 75); memcpy(&buf[75], &crc, 4); //buf[75] = (crc >> 24) & 0xFF; //buf[76] = (crc >> 16) & 0xFF; //buf[77] = (crc >> 8) & 0xFF; //buf[78] = crc & 0xFF; hid_write(handle, &buf[1], 78); } void set_ds5_rumble_light_usb(unsigned char smallRumble, unsigned char bigRumble, unsigned char colourR, unsigned char colourG, unsigned char colourB, unsigned char playerlights) { // DS5 actually has player lights. unsigned char buf[79]; memset(buf, 0, 79); // https://github.com/Ryochan7/DS4Windows/blob/jay/DS4Windows/DS4Library/InputDevices/DualSenseDevice.cs // DS4Windows to the rescue. // Also thanks to Neilk1 for sharing his doc on the DS5 protocol. // Header & Report Information buf[0] = 0xa2; // Output report header, needs to be included in crc32 buf[1] = 0x02; // DualSense output report is 0x02 for USB //buf[1] = 0x02; // DATA (0x02) buf[2] = 0x03; buf[3] = 0x54; // Toggle LED Strips, player lights, motor effect. Ignore Mic LED // Rumble emulation bytes. buf[4] = smallRumble; buf[5] = bigRumble; // 7-10 are mostly just audio settings. // Mute Button state. 0x00 = off, 0x01 = solid, 0x02 = pulsating. buf[10] = 0x00; // Skip to about 41, since we are ignoring trigger effect data. // Enable LED brightness buf[40] = 0x02; // ??? buf[41] = 0x02; buf[44] = 0x02; // Controls the player lights, which the DS5 has. // Last two bits are unused - unset them to avoid issues. buf[45] = playerlights; buf[45] &= ~(1 << 7); buf[45] &= ~(1 << 8); // colour buf[46] = colourR; buf[47] = colourG; buf[48] = colourB; // USB does not send CRC32 //uint32_t crc = crc_32(buf, 74); //memcpy(&buf[74], &crc, 4); //buf[75] = (crc >> 24) & 0xFF; //buf[76] = (crc >> 16) & 0xFF; //buf[77] = (crc >> 8) & 0xFF; //buf[78] = crc & 0xFF; hid_write(handle, &buf[1], 74); } // Calling the Dualsense anything but the DS5 is confusing, since DS also = DualShock, and the DualSense is the PS5 Controller anyway void set_ds5_rumble_light_bt(unsigned char smallRumble, unsigned char bigRumble, unsigned char colourR, unsigned char colourG, unsigned char colourB, unsigned char playerlights) { // DS5 actually has player lights. unsigned char buf[79]; memset(buf, 0, 79); // https://github.com/Ryochan7/DS4Windows/blob/jay/DS4Windows/DS4Library/InputDevices/DualSenseDevice.cs // DS4Windows to the rescue. // Also thanks to Neilk1 for sharing his doc on the DS5 protocol. // Header & Report Information buf[0] = 0xa2; // Output report header, needs to be included in crc32 buf[1] = 0x31; // DualSense output report is 0x31 buf[2] = 0x02; // DATA (0x02) // Comment stolen from DS4Windows: // 0x01 Set the main motors (also requires flag 0x02) // 0x02 Set the main motors (also requires flag 0x01) // 0x04 Set the right trigger motor // 0x08 Set the left trigger motor // 0x10 Enable modification of audio volume // 0x20 Enable internal speaker (even while headset is connected) // 0x40 Enable modification of microphone volume // 0x80 Enable internal mic (even while headset is connected) buf[3] = 0x03; // Comment stolen from DS4Windows: // 0x01 Toggling microphone LED, 0x02 Toggling Audio/Mic Mute // 0x04 Toggling LED strips on the sides of the Touchpad, 0x08 Turn off all LED lights // 0x10 Toggle player LED lights below Touchpad, 0x20 ??? // 0x40 Adjust overall motor/effect power, 0x80 ??? buf[4] = 0x54; // Toggle LED Strips, player lights, motor effect. Ignore Mic LED // Rumble emulation bytes. buf[5] = smallRumble; buf[6] = bigRumble; // 7-10 are mostly just audio settings. // Mute Button state. 0x00 = off, 0x01 = solid, 0x02 = pulsating. buf[11] = 0x00; // Skip to about 41, since we are ignoring trigger effect data. // Enable LED brightness buf[41] = 0x02; // ??? buf[44] = 0x02; buf[45] = 0x02; // Last two bits are unused - unset them to avoid issues. buf[46] = playerlights; buf[46] &= ~(1 << 7); buf[46] &= ~(1 << 8); // colour buf[47] = colourR; buf[48] = colourG; buf[49] = colourB; uint32_t crc = crc_32(buf, 75); memcpy(&buf[75], &crc, 4); //buf[75] = (crc >> 24) & 0xFF; //buf[76] = (crc >> 16) & 0xFF; //buf[77] = (crc >> 8) & 0xFF; //buf[78] = crc & 0xFF; hid_write(handle, &buf[1], 78); } //// mfosse credits Hypersect (Ryan Juckett), but I've removed deadzones so the consuming application can deal with them //// http://blog.hypersect.com/interpreting-analog-sticks/ void CalcAnalogStick2 ( float &pOutX, // out: resulting stick X value float &pOutY, // out: resulting stick Y value uint16_t x, // in: initial stick X value uint16_t y, // in: initial stick Y value uint16_t x_calc[3], // calc -X, CenterX, +X uint16_t y_calc[3] // calc -Y, CenterY, +Y ) { float x_f, y_f; // convert to float based on calibration and valid ranges per +/-axis x = clamp(x, x_calc[0], x_calc[2]); y = clamp(y, y_calc[0], y_calc[2]); if (x >= x_calc[1]) { x_f = (float)(x - x_calc[1]) / (float)(x_calc[2] - x_calc[1]); } else { x_f = -((float)(x - x_calc[1]) / (float)(x_calc[0] - x_calc[1])); } if (y >= y_calc[1]) { y_f = (float)(y - y_calc[1]) / (float)(y_calc[2] - y_calc[1]); } else { y_f = -((float)(y - y_calc[1]) / (float)(y_calc[0] - y_calc[1])); } pOutX = x_f; pOutY = y_f; } // SPI (@CTCaer): bool get_spi_data(uint32_t offset, const uint8_t read_len, uint8_t *test_buf) { int res; uint8_t buf[0x100]; while (1) { memset(buf, 0, sizeof(buf)); auto hdr = (brcm_hdr *)buf; auto pkt = (brcm_cmd_01 *)(hdr + 1); hdr->cmd = 1; hdr->rumble[0] = timing_byte; buf[1] = timing_byte; timing_byte++; if (timing_byte > 0xF) { timing_byte = 0x0; } pkt->subcmd = 0x10; pkt->offset = offset; pkt->size = read_len; for (int i = 11; i < 22; ++i) { buf[i] = buf[i + 3]; } res = hid_write(handle, buf, sizeof(*hdr) + sizeof(*pkt)); res = hid_read_timeout(handle, buf, sizeof(buf), 1000); if (res == 0) { return false; } if ((*(uint16_t*)&buf[0xD] == 0x1090) && (*(uint32_t*)&buf[0xF] == offset)) { break; } } if (res >= 0x14 + read_len) { for (int i = 0; i < read_len; i++) { test_buf[i] = buf[0x14 + i]; } } return true; } int write_spi_data(uint32_t offset, const uint8_t write_len, uint8_t* test_buf) { int res; uint8_t buf[0x100]; int error_writing = 0; while (1) { memset(buf, 0, sizeof(buf)); auto hdr = (brcm_hdr *)buf; auto pkt = (brcm_cmd_01 *)(hdr + 1); hdr->cmd = 1; hdr->rumble[0] = timing_byte; timing_byte++; if (timing_byte > 0xF) { timing_byte = 0x0; } pkt->subcmd = 0x11; pkt->offset = offset; pkt->size = write_len; for (int i = 0; i < write_len; i++) { buf[0x10 + i] = test_buf[i]; } res = hid_write(handle, buf, sizeof(*hdr) + sizeof(*pkt) + write_len); res = hid_read(handle, buf, sizeof(buf)); if (*(uint16_t*)&buf[0xD] == 0x1180) break; error_writing++; if (error_writing == 125) { return 1; } } return 0; } };