#if __clang__ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunused-const-variable" #pragma clang diagnostic ignored "-Wswitch" #pragma clang diagnostic ignored "-Wunused-variable" #pragma clang diagnostic ignored "-Wunknown-pragmas" #pragma clang diagnostic ignored "-Wvarargs" #pragma clang diagnostic ignored "-Wunused-function" #endif #include "grime.h" #include "macros.h" #include "types.h" #include "math_constants.h" // #include // TODO : Implement sound ourselves #include #include "win32.h" // Using this to get dualsense controllers #include "JoyShockLibrary/JoyShockLibrary.h" // TOOD(Ed): Redo these macros properly later. #define congrats( message ) do { \ JslSetLightColour( 0, (255 << 16) | (215 << 8) ); \ MessageBoxA( 0, message, "Congratulations!", MB_OK | MB_ICONEXCLAMATION ); \ JslSetLightColour( 0, (255 << 8 ) ); \ } while (0) #define ensure( condition, message ) ensure_impl( condition, message ) inline bool ensure_impl( bool condition, char const* message ) { if ( ! condition ) { JslSetLightColour( 0, (255 << 16) ); MessageBoxA( 0, message, "Ensure Failure", MB_OK | MB_ICONASTERISK ); JslSetLightColour( 0, ( 255 << 8 ) ); } return condition; } #define fatal(message) do { \ JslSetLightColour( 0, (255 << 16) ); \ MessageBoxA( 0, message, "Fatal Error", MB_OK | MB_ICONERROR ); \ JslSetLightColour( 0, (255 << 8 ) ); \ } while (0) NS_WIN32_BEGIN // TODO(Ed) : This is a global for now. global bool Running; struct OffscreenBuffer { BITMAPINFO Info; void* Memory; // Lets use directly mess with the "pixel's memory buffer" u32 Width; u32 Height; u32 Pitch; u32 BytesPerPixel; }; struct WinDimensions { u32 Width; u32 Height; }; HRESULT WINAPI DirectSoundCreate(LPGUID lpGuid, LPDIRECTSOUND* ppDS, LPUNKNOWN pUnkOuter ); using DirectSoundCreateFn = HRESULT WINAPI (LPGUID lpGuid, LPDIRECTSOUND* ppDS, LPUNKNOWN pUnkOuter ); global DirectSoundCreateFn* direct_sound_create; global OffscreenBuffer BackBuffer; global WinDimensions WindowDimensions; global LPDIRECTSOUNDBUFFER DS_SecondaryBuffer; global s32 DS_SecondaryBuffer_Size; global s32 DS_SecondaryBuffer_SamplesPerSecond; global s32 DS_SecondaryBuffer_BytesPerSample; internal void init_sound(HWND window_handle, s32 samples_per_second, s32 buffer_size ) { // Load library HMODULE sound_library = LoadLibraryA( "dsound.dll" ); if ( ! ensure(sound_library, "Failed to load direct sound library" ) ) { // TOOD : Diagnostic return; } // Get direct sound object direct_sound_create = rcast( DirectSoundCreateFn*, GetProcAddress( sound_library, "DirectSoundCreate" )); if ( ! ensure( direct_sound_create, "Failed to get direct_sound_create_procedure" ) ) { // TOOD : Diagnostic return; } LPDIRECTSOUND direct_sound; if ( ! SUCCEEDED(direct_sound_create( 0, & direct_sound, 0 )) ) { // TODO : Diagnostic } if ( ! SUCCEEDED( direct_sound->SetCooperativeLevel(window_handle, DSSCL_PRIORITY) ) ) { // TODO : Diagnostic } WAVEFORMATEX wave_format {}; wave_format.wFormatTag = WAVE_FORMAT_PCM; /* format type */ wave_format.nChannels = 2; /* number of channels (i.e. mono, stereo...) */ wave_format.nSamplesPerSec = samples_per_second; /* sample rate */ wave_format.wBitsPerSample = 16; /* number of bits per sample of mono data */ wave_format.nBlockAlign = wave_format.nChannels * wave_format.wBitsPerSample / 8 ; /* block size of data */ wave_format.nAvgBytesPerSec = wave_format.nSamplesPerSec * wave_format.nBlockAlign; /* for buffer estimation */ wave_format.cbSize = 0; /* the count in bytes of the size of */ LPDIRECTSOUNDBUFFER primary_buffer; { DSBUFFERDESC buffer_description { sizeof(buffer_description) }; buffer_description.dwFlags = DSBCAPS_PRIMARYBUFFER; buffer_description.dwBufferBytes = 0; if ( ! SUCCEEDED( direct_sound->CreateSoundBuffer( & buffer_description, & primary_buffer, 0 ) )) { // TODO : Diagnostic } if ( ! SUCCEEDED( primary_buffer->SetFormat( & wave_format ) ) ) { // TODO : Diagnostic } } DSBUFFERDESC buffer_description { sizeof(buffer_description) }; buffer_description.dwFlags = 0; buffer_description.dwBufferBytes = buffer_size; buffer_description.lpwfxFormat = & wave_format; if ( ! SUCCEEDED( direct_sound->CreateSoundBuffer( & buffer_description, & DS_SecondaryBuffer, 0 ) )) { // TODO : Diagnostic } if ( ! SUCCEEDED( DS_SecondaryBuffer->SetFormat( & wave_format ) ) ) { // TODO : Diagnostic } } struct DS_SoundOutputTest { DWORD IsPlaying; u32 RunningSampleIndex; s32 WaveToneHz; s32 WavePeriod; s32 ToneVolume; s32 LatencySampleCount; }; using DS_FillSoundBuffer_GetSampleValueFn = s16( DS_SoundOutputTest* sound_output ); internal s16 square_wave_sample_value( DS_SoundOutputTest* sound_output ) { s16 sample_value = (sound_output->RunningSampleIndex / (sound_output->WavePeriod /2)) % 2 ? sound_output->ToneVolume : - sound_output->ToneVolume; return sample_value; } internal s16 sine_wave_sample_value( DS_SoundOutputTest* sound_output ) { local_persist f32 time = 0.f; f32 sine_value = sinf( time ); s16 sample_value = scast(u16, sine_value * sound_output->ToneVolume); time += TAU * 1.0f / scast(f32, sound_output->WavePeriod ); return sample_value; } internal void ds_fill_soundbuffer_region( LPVOID region, DWORD region_size , DS_SoundOutputTest* sound_output, DS_FillSoundBuffer_GetSampleValueFn* get_sample_value ) { DWORD region_sample_count = region_size / DS_SecondaryBuffer_BytesPerSample; s16* sample_out = rcast( s16*, region ); for ( DWORD sample_index = 0; sample_index < region_sample_count; ++ sample_index ) { s16 sample_value = get_sample_value( sound_output ); ++ sound_output->RunningSampleIndex; *sample_out = sample_value; ++ sample_out; *sample_out = sample_value; ++ sample_out; } } internal void ds_fill_sound_buffer_test( DS_SoundOutputTest* sound_output, DWORD byte_to_lock, DWORD bytes_to_write, DS_FillSoundBuffer_GetSampleValueFn* get_sample_value ) { LPVOID region_1; DWORD region_1_size; LPVOID region_2; DWORD region_2_size; HRESULT ds_lock_result = DS_SecondaryBuffer->Lock( byte_to_lock, bytes_to_write , & region_1, & region_1_size , & region_2, & region_2_size , 0 ); if ( ! SUCCEEDED( ds_lock_result ) ) { return; } // TODO : Assert that region sizes are valid ds_fill_soundbuffer_region( region_1, region_1_size, sound_output, get_sample_value ); ds_fill_soundbuffer_region( region_2, region_2_size, sound_output, get_sample_value ); if ( ! SUCCEEDED( DS_SecondaryBuffer->Unlock( region_1, region_1_size, region_2, region_2_size ) )) { return; } } internal WinDimensions get_window_dimensions( HWND window_handle ) { RECT client_rect; GetClientRect( window_handle, & client_rect ); WinDimensions result; result.Width = client_rect.right - client_rect.left; result.Height = client_rect.bottom - client_rect.top; return result; } internal void render_weird_graident(OffscreenBuffer* buffer, u32 x_offset, u32 y_offset ) { // TODO(Ed): See if with optimizer if buffer should be passed by value. struct Pixel { u8 Blue; u8 Green; u8 Red; u8 Alpha; }; u8* row = rcast( u8*, buffer->Memory); local_persist float wildcard = 0; for ( u32 y = 0; y < buffer->Height; ++ y ) { // u8* pixel = rcast(u8*, row); // Pixel* pixel = rcast( Pixel*, row ); u32* pixel = rcast(u32*, row); for ( u32 x = 0; x < buffer->Width; ++ x ) { /* Pixel in memory: ----------------------------------------------- Pixel + 0 Pixel + 1 Pixel + 2 Pixel + 3 RR GG GG XX ----------------------------------------------- x86-64 : Little Endian Arch 0x XX BB GG RR */ #if 0 u8 blue = scast(u8, x + x_offset * u8(wildcard) % 256); u8 green = scast(u8, y + y_offset - u8(wildcard) % 128); u8 red = scast(u8, wildcard) % 256 - x * 0.4f; #else u8 blue = scast(u8, x + x_offset); u8 green = scast(u8, y + y_offset); u8 red = 0; #endif *pixel++ = (red << 16) | (green << 8) | blue; } wildcard += 0.5375f; row += buffer->Pitch; } } internal void resize_dib_section( OffscreenBuffer* buffer, u32 width, u32 height ) { // TODO(Ed) : Bulletproof memory handling here for the bitmap memory if ( buffer->Memory ) { VirtualFree( buffer->Memory, 0, MEM_RELEASE ); } buffer->Width = width; buffer->Height = height; buffer->BytesPerPixel = 4; buffer->Pitch = buffer->Width * buffer->BytesPerPixel; // Negative means top-down in the context of the biHeight # define Top_Down - BITMAPINFOHEADER& header = buffer->Info.bmiHeader; header.biSize = sizeof( buffer->Info.bmiHeader ); header.biWidth = buffer->Width; header.biHeight = Top_Down buffer->Height; header.biPlanes = 1; header.biBitCount = 32; // Need 24, but want 32 ( alignment ) header.biCompression = BI_RGB_Uncompressed; // header.biSizeImage = 0; // header.biXPelsPerMeter = 0; // header.biYPelsPerMeter = 0; // header.biClrUsed = 0; // header.biClrImportant = 0; # undef Top_Down // We want to "touch" a pixel on every 4-byte boundary u32 BitmapMemorySize = (buffer->Width * buffer->Height) * buffer->BytesPerPixel; buffer->Memory = VirtualAlloc( NULL, BitmapMemorySize, MEM_Commit_Zeroed | MEM_Reserve, Page_Read_Write ); // TODO(Ed) : Clear to black } internal void display_buffer_in_window( HDC device_context, u32 window_width, u32 window_height, OffscreenBuffer* buffer , u32 x, u32 y , u32 width, u32 height ) { // TODO(Ed) : Aspect ratio correction StretchDIBits( device_context #if 0 , x, y, width, height , x, y, width, height #endif , 0, 0, window_width, window_height , 0, 0, buffer->Width, buffer->Height , buffer->Memory, & buffer->Info , DIB_ColorTable_RGB, RO_Source_To_Dest ); } internal LRESULT CALLBACK main_window_callback( HWND handle, UINT system_messages, WPARAM w_param, LPARAM l_param ) { LRESULT result; switch ( system_messages ) { case WM_ACTIVATEAPP: { OutputDebugStringA( "WM_ACTIVATEAPP\n" ); } break; case WM_CLOSE: { // TODO(Ed) : Handle with a message to the user Running = false; } break; case WM_DESTROY: { // TODO(Ed) : Handle with as an error and recreate the window Running = false; } break; case WM_SYSKEYDOWN: case WM_SYSKEYUP: case WM_KEYDOWN: case WM_KEYUP: { u32 vk_code = w_param; b32 is_down = (l_param >> 31) == 0; b32 was_down = (l_param >> 30); b32 alt_down = (l_param & (1 << 29)); switch ( vk_code ) { case 'Q': { OutputDebugStringA( "Q\n" ); } break; case 'E': { OutputDebugStringA( "E\n" ); } break; case 'W': { OutputDebugStringA( "W\n" ); } break; case 'A': { OutputDebugStringA( "A\n" ); } break; case 'S': { OutputDebugStringA( "S\n" ); } break; case 'D': { OutputDebugStringA( "D\n" ); } break; case VK_ESCAPE: { OutputDebugStringA( "Escape\n" ); } break; case VK_UP: { OutputDebugStringA( "Up\n" ); } break; case VK_DOWN: { OutputDebugStringA( "Down\n" ); } break; case VK_LEFT: { OutputDebugStringA( "Left\n" ); } break; case VK_RIGHT: { OutputDebugStringA( "Right\n" ); } break; case VK_SPACE: { OutputDebugStringA( "Space\n" ); } break; case VK_F4: { if ( alt_down ) Running = false; } break; } } break; case WM_PAINT: { PAINTSTRUCT info; HDC device_context = BeginPaint( handle, & info ); u32 x = info.rcPaint.left; u32 y = info.rcPaint.top; u32 width = info.rcPaint.right - info.rcPaint.left; u32 height = info.rcPaint.bottom - info.rcPaint.top; WinDimensions dimensions = get_window_dimensions( handle ); display_buffer_in_window( device_context, dimensions.Width, dimensions.Height, &BackBuffer , x, y , width, height ); EndPaint( handle, & info ); } break; case WM_SIZE: { } break; default: { result = DefWindowProc( handle, system_messages, w_param, l_param ); } } return result; } NS_WIN32_END int CALLBACK WinMain( HINSTANCE instance, HINSTANCE prev_instance, LPSTR commandline, int show_command ) { using namespace win32; // xinput_load_library_bindings(); using JSL_DeviceHandle = int; u32 jsl_num_devices = JslConnectDevices(); JSL_DeviceHandle device_handles[4] {}; u32 jsl_getconnected_found = JslGetConnectedDeviceHandles( device_handles, jsl_num_devices ); if ( jsl_getconnected_found != jsl_num_devices ) { OutputDebugStringA( "Error: JSLGetConnectedDeviceHandles didn't find as many as were stated with JslConnectDevices\n"); } if ( jsl_num_devices > 0 ) { OutputDebugStringA( "JSL Connected Devices:\n" ); for ( u32 jsl_device_index = 0; jsl_device_index < jsl_num_devices; ++ jsl_device_index ) { JslSetLightColour( device_handles[ jsl_device_index ], (255 << 8) ); } } // MessageBox( 0, L"First message!", L"Handmade Hero", MB_Ok_Btn | MB_Icon_Information ); WNDCLASS window_class {}; window_class.style = CS_Horizontal_Redraw | CS_Vertical_Redraw; window_class.lpfnWndProc = main_window_callback; // window_class.cbClsExtra = ; // window_class.cbWndExtra = ; window_class.hInstance = instance; // window_class.hIcon = ; // window_class.hCursor = ; // window_class.hbrBackground = ; window_class.lpszMenuName = L"Handmade Hero!"; window_class.lpszClassName = L"HandmadeHeroWindowClass"; if ( ! RegisterClassW( & window_class ) ) { // TODO : Diagnostic Logging return 0; } HWND window_handle = CreateWindowExW( 0, window_class.lpszClassName, L"Handmade Hero", WS_Overlapped_Window | WS_Initially_Visible, CW_Use_Default, CW_Use_Default, // x, y CW_Use_Default, CW_Use_Default, // width, height 0, 0, // parent, menu instance, 0 // instance, param ); if ( ! window_handle ) { // TODO : Diagnostic Logging return 0; } Running = true; WinDimensions dimensions = get_window_dimensions( window_handle ); resize_dib_section( &BackBuffer, 1280, 720 ); DS_SoundOutputTest sound_output; sound_output.IsPlaying = 0; DS_SecondaryBuffer_SamplesPerSecond = 48000; DS_SecondaryBuffer_BytesPerSample = sizeof(s16) * 2; DS_SecondaryBuffer_Size = DS_SecondaryBuffer_SamplesPerSecond * DS_SecondaryBuffer_BytesPerSample; init_sound( window_handle, DS_SecondaryBuffer_SamplesPerSecond, DS_SecondaryBuffer_Size ); // Wave Sound Test bool wave_switch = false; sound_output.RunningSampleIndex = 0; sound_output.WaveToneHz = 262; sound_output.WavePeriod = DS_SecondaryBuffer_SamplesPerSecond / sound_output.WaveToneHz; sound_output.ToneVolume = 3000; sound_output.LatencySampleCount = DS_SecondaryBuffer_SamplesPerSecond / 15; ds_fill_sound_buffer_test( & sound_output, 0, sound_output.LatencySampleCount * DS_SecondaryBuffer_BytesPerSample, & sine_wave_sample_value ); DS_SecondaryBuffer->Play( 0, 0, DSBPLAY_LOOPING ); // Graphics & Input Test u32 x_offset = 0; u32 y_offset = 0; // Controller State bool xinput_detected = false; b32 dpad_up = false; b32 dpad_down = false; b32 dpad_left = false; b32 dpad_right = false; b32 start = false; b32 back = false; b32 left_shoulder = false; b32 right_shoulder = false; b32 btn_a = false; b32 btn_b = false; b32 btn_x = false; b32 btn_y = false; u16 stick_left_x = 0; u16 stick_left_y = 0; u16 stick_right_x = 0; u16 stick_right_y = 0; // TODO : Add sine wave test // Windows MSG window_msg_info; while( Running ) { // Window Management { if ( PeekMessageW( & window_msg_info, 0, 0, 0, PM_Remove_Messages_From_Queue ) ) { if ( window_msg_info.message == WM_QUIT ) { OutputDebugStringA("WM_QUIT\n"); Running = false; } TranslateMessage( & window_msg_info ); DispatchMessageW( & window_msg_info ); } } // Input { // XInput Polling // TODO(Ed) : Should we poll this more frequently? for ( DWORD controller_index = 0; controller_index < XUSER_MAX_COUNT; ++ controller_index ) { XINPUT_STATE controller_state; xinput_detected = xinput_get_state( controller_index, & controller_state ) == XI_PluggedIn; if ( xinput_detected ) { XINPUT_GAMEPAD* pad = & controller_state.Gamepad; dpad_up = pad->wButtons & XINPUT_GAMEPAD_DPAD_UP; dpad_down = pad->wButtons & XINPUT_GAMEPAD_DPAD_DOWN; dpad_left = pad->wButtons & XINPUT_GAMEPAD_DPAD_LEFT; dpad_right = pad->wButtons & XINPUT_GAMEPAD_DPAD_RIGHT; start = pad->wButtons & XINPUT_GAMEPAD_START; back = pad->wButtons & XINPUT_GAMEPAD_BACK; left_shoulder = pad->wButtons & XINPUT_GAMEPAD_LEFT_SHOULDER; right_shoulder = pad->wButtons & XINPUT_GAMEPAD_RIGHT_SHOULDER; btn_a = pad->wButtons & XINPUT_GAMEPAD_A; btn_b = pad->wButtons & XINPUT_GAMEPAD_B; btn_x = pad->wButtons & XINPUT_GAMEPAD_X; btn_y = pad->wButtons & XINPUT_GAMEPAD_Y; stick_left_x = pad->sThumbLX; stick_left_y = pad->sThumbLY; stick_right_x = pad->sThumbRX; stick_right_y = pad->sThumbRY; } else { // NOTE: Controller is not available } } // JSL Input Polling for ( u32 jsl_device_index = 0; jsl_device_index < jsl_num_devices; ++ jsl_device_index ) { if ( ! JslStillConnected( device_handles[ jsl_device_index ] ) ) { OutputDebugStringA( "Error: JSLStillConnected returned false\n" ); continue; } JOY_SHOCK_STATE state = JslGetSimpleState( device_handles[ jsl_device_index ] ); dpad_up = state.buttons & JSMASK_UP; dpad_down = state.buttons & JSMASK_DOWN; dpad_left = state.buttons & JSMASK_LEFT; dpad_right = state.buttons & JSMASK_RIGHT; start = state.buttons & JSMASK_PLUS; back = state.buttons & JSMASK_MINUS; left_shoulder = state.buttons & JSMASK_L; right_shoulder = state.buttons & JSMASK_R; btn_a = state.buttons & JSMASK_S; btn_b = state.buttons & JSMASK_E; btn_x = state.buttons & JSMASK_W; btn_y = state.buttons & JSMASK_N; stick_left_x = state.stickLX; stick_left_y = state.stickLY; stick_right_x = state.stickRX; stick_right_y = state.stickRY; } x_offset += dpad_right; x_offset -= dpad_left; y_offset += dpad_up; y_offset -= dpad_down; if ( start ) { if ( xinput_detected ) { XINPUT_VIBRATION vibration; vibration.wLeftMotorSpeed = 30000; xinput_set_state( 0, & vibration ); } else { JslSetRumble( 0, 1, 0 ); } } else { if ( xinput_detected ) { XINPUT_VIBRATION vibration; vibration.wLeftMotorSpeed = 0; xinput_set_state( 0, & vibration ); } else { JslSetRumble( 0, 0, 0 ); } } } // Rendering { render_weird_graident( &BackBuffer, x_offset, y_offset ); WinDimensions dimensions = get_window_dimensions( window_handle ); HDC device_context = GetDC( window_handle ); display_buffer_in_window( device_context, dimensions.Width, dimensions.Height, &BackBuffer , 0, 0 , dimensions.Width, dimensions.Height ); } // Audio do { if ( btn_y ) { sound_output.ToneVolume += 10; } if ( btn_b ) { sound_output.ToneVolume -= 10; } if ( btn_x ) { sound_output.WaveToneHz += 1; sound_output.WavePeriod = DS_SecondaryBuffer_SamplesPerSecond / sound_output.WaveToneHz; } if ( btn_a ) { sound_output.WaveToneHz -= 1; sound_output.WavePeriod = DS_SecondaryBuffer_SamplesPerSecond / sound_output.WaveToneHz; } if ( back ) { wave_switch ^= true; } DWORD ds_status = 0; if ( SUCCEEDED( DS_SecondaryBuffer->GetStatus( & ds_status ) ) ) { sound_output.IsPlaying = ds_status & DSBSTATUS_PLAYING; } DWORD ds_play_cursor; DWORD ds_write_cursor; if ( ! SUCCEEDED( DS_SecondaryBuffer->GetCurrentPosition( & ds_play_cursor, & ds_write_cursor ) )) { break; } DWORD target_cursor = (ds_play_cursor + sound_output.LatencySampleCount * DS_SecondaryBuffer_BytesPerSample) % DS_SecondaryBuffer_Size; DWORD byte_to_lock = (sound_output.RunningSampleIndex * DS_SecondaryBuffer_BytesPerSample) % DS_SecondaryBuffer_Size; DWORD bytes_to_write; if ( byte_to_lock == target_cursor ) { // We are in the middle of playing. Wait for the write cursor to catch up. bytes_to_write = 0; } else if ( byte_to_lock > target_cursor) { // Infront of play cursor |--play--byte_to_write-->--| bytes_to_write = DS_SecondaryBuffer_Size - byte_to_lock; bytes_to_write += target_cursor; } else { // Behind play cursor |--byte_to_write-->--play--| bytes_to_write = target_cursor - byte_to_lock; } if ( wave_switch ) { ds_fill_sound_buffer_test( & sound_output, byte_to_lock, bytes_to_write, square_wave_sample_value ); } else { ds_fill_sound_buffer_test( & sound_output, byte_to_lock, bytes_to_write, sine_wave_sample_value ); } #if 1 if ( sound_output.IsPlaying ) { break; } #endif DS_SecondaryBuffer->Play( 0, 0, DSBPLAY_LOOPING ); } while(0); } if ( jsl_num_devices > 0 ) { OutputDebugStringA( "JSL Connected Devices:\n" ); for ( u32 jsl_device_index = 0; jsl_device_index < jsl_num_devices; ++ jsl_device_index ) { JslSetLightColour( device_handles[ jsl_device_index ], 0 ); } } return 0; }