// This file was generated automatially by gencpp's unreal.cpp (See: https://github.com/Ed94/gencpp) #pragma once #ifdef __clang__ # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wunused-const-variable" # pragma clang diagnostic ignored "-Wunused-but-set-variable" # pragma clang diagnostic ignored "-Wswitch" # pragma clang diagnostic ignored "-Wunused-variable" # pragma clang diagnostic ignored "-Wunknown-pragmas" # pragma clang diagnostic ignored "-Wvarargs" # pragma clang diagnostic ignored "-Wunused-function" # pragma clang diagnostic ignored "-Wbraced-scalar-init" # pragma clang diagnostic ignored "-W#pragma-messages" # pragma clang diagnostic ignored "-Wstatic-in-inline" #endif #ifdef __GNUC__ # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunknown-pragmas" # pragma GCC diagnostic ignored "-Wcomment" # pragma GCC diagnostic ignored "-Wswitch" # pragma GCC diagnostic ignored "-Wunused-variable" #endif #pragma region Platform Detection /* Platform architecture */ #if defined( _WIN64 ) || defined( __x86_64__ ) || defined( _M_X64 ) || defined( __64BIT__ ) || defined( __powerpc64__ ) || defined( __ppc64__ ) || defined( __aarch64__ ) # ifndef GEN_ARCH_64_BIT # define GEN_ARCH_64_BIT 1 # endif #else # ifndef GEN_ARCH_32_BItxt_StrCaT # define GEN_ARCH_32_BIT 1 # endif #endif /* Platform OS */ #if defined( _WIN32 ) || defined( _WIN64 ) # ifndef GEN_SYSTEM_WINDOWS # define GEN_SYSTEM_WINDOWS 1 # endif #elif defined( __APPLE__ ) && defined( __MACH__ ) # ifndef GEN_SYSTEM_OSX # define GEN_SYSTEM_OSX 1 # endif # ifndef GEN_SYSTEM_MACOS # define GEN_SYSTEM_MACOS 1 # endif #elif defined( __unix__ ) # ifndef GEN_SYSTEM_UNIX # define GEN_SYSTEM_UNIX 1 # endif # if defined( ANDROID ) || defined( __ANDROID__ ) # ifndef GEN_SYSTEM_ANDROID # define GEN_SYSTEM_ANDROID 1 # endif # ifndef GEN_SYSTEM_LINUX # define GEN_SYSTEM_LINUX 1 # endif # elif defined( __linux__ ) # ifndef GEN_SYSTEM_LINUX # define GEN_SYSTEM_LINUX 1 # endif # elif defined( __FreeBSD__ ) || defined( __FreeBSD_kernel__ ) # ifndef GEN_SYSTEM_FREEBSD # define GEN_SYSTEM_FREEBSD 1 # endif # elif defined( __OpenBSD__ ) # ifndef GEN_SYSTEM_OPENBSD # define GEN_SYSTEM_OPENBSD 1 # endif # elif defined( __EMSCRIPTEN__ ) # ifndef GEN_SYSTEM_EMSCRIPTEN # define GEN_SYSTEM_EMSCRIPTEN 1 # endif # elif defined( __CYGWIN__ ) # ifndef GEN_SYSTEM_CYGWIN # define GEN_SYSTEM_CYGWIN 1 # endif # else # error This UNIX operating system is not supported # endif #else # error This operating system is not supported #endif /* Platform compiler */ #if defined( _MSC_VER ) # pragma message("Detected MSVC") // # define GEN_COMPILER_CLANG 0 # define GEN_COMPILER_MSVC 1 // # define GEN_COMPILER_GCC 0 #elif defined( __GNUC__ ) # pragma message("Detected GCC") // # define GEN_COMPILER_CLANG 0 // # define GEN_COMPILER_MSVC 0 # define GEN_COMPILER_GCC 1 #elif defined( __clang__ ) # pragma message("Detected CLANG") # define GEN_COMPILER_CLANG 1 // # define GEN_COMPILER_MSVC 0 // # define GEN_COMPILER_GCC 0 #else # error Unknown compiler #endif #if defined( __has_attribute ) # define GEN_HAS_ATTRIBUTE( attribute ) __has_attribute( attribute ) #else # define GEN_HAS_ATTRIBUTE( attribute ) ( 0 ) #endif #if defined(GEN_GCC_VERSION_CHECK) # undef GEN_GCC_VERSION_CHECK #endif #if defined(GEN_GCC_VERSION) # define GEN_GCC_VERSION_CHECK(major,minor,patch) (GEN_GCC_VERSION >= GEN_VERSION_ENCODE(major, minor, patch)) #else # define GEN_GCC_VERSION_CHECK(major,minor,patch) (0) #endif #if !defined(GEN_COMPILER_C) # ifdef __cplusplus # define GEN_COMPILER_C 0 # define GEN_COMPILER_CPP 1 # else # if defined(__STDC__) # define GEN_COMPILER_C 1 # define GEN_COMPILER_CPP 0 # else // Fallback for very old C compilers # define GEN_COMPILER_C 1 # define GEN_COMPILER_CPP 0 # endif # endif #endif #if GEN_COMPILER_C #pragma message("GENCPP: Detected C") #endif #pragma endregion Platform Detection #pragma region Mandatory Includes # include # include # if defined( GEN_SYSTEM_WINDOWS ) # include # endif #if GEN_COMPILER_C #include #include #endif #pragma endregion Mandatory Includes #if GEN_DONT_USE_NAMESPACE || GEN_COMPILER_C # if GEN_COMPILER_C # define GEN_NS # define GEN_NS_BEGIN # define GEN_NS_END # else # define GEN_NS :: # define GEN_NS_BEGIN # define GEN_NS_END # endif #else # define GEN_NS gen:: # define GEN_NS_BEGIN namespace gen { # define GEN_NS_END } #endif GEN_NS_BEGIN #pragma region Macros #if GEN_COMPILER_MSVC #ifdef GEN_DYN_LINK #ifdef GEN_DYN_EXPORT #define GEN_API __declspec( dllexport ) #else #define GEN_API __declspec( dllimport ) #endif #else #define GEN_API // Empty for static builds #endif #else #ifdef GEN_DYN_LINK #define GEN_API __attribute__( ( visibility( "default" ) ) ) #else #define GEN_API // Empty for static builds #endif #endif #ifndef global #define global // Global variables #endif #ifndef internal #define internal static // Internal linkage #endif #ifndef local_persist #define local_persist static // Local Persisting variables #endif #ifndef bit #define bit( Value ) ( 1 << Value ) #define bitfield_is_set( Type, Field, Mask ) ( ( scast( Type, Mask ) & scast( Type, Field ) ) == scast( Type, Mask ) ) #endif // Mainly intended for forcing the base library to utilize only C-valid constructs or type coercion #ifndef GEN_C_LIKE_CPP #define GEN_C_LIKE_CPP 0 #endif #if GEN_COMPILER_CPP #ifndef cast #define cast( type, value ) ( tmpl_cast( value ) ) #endif #else #ifndef cast #define cast( type, value ) ( (type)( value ) ) #endif #endif #if GEN_COMPILER_CPP #ifndef ccast #define ccast( type, value ) ( const_cast( ( value ) ) ) #endif #ifndef pcast #define pcast( type, value ) ( *reinterpret_cast( &( value ) ) ) #endif #ifndef rcast #define rcast( type, value ) reinterpret_cast( value ) #endif #ifndef scast #define scast( type, value ) static_cast( value ) #endif #else #ifndef ccast #define ccast( type, value ) ( (type)( value ) ) #endif #ifndef pcast #define pcast( type, value ) ( *(type*)( &value ) ) #endif #ifndef rcast #define rcast( type, value ) ( (type)( value ) ) #endif #ifndef scast #define scast( type, value ) ( (type)( value ) ) #endif #endif #ifndef stringize #define stringize_va( ... ) #__VA_ARGS__ #define stringize( ... ) stringize_va( __VA_ARGS__ ) #endif #define src_line_str stringize( __LINE__ ) #ifndef do_once #define do_once() \ local_persist int __do_once_counter_##src_line_str = 0; \ for ( ; __do_once_counter_##src_line_str != 1; __do_once_counter_##src_line_str = 1 ) #define do_once_defer( expression ) \ local_persist int __do_once_counter_##src_line_str = 0; \ for ( ; __do_once_counter_##src_line_str != 1; __do_once_counter_##src_line_str = 1, ( expression ) ) #define do_once_start \ do \ { \ local_persist bool done = false; \ if ( done ) \ break; \ done = true; #define do_once_end \ } \ while ( 0 ) \ ; #endif #ifndef labeled_scope_start #define labeled_scope_start \ if ( false ) \ { #define labeled_scope_end } #endif #ifndef compiler_decorated_func_name #ifdef COMPILER_CLANG #define compiler_decorated_func_name __PRETTY_NAME__ #elif defined( COMPILER_MSVC ) #define compiler_decorated_func_name __FUNCDNAME__ #endif #endif #ifndef num_args_impl // This is essentially an arg couneter version of GEN_SELECT_ARG macros // See section : _Generic function overloading for that usage (explains this heavier case) #define num_args_impl( \ _0, \ _1, \ _2, \ _3, \ _4, \ _5, \ _6, \ _7, \ _8, \ _9, \ _10, \ _11, \ _12, \ _13, \ _14, \ _15, \ _16, \ _17, \ _18, \ _19, \ _20, \ _21, \ _22, \ _23, \ _24, \ _25, \ _26, \ _27, \ _28, \ _29, \ _30, \ _31, \ _32, \ _33, \ _34, \ _35, \ _36, \ _37, \ _38, \ _39, \ _40, \ _41, \ _42, \ _43, \ _44, \ _45, \ _46, \ _47, \ _48, \ _49, \ _50, \ _51, \ _52, \ _53, \ _54, \ _55, \ _56, \ _57, \ _58, \ _59, \ _60, \ _61, \ _62, \ _63, \ _64, \ _65, \ _66, \ _67, \ _68, \ _69, \ _70, \ _71, \ _72, \ _73, \ _74, \ _75, \ _76, \ _77, \ _78, \ _79, \ _80, \ _81, \ _82, \ _83, \ _84, \ _85, \ _86, \ _87, \ _88, \ _89, \ _90, \ _91, \ _92, \ _93, \ _94, \ _95, \ _96, \ _97, \ _98, \ _99, \ _100, \ N, \ ... \ ) \ N // ## deletes preceding comma if _VA_ARGS__ is empty (GCC, Clang) #define num_args( ... ) \ num_args_impl( \ _, \ ##__VA_ARGS__, \ 100, \ 99, \ 98, \ 97, \ 96, \ 95, \ 94, \ 93, \ 92, \ 91, \ 90, \ 89, \ 88, \ 87, \ 86, \ 85, \ 84, \ 83, \ 82, \ 81, \ 80, \ 79, \ 78, \ 77, \ 76, \ 75, \ 74, \ 73, \ 72, \ 71, \ 70, \ 69, \ 68, \ 67, \ 66, \ 65, \ 64, \ 63, \ 62, \ 61, \ 60, \ 59, \ 58, \ 57, \ 56, \ 55, \ 54, \ 53, \ 52, \ 51, \ 50, \ 49, \ 48, \ 47, \ 46, \ 45, \ 44, \ 43, \ 42, \ 41, \ 40, \ 39, \ 38, \ 37, \ 36, \ 35, \ 34, \ 33, \ 32, \ 31, \ 30, \ 29, \ 28, \ 27, \ 26, \ 25, \ 24, \ 23, \ 22, \ 21, \ 20, \ 19, \ 18, \ 17, \ 16, \ 15, \ 14, \ 13, \ 12, \ 11, \ 10, \ 9, \ 8, \ 7, \ 6, \ 5, \ 4, \ 3, \ 2, \ 1, \ 0 \ ) #endif #ifndef clamp #define clamp( x, lower, upper ) min( max( ( x ), ( lower ) ), ( upper ) ) #endif #ifndef count_of #define count_of( x ) ( ( size_of( x ) / size_of( 0 [x] ) ) / ( (ssize)( ! ( size_of( x ) % size_of( 0 [x] ) ) ) ) ) #endif #ifndef is_between #define is_between( x, lower, upper ) ( ( ( lower ) <= ( x ) ) && ( ( x ) <= ( upper ) ) ) #endif #ifndef size_of #define size_of( x ) ( ssize )( sizeof( x ) ) #endif #ifndef max #define max( a, b ) ( ( a > b ) ? ( a ) : ( b ) ) #endif #ifndef min #define min( a, b ) ( ( a < b ) ? ( a ) : ( b ) ) #endif #if GEN_COMPILER_MSVC || GEN_COMPILER_TINYC #define offset_of( Type, element ) ( ( GEN_NS( ssize ) ) & ( ( (Type*)0 )->element ) ) #else #define offset_of( Type, element ) __builtin_offsetof( Type, element ) #endif #ifndef FORCEINLINE #if GEN_COMPILER_MSVC #define FORCEINLINE __forceinline #define neverinline __declspec( noinline ) #elif GEN_COMPILER_GCC #define FORCEINLINE inline __attribute__( ( __always_inline__ ) ) #define neverinline __attribute__( ( __noinline__ ) ) #elif GEN_COMPILER_CLANG #if __has_attribute( __always_inline__ ) #define FORCEINLINE inline __attribute__( ( __always_inline__ ) ) #define neverinline __attribute__( ( __noinline__ ) ) #else #define FORCEINLINE #define neverinline #endif #else #define FORCEINLINE #define neverinline #endif #endif #ifndef neverinline #if GEN_COMPILER_MSVC #define neverinline __declspec( noinline ) #elif GEN_COMPILER_GCC #define neverinline __attribute__( ( __noinline__ ) ) #elif GEN_COMPILER_CLANG #if __has_attribute( __always_inline__ ) #define neverinline __attribute__( ( __noinline__ ) ) #else #define neverinline #endif #else #define neverinline #endif #endif #if GEN_COMPILER_C #ifndef static_assert #undef static_assert #if GEN_COMPILER_C && __STDC_VERSION__ >= 201112L #define static_assert( condition, message ) _Static_assert( condition, message ) #else #define static_assert( condition, message ) typedef char static_assertion_##__LINE__[( condition ) ? 1 : -1] #endif #endif #endif #if GEN_COMPILER_CPP // Already Defined #elif GEN_COMPILER_C && __STDC_VERSION__ >= 201112L #define thread_local _Thread_local #elif GEN_COMPILER_MSVC #define thread_local __declspec( thread ) #elif GEN_COMPILER_CLANG #define thread_local __thread #else #error "No thread local support" #endif #if ! defined( typeof ) && ( ! GEN_COMPILER_C || __STDC_VERSION__ < 202311L ) #if ! GEN_COMPILER_C #define typeof decltype #elif defined( _MSC_VER ) #define typeof __typeof__ #elif defined( __GNUC__ ) || defined( __clang__ ) #define typeof __typeof__ #else #error "Compiler not supported" #endif #endif #ifndef GEN_API_C_BEGIN #if GEN_COMPILER_C #define GEN_API_C_BEGIN #define GEN_API_C_END #else #define GEN_API_C_BEGIN \ extern "C" \ { #define GEN_API_C_END } #endif #endif #if GEN_COMPILER_C #if __STDC_VERSION__ >= 202311L #define enum_underlying( type ) : type #else #define enum_underlying( type ) #endif #else #define enum_underlying( type ) : type #endif #if GEN_COMPILER_C #ifndef nullptr #define nullptr NULL #endif #ifndef GEN_REMOVE_PTR #define GEN_REMOVE_PTR( type ) typeof( *( (type)NULL ) ) #endif #endif #if ! defined( GEN_PARAM_DEFAULT ) && GEN_COMPILER_CPP #define GEN_PARAM_DEFAULT = {} #else #define GEN_PARAM_DEFAULT #endif #if GEN_COMPILER_CPP #define struct_init( type, value ) \ { \ value \ } #else #define struct_init( type, value ) \ { \ value \ } #endif #if 0 #ifndef GEN_OPTIMIZE_MAPPINGS_BEGIN #define GEN_OPTIMIZE_MAPPINGS_BEGIN _pragma( optimize( "gt", on ) ) #define GEN_OPITMIZE_MAPPINGS_END _pragma( optimize( "", on ) ) #endif #else #define GEN_OPTIMIZE_MAPPINGS_BEGIN #define GEN_OPITMIZE_MAPPINGS_END #endif #pragma endregion Macros #pragma region Basic Types #define GEN_U8_MIN 0u #define GEN_U8_MAX 0xffu #define GEN_I8_MIN ( -0x7f - 1 ) #define GEN_I8_MAX 0x7f #define GEN_U16_MIN 0u #define GEN_U16_MAX 0xffffu #define GEN_I16_MIN ( -0x7fff - 1 ) #define GEN_I16_MAX 0x7fff #define GEN_U32_MIN 0u #define GEN_U32_MAX 0xffffffffu #define GEN_I32_MIN ( -0x7fffffff - 1 ) #define GEN_I32_MAX 0x7fffffff #define GEN_U64_MIN 0ull #define GEN_U64_MAX 0xffffffffffffffffull #define GEN_I64_MIN ( -0x7fffffffffffffffll - 1 ) #define GEN_I64_MAX 0x7fffffffffffffffll #if defined( GEN_ARCH_32_BIT ) # define GEN_USIZE_MIN GEN_U32_MIN # define GEN_USIZE_MAX GEN_U32_MAX # define GEN_ISIZE_MIN GEN_S32_MIN # define GEN_ISIZE_MAX GEN_S32_MAX #elif defined( GEN_ARCH_64_BIT ) # define GEN_USIZE_MIN GEN_U64_MIN # define GEN_USIZE_MAX GEN_U64_MAX # define GEN_ISIZE_MIN GEN_I64_MIN # define GEN_ISIZE_MAX GEN_I64_MAX #else # error Unknown architecture size. This library only supports 32 bit and 64 bit architectures. #endif #define GEN_F32_MIN 1.17549435e-38f #define GEN_F32_MAX 3.40282347e+38f #define GEN_F64_MIN 2.2250738585072014e-308 #define GEN_F64_MAX 1.7976931348623157e+308 #if defined( GEN_COMPILER_MSVC ) # if _MSC_VER < 1300 typedef unsigned char u8; typedef signed char s8; typedef unsigned short u16; typedef signed short s16; typedef unsigned int u32; typedef signed int s32; # else typedef unsigned __int8 u8; typedef signed __int8 s8; typedef unsigned __int16 u16; typedef signed __int16 s16; typedef unsigned __int32 u32; typedef signed __int32 s32; # endif typedef unsigned __int64 u64; typedef signed __int64 s64; #else # include typedef uint8_t u8; typedef int8_t s8; typedef uint16_t u16; typedef int16_t s16; typedef uint32_t u32; typedef int32_t s32; typedef uint64_t u64; typedef int64_t s64; #endif static_assert( sizeof( u8 ) == sizeof( s8 ), "sizeof(u8) != sizeof(s8)" ); static_assert( sizeof( u16 ) == sizeof( s16 ), "sizeof(u16) != sizeof(s16)" ); static_assert( sizeof( u32 ) == sizeof( s32 ), "sizeof(u32) != sizeof(s32)" ); static_assert( sizeof( u64 ) == sizeof( s64 ), "sizeof(u64) != sizeof(s64)" ); static_assert( sizeof( u8 ) == 1, "sizeof(u8) != 1" ); static_assert( sizeof( u16 ) == 2, "sizeof(u16) != 2" ); static_assert( sizeof( u32 ) == 4, "sizeof(u32) != 4" ); static_assert( sizeof( u64 ) == 8, "sizeof(u64) != 8" ); typedef size_t usize; typedef ptrdiff_t ssize; static_assert( sizeof( usize ) == sizeof( ssize ), "sizeof(usize) != sizeof(ssize)" ); // NOTE: (u)zpl_intptr is only here for semantic reasons really as this library will only support 32/64 bit OSes. #if defined( _WIN64 ) typedef signed __int64 sptr; typedef unsigned __int64 uptr; #elif defined( _WIN32 ) // NOTE; To mark types changing their size, e.g. zpl_intptr # ifndef _W64 # if ! defined( __midl ) && ( defined( _X86_ ) || defined( _M_IX86 ) ) && _MSC_VER >= 1300 # define _W64 __w64 # else # define _W64 # endif # endif typedef _W64 signed int sptr; typedef _W64 unsigned int uptr; #else typedef uintptr_t uptr; typedef intptr_t sptr; #endif static_assert( sizeof( uptr ) == sizeof( sptr ), "sizeof(uptr) != sizeof(sptr)" ); typedef float f32; typedef double f64; static_assert( sizeof( f32 ) == 4, "sizeof(f32) != 4" ); static_assert( sizeof( f64 ) == 8, "sizeof(f64) != 8" ); typedef s8 b8; typedef s16 b16; typedef s32 b32; typedef void* mem_ptr; typedef void const* mem_ptr_const ; #if GEN_COMPILER_CPP template uptr to_uptr( Type* ptr ) { return (uptr)ptr; } template sptr to_sptr( Type* ptr ) { return (sptr)ptr; } template mem_ptr to_mem_ptr ( Type ptr ) { return (mem_ptr) ptr; } template mem_ptr_const to_mem_ptr_const( Type ptr ) { return (mem_ptr_const)ptr; } #else #define to_uptr( ptr ) ((uptr)(ptr)) #define to_sptr( ptr ) ((sptr)(ptr)) #define to_mem_ptr( ptr) ((mem_ptr)ptr) #define to_mem_ptr_const( ptr) ((mem_ptr)ptr) #endif #pragma endregion Basic Types #pragma region Debug #if GEN_BUILD_DEBUG # if defined( GEN_COMPILER_MSVC ) # if _MSC_VER < 1300 // #pragma message("GEN_BUILD_DEBUG: __asm int 3") # define GEN_DEBUG_TRAP() __asm int 3 /* Trap to debugger! */ # else // #pragma message("GEN_BUILD_DEBUG: __debugbreak()") # define GEN_DEBUG_TRAP() __debugbreak() # endif # elif defined( GEN_COMPILER_TINYC ) # define GEN_DEBUG_TRAP() process_exit( 1 ) # else # define GEN_DEBUG_TRAP() __builtin_trap() # endif #else // #pragma message("GEN_BUILD_DEBUG: omitted") # define GEN_DEBUG_TRAP() #endif #define GEN_ASSERT( cond ) GEN_ASSERT_MSG( cond, NULL ) #define GEN_ASSERT_MSG( cond, msg, ... ) \ do \ { \ if ( ! ( cond ) ) \ { \ assert_handler( #cond, __FILE__, __func__, scast( s64, __LINE__ ), msg, ##__VA_ARGS__ ); \ GEN_DEBUG_TRAP(); \ } \ } while ( 0 ) #define GEN_ASSERT_NOT_NULL( ptr ) GEN_ASSERT_MSG( ( ptr ) != NULL, #ptr " must not be NULL" ) // NOTE: Things that shouldn't happen with a message! #define GEN_PANIC( msg, ... ) GEN_ASSERT_MSG( 0, msg, ##__VA_ARGS__ ) #if GEN_BUILD_DEBUG #define GEN_FATAL( ... ) \ do \ { \ local_persist thread_local \ char buf[GEN_PRINTF_MAXLEN] = { 0 }; \ \ c_str_fmt(buf, GEN_PRINTF_MAXLEN, __VA_ARGS__); \ GEN_PANIC(buf); \ } \ while (0) #else # define GEN_FATAL( ... ) \ do \ { \ c_str_fmt_out_err( __VA_ARGS__ ); \ GEN_DEBUG_TRAP(); \ process_exit(1); \ } \ while (0) #endif void assert_handler( char const* condition, char const* file, char const* function, s32 line, char const* msg, ... ); s32 assert_crash( char const* condition ); void process_exit( u32 code ); #pragma endregion Debug #pragma region Memory #define kilobytes( x ) ( ( x ) * ( s64 )( 1024 ) ) #define megabytes( x ) ( kilobytes( x ) * ( s64 )( 1024 ) ) #define gigabytes( x ) ( megabytes( x ) * ( s64 )( 1024 ) ) #define terabytes( x ) ( gigabytes( x ) * ( s64 )( 1024 ) ) #define GEN__ONES ( scast( GEN_NS usize, - 1) / GEN_U8_MAX ) #define GEN__HIGHS ( GEN__ONES * ( GEN_U8_MAX / 2 + 1 ) ) #define GEN__HAS_ZERO( x ) ( ( ( x ) - GEN__ONES ) & ~( x ) & GEN__HIGHS ) template< class Type > void swap( Type& a, Type& b ) { Type tmp = a; a = b; b = tmp; } //! Checks if value is power of 2. b32 is_power_of_two( ssize x ); //! Aligns address to specified alignment. void* align_forward( void* ptr, ssize alignment ); //! Aligns value to a specified alignment. s64 align_forward_by_value( s64 value, ssize alignment ); //! Moves pointer forward by bytes. void* pointer_add( void* ptr, ssize bytes ); //! Moves pointer forward by bytes. void const* pointer_add_const( void const* ptr, ssize bytes ); //! Calculates difference between two addresses. ssize pointer_diff( void const* begin, void const* end ); //! Copy non-overlapping memory from source to destination. void* mem_copy( void* dest, void const* source, ssize size ); //! Search for a constant value within the size limit at memory location. void const* mem_find( void const* data, u8 byte_value, ssize size ); //! Copy memory from source to destination. void* mem_move( void* dest, void const* source, ssize size ); //! Set constant value at memory location with specified size. void* mem_set( void* data, u8 byte_value, ssize size ); //! @param ptr Memory location to clear up. //! @param size The size to clear up with. void zero_size( void* ptr, ssize size ); //! Clears up an item. #define zero_item( t ) zero_size( ( t ), size_of( *( t ) ) ) // NOTE: Pass pointer of struct //! Clears up an array. #define zero_array( a, count ) zero_size( ( a ), size_of( *( a ) ) * count ) enum AllocType : u8 { EAllocation_ALLOC, EAllocation_FREE, EAllocation_FREE_ALL, EAllocation_RESIZE, }; typedef void*(AllocatorProc)( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags ); struct AllocatorInfo { AllocatorProc* Proc; void* Data; }; enum AllocFlag { ALLOCATOR_FLAG_CLEAR_TO_ZERO = bit( 0 ), }; #ifndef GEN_DEFAULT_MEMORY_ALIGNMENT # define GEN_DEFAULT_MEMORY_ALIGNMENT ( 2 * size_of( void* ) ) #endif #ifndef GEN_DEFAULT_ALLOCATOR_FLAGS # define GEN_DEFAULT_ALLOCATOR_FLAGS ( ALLOCATOR_FLAG_CLEAR_TO_ZERO ) #endif //! Allocate memory with default alignment. void* alloc( AllocatorInfo a, ssize size ); //! Allocate memory with specified alignment. void* alloc_align( AllocatorInfo a, ssize size, ssize alignment ); //! Free allocated memory. void allocator_free( AllocatorInfo a, void* ptr ); //! Free all memory allocated by an allocator. void free_all( AllocatorInfo a ); //! Resize an allocated memory. void* resize( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size ); //! Resize an allocated memory with specified alignment. void* resize_align( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size, ssize alignment ); //! Allocate memory for an item. #define alloc_item( allocator_, Type ) ( Type* )alloc( allocator_, size_of( Type ) ) //! Allocate memory for an array of items. #define alloc_array( allocator_, Type, count ) ( Type* )alloc( allocator_, size_of( Type ) * ( count ) ) /* heap memory analysis tools */ /* define GEN_HEAP_ANALYSIS to enable this feature */ /* call zpl_heap_stats_init at the beginning of the entry point */ /* you can call zpl_heap_stats_check near the end of the execution to validate any possible leaks */ void heap_stats_init( void ); ssize heap_stats_used_memory( void ); ssize heap_stats_alloc_count( void ); void heap_stats_check( void ); //! Allocate/Resize memory using default options. //! Use this if you don't need a "fancy" resize allocation void* default_resize_align( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size, ssize alignment ); void* heap_allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags ); //! The heap allocator backed by operating system's memory manager. constexpr AllocatorInfo heap( void ) { AllocatorInfo allocator = { heap_allocator_proc, nullptr }; return allocator; } //! Helper to allocate memory using heap allocator. #define malloc( sz ) alloc( heap(), sz ) //! Helper to free memory allocated by heap allocator. #define mfree( ptr ) free( heap(), ptr ) struct VirtualMemory { void* data; ssize size; }; //! Initialize virtual memory from existing data. VirtualMemory vm_from_memory( void* data, ssize size ); //! Allocate virtual memory at address with size. //! @param addr The starting address of the region to reserve. If NULL, it lets operating system to decide where to allocate it. //! @param size The size to serve. VirtualMemory vm_alloc( void* addr, ssize size ); //! Release the virtual memory. b32 vm_free( VirtualMemory vm ); //! Trim virtual memory. VirtualMemory vm_trim( VirtualMemory vm, ssize lead_size, ssize size ); //! Purge virtual memory. b32 vm_purge( VirtualMemory vm ); //! Retrieve VM's page size and alignment. ssize virtual_memory_page_size( ssize* alignment_out ); #pragma region Arena struct Arena; AllocatorInfo arena_allocator_info( Arena* arena ); // Remove static keyword and rename allocator_proc void* arena_allocator_proc(void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags); // Add these declarations after the Arena struct Arena arena_init_from_allocator(AllocatorInfo backing, ssize size); Arena arena_init_from_memory ( void* start, ssize size ); Arena arena_init_sub (Arena* parent, ssize size); ssize arena_alignment_of (Arena* arena, ssize alignment); void arena_check (Arena* arena); void arena_free (Arena* arena); ssize arena_size_remaining(Arena* arena, ssize alignment); struct Arena { AllocatorInfo Backing; void* PhysicalStart; ssize TotalSize; ssize TotalUsed; ssize TempCount; #if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP #pragma region Member Mapping FORCEINLINE operator AllocatorInfo() { return arena_allocator_info(this); } FORCEINLINE static void* allocator_proc( void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags ) { return arena_allocator_proc( allocator_data, type, size, alignment, old_memory, old_size, flags ); } FORCEINLINE static Arena init_from_memory( void* start, ssize size ) { return arena_init_from_memory( start, size ); } FORCEINLINE static Arena init_from_allocator( AllocatorInfo backing, ssize size ) { return arena_init_from_allocator( backing, size ); } FORCEINLINE static Arena init_sub( Arena& parent, ssize size ) { return arena_init_from_allocator( parent.Backing, size ); } FORCEINLINE ssize alignment_of( ssize alignment ) { return arena_alignment_of(this, alignment); } FORCEINLINE void free() { return arena_free(this); } FORCEINLINE ssize size_remaining( ssize alignment ) { return arena_size_remaining(this, alignment); } // This id is defined by Unreal for asserts #pragma push_macro("check") #undef check FORCEINLINE void check() { arena_check(this); } #pragma pop_macro("check") #pragma endregion Member Mapping #endif }; #if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP FORCEINLINE AllocatorInfo allocator_info(Arena& arena ) { return arena_allocator_info(& arena); } FORCEINLINE Arena init_sub (Arena& parent, ssize size) { return arena_init_sub( & parent, size); } FORCEINLINE ssize alignment_of (Arena& arena, ssize alignment) { return arena_alignment_of( & arena, alignment); } FORCEINLINE void free (Arena& arena) { return arena_free(& arena); } FORCEINLINE ssize size_remaining(Arena& arena, ssize alignment) { return arena_size_remaining(& arena, alignment); } // This id is defined by Unreal for asserts #pragma push_macro("check") #undef check FORCEINLINE void check(Arena& arena) { return arena_check(& arena); } #pragma pop_macro("check") #endif inline AllocatorInfo arena_allocator_info( Arena* arena ) { GEN_ASSERT(arena != nullptr); AllocatorInfo info = { arena_allocator_proc, arena }; return info; } inline Arena arena_init_from_memory( void* start, ssize size ) { Arena arena = { { nullptr, nullptr }, start, size, 0, 0 }; return arena; } inline Arena arena_init_from_allocator(AllocatorInfo backing, ssize size) { Arena result = { backing, alloc(backing, size), size, 0, 0 }; return result; } inline Arena arena_init_sub(Arena* parent, ssize size) { GEN_ASSERT(parent != nullptr); return arena_init_from_allocator(parent->Backing, size); } inline ssize arena_alignment_of(Arena* arena, ssize alignment) { GEN_ASSERT(arena != nullptr); ssize alignment_offset, result_pointer, mask; GEN_ASSERT(is_power_of_two(alignment)); alignment_offset = 0; result_pointer = (ssize)arena->PhysicalStart + arena->TotalUsed; mask = alignment - 1; if (result_pointer & mask) alignment_offset = alignment - (result_pointer & mask); return alignment_offset; } inline void arena_check(Arena* arena) { GEN_ASSERT(arena != nullptr ); GEN_ASSERT(arena->TempCount == 0); } inline void arena_free(Arena* arena) { GEN_ASSERT(arena != nullptr); if (arena->Backing.Proc) { allocator_free(arena->Backing, arena->PhysicalStart); arena->PhysicalStart = nullptr; } } inline ssize arena_size_remaining(Arena* arena, ssize alignment) { GEN_ASSERT(arena != nullptr); ssize result = arena->TotalSize - (arena->TotalUsed + arena_alignment_of(arena, alignment)); return result; } #pragma endregion Arena #pragma region FixedArena template struct FixedArena; template FixedArena fixed_arena_init(); template AllocatorInfo fixed_arena_allocator_info(FixedArena* fixed_arena ); template ssize fixed_arena_size_remaining(FixedArena* fixed_arena, ssize alignment); template void fixed_arena_free(FixedArena* fixed_arena); #if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP template AllocatorInfo allocator_info( FixedArena& fixed_arena ) { return allocator_info(& fixed_arena); } template ssize size_remaining(FixedArena& fixed_arena, ssize alignment) { return size_remaining( & fixed_arena, alignment); } #endif // Just a wrapper around using an arena with memory associated with its scope instead of from an allocator. // Used for static segment or stack allocations. template< s32 Size > struct FixedArena { char memory[Size]; Arena arena; #if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP #pragma region Member Mapping FORCEINLINE operator AllocatorInfo() { return fixed_arena_allocator_info(this); } FORCEINLINE static FixedArena init() { FixedArena result; fixed_arena_init(result); return result; } FORCEINLINE ssize size_remaining(ssize alignment) { fixed_arena_size_remaining(this, alignment); } #pragma endregion Member Mapping #endif }; template inline AllocatorInfo fixed_arena_allocator_info( FixedArena* fixed_arena ) { GEN_ASSERT(fixed_arena); return { arena_allocator_proc, & fixed_arena->arena }; } template inline void fixed_arena_init(FixedArena* result) { zero_size(& result->memory[0], Size); result->arena = arena_init_from_memory(& result->memory[0], Size); } template inline void fixed_arena_free(FixedArena* fixed_arena) { arena_free( & fixed_arena->arena); } template inline ssize fixed_arena_size_remaining(FixedArena* fixed_arena, ssize alignment) { return size_remaining(fixed_arena->arena, alignment); } using FixedArena_1KB = FixedArena< kilobytes( 1 ) >; using FixedArena_4KB = FixedArena< kilobytes( 4 ) >; using FixedArena_8KB = FixedArena< kilobytes( 8 ) >; using FixedArena_16KB = FixedArena< kilobytes( 16 ) >; using FixedArena_32KB = FixedArena< kilobytes( 32 ) >; using FixedArena_64KB = FixedArena< kilobytes( 64 ) >; using FixedArena_128KB = FixedArena< kilobytes( 128 ) >; using FixedArena_256KB = FixedArena< kilobytes( 256 ) >; using FixedArena_512KB = FixedArena< kilobytes( 512 ) >; using FixedArena_1MB = FixedArena< megabytes( 1 ) >; using FixedArena_2MB = FixedArena< megabytes( 2 ) >; using FixedArena_4MB = FixedArena< megabytes( 4 ) >; #pragma endregion FixedArena #pragma region Pool struct Pool; void* pool_allocator_proc(void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags); Pool pool_init(AllocatorInfo backing, ssize num_blocks, ssize block_size); Pool pool_init_align(AllocatorInfo backing, ssize num_blocks, ssize block_size, ssize block_align); AllocatorInfo pool_allocator_info(Pool* pool); void pool_clear(Pool* pool); void pool_free(Pool* pool); #if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP FORCEINLINE AllocatorInfo allocator_info(Pool& pool) { return pool_allocator_info(& pool); } FORCEINLINE void clear(Pool& pool) { return pool_clear(& pool); } FORCEINLINE void free(Pool& pool) { return pool_free(& pool); } #endif struct Pool { AllocatorInfo Backing; void* PhysicalStart; void* FreeList; ssize BlockSize; ssize BlockAlign; ssize TotalSize; ssize NumBlocks; #if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP #pragma region Member Mapping FORCEINLINE operator AllocatorInfo() { return pool_allocator_info(this); } FORCEINLINE static void* allocator_proc(void* allocator_data, AllocType type, ssize size, ssize alignment, void* old_memory, ssize old_size, u64 flags) { return pool_allocator_proc(allocator_data, type, size, alignment, old_memory, old_size, flags); } FORCEINLINE static Pool init(AllocatorInfo backing, ssize num_blocks, ssize block_size) { return pool_init(backing, num_blocks, block_size); } FORCEINLINE static Pool init_align(AllocatorInfo backing, ssize num_blocks, ssize block_size, ssize block_align) { return pool_init_align(backing, num_blocks, block_size, block_align); } FORCEINLINE void clear() { pool_clear( this); } FORCEINLINE void free() { pool_free( this); } #pragma endregion #endif }; inline AllocatorInfo pool_allocator_info(Pool* pool) { AllocatorInfo info = { pool_allocator_proc, pool }; return info; } inline Pool pool_init(AllocatorInfo backing, ssize num_blocks, ssize block_size) { return pool_init_align(backing, num_blocks, block_size, GEN_DEFAULT_MEMORY_ALIGNMENT); } inline void pool_free(Pool* pool) { if(pool->Backing.Proc) { allocator_free(pool->Backing, pool->PhysicalStart); } } #pragma endregion Pool inline b32 is_power_of_two( ssize x ) { if ( x <= 0 ) return false; return ! ( x & ( x - 1 ) ); } inline mem_ptr align_forward( void* ptr, ssize alignment ) { GEN_ASSERT( is_power_of_two( alignment ) ); uptr p = to_uptr(ptr); uptr forward = (p + ( alignment - 1 ) ) & ~( alignment - 1 ); return to_mem_ptr(forward); } inline s64 align_forward_s64( s64 value, ssize alignment ) { return value + ( alignment - value % alignment ) % alignment; } inline void* pointer_add ( void* ptr, ssize bytes ) { return rcast(void*, rcast( u8*, ptr) + bytes ); } inline void const* pointer_add_const( void const* ptr, ssize bytes ) { return rcast(void const*, rcast( u8 const*, ptr) + bytes ); } inline sptr pointer_diff( mem_ptr_const begin, mem_ptr_const end ) { return scast( ssize, rcast( u8 const*, end) - rcast(u8 const*, begin) ); } inline void* mem_move( void* destination, void const* source, ssize byte_count ) { if ( destination == NULL ) { return NULL; } u8* dest_ptr = rcast( u8*, destination); u8 const* src_ptr = rcast( u8 const*, source); if ( dest_ptr == src_ptr ) return dest_ptr; if ( src_ptr + byte_count <= dest_ptr || dest_ptr + byte_count <= src_ptr ) // NOTE: Non-overlapping return mem_copy( dest_ptr, src_ptr, byte_count ); if ( dest_ptr < src_ptr ) { if ( to_uptr(src_ptr) % size_of( ssize ) == to_uptr(dest_ptr) % size_of( ssize ) ) { while ( pcast( uptr, dest_ptr) % size_of( ssize ) ) { if ( ! byte_count-- ) return destination; *dest_ptr++ = *src_ptr++; } while ( byte_count >= size_of( ssize ) ) { * rcast(ssize*, dest_ptr) = * rcast(ssize const*, src_ptr); byte_count -= size_of( ssize ); dest_ptr += size_of( ssize ); src_ptr += size_of( ssize ); } } for ( ; byte_count; byte_count-- ) *dest_ptr++ = *src_ptr++; } else { if ( ( to_uptr(src_ptr) % size_of( ssize ) ) == ( to_uptr(dest_ptr) % size_of( ssize ) ) ) { while ( to_uptr( dest_ptr + byte_count ) % size_of( ssize ) ) { if ( ! byte_count-- ) return destination; dest_ptr[ byte_count ] = src_ptr[ byte_count ]; } while ( byte_count >= size_of( ssize ) ) { byte_count -= size_of( ssize ); * rcast(ssize*, dest_ptr + byte_count ) = * rcast( ssize const*, src_ptr + byte_count ); } } while ( byte_count ) byte_count--, dest_ptr[ byte_count ] = src_ptr[ byte_count ]; } return destination; } inline void* mem_set( void* destination, u8 fill_byte, ssize byte_count ) { if ( destination == NULL ) { return NULL; } ssize align_offset; u8* dest_ptr = rcast( u8*, destination); u32 fill_word = ( ( u32 )-1 ) / 255 * fill_byte; if ( byte_count == 0 ) return destination; dest_ptr[ 0 ] = dest_ptr[ byte_count - 1 ] = fill_byte; if ( byte_count < 3 ) return destination; dest_ptr[ 1 ] = dest_ptr[ byte_count - 2 ] = fill_byte; dest_ptr[ 2 ] = dest_ptr[ byte_count - 3 ] = fill_byte; if ( byte_count < 7 ) return destination; dest_ptr[ 3 ] = dest_ptr[ byte_count - 4 ] = fill_byte; if ( byte_count < 9 ) return destination; align_offset = -to_sptr( dest_ptr ) & 3; dest_ptr += align_offset; byte_count -= align_offset; byte_count &= -4; * rcast( u32*, ( dest_ptr + 0 ) ) = fill_word; * rcast( u32*, ( dest_ptr + byte_count - 4 ) ) = fill_word; if ( byte_count < 9 ) return destination; * rcast( u32*, dest_ptr + 4 ) = fill_word; * rcast( u32*, dest_ptr + 8 ) = fill_word; * rcast( u32*, dest_ptr + byte_count - 12 ) = fill_word; * rcast( u32*, dest_ptr + byte_count - 8 ) = fill_word; if ( byte_count < 25 ) return destination; * rcast( u32*, dest_ptr + 12 ) = fill_word; * rcast( u32*, dest_ptr + 16 ) = fill_word; * rcast( u32*, dest_ptr + 20 ) = fill_word; * rcast( u32*, dest_ptr + 24 ) = fill_word; * rcast( u32*, dest_ptr + byte_count - 28 ) = fill_word; * rcast( u32*, dest_ptr + byte_count - 24 ) = fill_word; * rcast( u32*, dest_ptr + byte_count - 20 ) = fill_word; * rcast( u32*, dest_ptr + byte_count - 16 ) = fill_word; align_offset = 24 + to_uptr( dest_ptr ) & 4; dest_ptr += align_offset; byte_count -= align_offset; { u64 fill_doubleword = ( scast( u64, fill_word) << 32 ) | fill_word; while ( byte_count > 31 ) { * rcast( u64*, dest_ptr + 0 ) = fill_doubleword; * rcast( u64*, dest_ptr + 8 ) = fill_doubleword; * rcast( u64*, dest_ptr + 16 ) = fill_doubleword; * rcast( u64*, dest_ptr + 24 ) = fill_doubleword; byte_count -= 32; dest_ptr += 32; } } return destination; } inline void* alloc_align( AllocatorInfo a, ssize size, ssize alignment ) { return a.Proc( a.Data, EAllocation_ALLOC, size, alignment, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS ); } inline void* alloc( AllocatorInfo a, ssize size ) { return alloc_align( a, size, GEN_DEFAULT_MEMORY_ALIGNMENT ); } inline void allocator_free( AllocatorInfo a, void* ptr ) { if ( ptr != nullptr ) a.Proc( a.Data, EAllocation_FREE, 0, 0, ptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS ); } inline void free_all( AllocatorInfo a ) { a.Proc( a.Data, EAllocation_FREE_ALL, 0, 0, nullptr, 0, GEN_DEFAULT_ALLOCATOR_FLAGS ); } inline void* resize( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size ) { return resize_align( a, ptr, old_size, new_size, GEN_DEFAULT_MEMORY_ALIGNMENT ); } inline void* resize_align( AllocatorInfo a, void* ptr, ssize old_size, ssize new_size, ssize alignment ) { return a.Proc( a.Data, EAllocation_RESIZE, new_size, alignment, ptr, old_size, GEN_DEFAULT_ALLOCATOR_FLAGS ); } inline void* default_resize_align( AllocatorInfo a, void* old_memory, ssize old_size, ssize new_size, ssize alignment ) { if ( ! old_memory ) return alloc_align( a, new_size, alignment ); if ( new_size == 0 ) { allocator_free( a, old_memory ); return nullptr; } if ( new_size < old_size ) new_size = old_size; if ( old_size == new_size ) { return old_memory; } else { void* new_memory = alloc_align( a, new_size, alignment ); if ( ! new_memory ) return nullptr; mem_move( new_memory, old_memory, min( new_size, old_size ) ); allocator_free( a, old_memory ); return new_memory; } } inline void zero_size( void* ptr, ssize size ) { mem_set( ptr, 0, size ); } #pragma endregion Memory #pragma region String Ops const char* char_first_occurence( const char* str, char c ); b32 char_is_alpha( char c ); b32 char_is_alphanumeric( char c ); b32 char_is_digit( char c ); b32 char_is_hex_digit( char c ); b32 char_is_space( char c ); char char_to_lower( char c ); char char_to_upper( char c ); s32 digit_to_int( char c ); s32 hex_digit_to_int( char c ); s32 c_str_compare( const char* s1, const char* s2 ); s32 c_str_compare_len( const char* s1, const char* s2, ssize len ); char* c_str_copy( char* dest, const char* source, ssize len ); ssize c_str_copy_nulpad( char* dest, const char* source, ssize len ); ssize c_str_len( const char* str ); ssize c_str_len_capped( const char* str, ssize max_len ); char* c_str_reverse( char* str ); // NOTE: ASCII only char const* c_str_skip( char const* str, char c ); char const* c_str_skip_any( char const* str, char const* char_list ); char const* c_str_trim( char const* str, b32 catch_newline ); // NOTE: ASCII only void c_str_to_lower( char* str ); void c_str_to_upper( char* str ); s64 c_str_to_i64( const char* str, char** end_ptr, s32 base ); void i64_to_str( s64 value, char* string, s32 base ); void u64_to_str( u64 value, char* string, s32 base ); f64 c_str_to_f64( const char* str, char** end_ptr ); inline const char* char_first_occurence( const char* s, char c ) { char ch = c; for ( ; *s != ch; s++ ) { if ( *s == '\0' ) return NULL; } return s; } inline b32 char_is_alpha( char c ) { if ( ( c >= 'A' && c <= 'Z' ) || ( c >= 'a' && c <= 'z' ) ) return true; return false; } inline b32 char_is_alphanumeric( char c ) { return char_is_alpha( c ) || char_is_digit( c ); } inline b32 char_is_digit( char c ) { if ( c >= '0' && c <= '9' ) return true; return false; } inline b32 char_is_hex_digit( char c ) { if ( char_is_digit( c ) || ( c >= 'a' && c <= 'f' ) || ( c >= 'A' && c <= 'F' ) ) return true; return false; } inline b32 char_is_space( char c ) { if ( c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f' || c == '\v' ) return true; return false; } inline char char_to_lower( char c ) { if ( c >= 'A' && c <= 'Z' ) return 'a' + ( c - 'A' ); return c; } inline char char_to_upper( char c ) { if ( c >= 'a' && c <= 'z' ) return 'A' + ( c - 'a' ); return c; } inline s32 digit_to_int( char c ) { return char_is_digit( c ) ? c - '0' : c - 'W'; } inline s32 hex_digit_to_int( char c ) { if ( char_is_digit( c ) ) return digit_to_int( c ); else if ( is_between( c, 'a', 'f' ) ) return c - 'a' + 10; else if ( is_between( c, 'A', 'F' ) ) return c - 'A' + 10; return -1; } inline s32 c_str_compare( const char* s1, const char* s2 ) { while ( *s1 && ( *s1 == *s2 ) ) { s1++, s2++; } return *( u8* )s1 - *( u8* )s2; } inline s32 c_str_compare_len( const char* s1, const char* s2, ssize len ) { for ( ; len > 0; s1++, s2++, len-- ) { if ( *s1 != *s2 ) return ( ( s1 < s2 ) ? -1 : +1 ); else if ( *s1 == '\0' ) return 0; } return 0; } inline char* c_str_copy( char* dest, const char* source, ssize len ) { GEN_ASSERT_NOT_NULL( dest ); if ( source ) { char* str = dest; while ( len > 0 && *source ) { *str++ = *source++; len--; } while ( len > 0 ) { *str++ = '\0'; len--; } } return dest; } inline ssize c_str_copy_nulpad( char* dest, const char* source, ssize len ) { ssize result = 0; GEN_ASSERT_NOT_NULL( dest ); if ( source ) { const char* source_start = source; char* str = dest; while ( len > 0 && *source ) { *str++ = *source++; len--; } while ( len > 0 ) { *str++ = '\0'; len--; } result = source - source_start; } return result; } inline ssize c_str_len( const char* str ) { if ( str == NULL ) { return 0; } const char* p = str; while ( *str ) str++; return str - p; } inline ssize c_str_len_capped( const char* str, ssize max_len ) { const char* end = rcast(const char*, mem_find( str, 0, max_len )); if ( end ) return end - str; return max_len; } inline char* c_str_reverse( char* str ) { ssize len = c_str_len( str ); char* a = str + 0; char* b = str + len - 1; len /= 2; while ( len-- ) { swap( *a, *b ); a++, b--; } return str; } inline char const* c_str_skip( char const* str, char c ) { while ( *str && *str != c ) { ++str; } return str; } inline char const* c_str_skip_any( char const* str, char const* char_list ) { char const* closest_ptr = rcast( char const*, pointer_add_const( rcast(mem_ptr_const, str), c_str_len( str ) )); ssize char_list_count = c_str_len( char_list ); for ( ssize i = 0; i < char_list_count; i++ ) { char const* p = c_str_skip( str, char_list[ i ] ); closest_ptr = min( closest_ptr, p ); } return closest_ptr; } inline char const* c_str_trim( char const* str, b32 catch_newline ) { while ( *str && char_is_space( *str ) && ( ! catch_newline || ( catch_newline && *str != '\n' ) ) ) { ++str; } return str; } inline void c_str_to_lower( char* str ) { if ( ! str ) return; while ( *str ) { *str = char_to_lower( *str ); str++; } } inline void c_str_to_upper( char* str ) { if ( ! str ) return; while ( *str ) { *str = char_to_upper( *str ); str++; } } #pragma endregion String Ops #pragma region Printing typedef struct FileInfo FileInfo; #ifndef GEN_PRINTF_MAXLEN # define GEN_PRINTF_MAXLEN kilobytes(128) #endif typedef char PrintF_Buffer[GEN_PRINTF_MAXLEN]; // NOTE: A locally persisting buffer is used internally char* c_str_fmt_buf ( char const* fmt, ... ); char* c_str_fmt_buf_va ( char const* fmt, va_list va ); ssize c_str_fmt ( char* str, ssize n, char const* fmt, ... ); ssize c_str_fmt_va ( char* str, ssize n, char const* fmt, va_list va ); ssize c_str_fmt_out_va ( char const* fmt, va_list va ); ssize c_str_fmt_out_err ( char const* fmt, ... ); ssize c_str_fmt_out_err_va( char const* fmt, va_list va ); ssize c_str_fmt_file ( FileInfo* f, char const* fmt, ... ); ssize c_str_fmt_file_va ( FileInfo* f, char const* fmt, va_list va ); constexpr char const* Msg_Invalid_Value = "INVALID VALUE PROVIDED"; inline ssize log_fmt(char const* fmt, ...) { ssize res; va_list va; va_start(va, fmt); res = c_str_fmt_out_va(fmt, va); va_end(va); return res; } #pragma endregion Printing #pragma region Containers template struct RemoveConst { typedef TType Type; }; template struct RemoveConst { typedef TType Type; }; template struct RemoveConst { typedef TType Type[]; }; template struct RemoveConst { typedef TType Type[Size]; }; template using TRemoveConst = typename RemoveConst::Type; template struct RemovePtr { typedef TType Type; }; template struct RemovePtr { typedef TType Type; }; template using TRemovePtr = typename RemovePtr::Type; #pragma region Array #define Array(Type) Array // #define array_init(Type, ...) array_init (__VA_ARGS__) // #define array_init_reserve(Type, ...) array_init_reserve(__VA_ARGS__) struct ArrayHeader; #if GEN_COMPILER_CPP template struct Array; # define get_array_underlying_type(array) typename TRemovePtr:: DataType #endif usize array_grow_formula(ssize value); template Array array_init (AllocatorInfo allocator); template Array array_init_reserve (AllocatorInfo allocator, ssize capacity); template bool array_append_array (Array* array, Array other); template bool array_append (Array* array, Type value); template bool array_append_items (Array* array, Type* items, usize item_num); template bool array_append_at (Array* array, Type item, usize idx); template bool array_append_items_at(Array* array, Type* items, usize item_num, usize idx); template Type* array_back (Array array); template void array_clear (Array array); template bool array_fill (Array array, usize begin, usize end, Type value); template void array_free (Array* array); template bool arary_grow (Array* array, usize min_capacity); template usize array_num (Array array); template void arary_pop (Array array); template void arary_remove_at (Array array, usize idx); template bool arary_reserve (Array* array, usize new_capacity); template bool arary_resize (Array* array, usize num); template bool arary_set_capacity (Array* array, usize new_capacity); template ArrayHeader* arary_get_header (Array array); struct ArrayHeader { AllocatorInfo Allocator; usize Capacity; usize Num; }; #if GEN_COMPILER_CPP template struct Array { Type* Data; #pragma region Member Mapping FORCEINLINE static Array init(AllocatorInfo allocator) { return array_init(allocator); } FORCEINLINE static Array init_reserve(AllocatorInfo allocator, ssize capacity) { return array_init_reserve(allocator, capacity); } FORCEINLINE static usize grow_formula(ssize value) { return array_grow_formula(value); } FORCEINLINE bool append(Array other) { return array_append_array(this, other); } FORCEINLINE bool append(Type value) { return array_append(this, value); } FORCEINLINE bool append(Type* items, usize item_num) { return array_append_items(this, items, item_num); } FORCEINLINE bool append_at(Type item, usize idx) { return array_append_at(this, item, idx); } FORCEINLINE bool append_at(Type* items, usize item_num, usize idx) { return array_append_items_at(this, items, item_num, idx); } FORCEINLINE Type* back() { return array_back(* this); } FORCEINLINE void clear() { array_clear(* this); } FORCEINLINE bool fill(usize begin, usize end, Type value) { return array_fill(* this, begin, end, value); } FORCEINLINE void free() { array_free(this); } FORCEINLINE ArrayHeader* get_header() { return array_get_header(* this); } FORCEINLINE bool grow(usize min_capacity) { return array_grow(this, min_capacity); } FORCEINLINE usize num() { return array_num(*this); } FORCEINLINE void pop() { array_pop(* this); } FORCEINLINE void remove_at(usize idx) { array_remove_at(* this, idx); } FORCEINLINE bool reserve(usize new_capacity) { return array_reserve(this, new_capacity); } FORCEINLINE bool resize(usize num) { return array_resize(this, num); } FORCEINLINE bool set_capacity(usize new_capacity) { return array_set_capacity(this, new_capacity); } #pragma endregion Member Mapping FORCEINLINE operator Type*() { return Data; } FORCEINLINE operator Type const*() const { return Data; } FORCEINLINE Type* begin() { return Data; } FORCEINLINE Type* end() { return Data + get_header()->Num; } FORCEINLINE Type& operator[](ssize index) { return Data[index]; } FORCEINLINE Type const& operator[](ssize index) const { return Data[index]; } using DataType = Type; }; #endif #if GEN_COMPILER_CPP && 0 template bool append(Array& array, Array other) { return append( & array, other ); } template bool append(Array& array, Type value) { return append( & array, value ); } template bool append(Array& array, Type* items, usize item_num) { return append( & array, items, item_num ); } template bool append_at(Array& array, Type item, usize idx) { return append_at( & array, item, idx ); } template bool append_at(Array& array, Type* items, usize item_num, usize idx) { return append_at( & array, items, item_num, idx ); } template void free(Array& array) { return free( & array ); } template bool grow(Array& array, usize min_capacity) { return grow( & array, min_capacity); } template bool reserve(Array& array, usize new_capacity) { return reserve( & array, new_capacity); } template bool resize(Array& array, usize num) { return resize( & array, num); } template bool set_capacity(Array& array, usize new_capacity) { return set_capacity( & array, new_capacity); } template FORCEINLINE Type* begin(Array& array) { return array; } template FORCEINLINE Type* end(Array& array) { return array + array_get_header(array)->Num; } template FORCEINLINE Type* next(Array& array, Type* entry) { return entry + 1; } #endif template FORCEINLINE Type* array_begin(Array array) { return array; } template FORCEINLINE Type* array_end(Array array) { return array + array_get_header(array)->Num; } template FORCEINLINE Type* array_next(Array array, Type* entry) { return ++ entry; } template inline Array array_init(AllocatorInfo allocator) { return array_init_reserve(allocator, array_grow_formula(0)); } template inline Array array_init_reserve(AllocatorInfo allocator, ssize capacity) { GEN_ASSERT(capacity > 0); ArrayHeader* header = rcast(ArrayHeader*, alloc(allocator, sizeof(ArrayHeader) + sizeof(Type) * capacity)); if (header == nullptr) return {nullptr}; header->Allocator = allocator; header->Capacity = capacity; header->Num = 0; return {rcast(Type*, header + 1)}; } FORCEINLINE usize array_grow_formula(ssize value) { return 2 * value + 8; } template inline bool array_append_array(Array* array, Array other) { return array_append_items(array, (Type*)other, array_num(other)); } template inline bool array_append(Array* array, Type value) { GEN_ASSERT( array != nullptr); GEN_ASSERT(* array != nullptr); ArrayHeader* header = array_get_header(* array); if (header->Num == header->Capacity) { if ( ! array_grow(array, header->Capacity)) return false; header = array_get_header(* array); } (*array)[ header->Num] = value; header->Num++; return true; } template inline bool array_append_items(Array* array, Type* items, usize item_num) { GEN_ASSERT( array != nullptr); GEN_ASSERT(* array != nullptr); GEN_ASSERT(items != nullptr); GEN_ASSERT(item_num > 0); ArrayHeader* header = array_get_header(* array); if (header->Num + item_num > header->Capacity) { if ( ! array_grow(array, header->Capacity + item_num)) return false; header = array_get_header(* array); } mem_copy((Type*)array + header->Num, items, item_num * sizeof(Type)); header->Num += item_num; return true; } template inline bool array_append_at(Array* array, Type item, usize idx) { GEN_ASSERT( array != nullptr); GEN_ASSERT(* array != nullptr); ArrayHeader* header = array_get_header(* array); ssize slot = idx; if (slot >= (ssize)(header->Num)) slot = header->Num - 1; if (slot < 0) slot = 0; if (header->Capacity < header->Num + 1) { if ( ! array_grow(array, header->Capacity + 1)) return false; header = array_get_header(* array); } Type* target = &(*array)[slot]; mem_move(target + 1, target, (header->Num - slot) * sizeof(Type)); header->Num++; return true; } template inline bool array_append_items_at(Array* array, Type* items, usize item_num, usize idx) { GEN_ASSERT( array != nullptr); GEN_ASSERT(* array != nullptr); ArrayHeader* header = get_header(array); if (idx >= header->Num) { return array_append_items(array, items, item_num); } if (item_num > header->Capacity) { if (! grow(array, header->Capacity + item_num)) return false; header = get_header(array); } Type* target = array.Data + idx + item_num; Type* src = array.Data + idx; mem_move(target, src, (header->Num - idx) * sizeof(Type)); mem_copy(src, items, item_num * sizeof(Type)); header->Num += item_num; return true; } template inline Type* array_back(Array array) { GEN_ASSERT(array != nullptr); ArrayHeader* header = array_get_header(array); if (header->Num <= 0) return nullptr; return & (array)[header->Num - 1]; } template inline void array_clear(Array array) { GEN_ASSERT(array != nullptr); ArrayHeader* header = array_get_header(array); header->Num = 0; } template inline bool array_fill(Array array, usize begin, usize end, Type value) { GEN_ASSERT(array != nullptr); GEN_ASSERT(begin <= end); ArrayHeader* header = array_get_header(array); if (begin < 0 || end > header->Num) return false; for (ssize idx = ssize(begin); idx < ssize(end); idx++) { array[idx] = value; } return true; } template FORCEINLINE void array_free(Array* array) { GEN_ASSERT( array != nullptr); GEN_ASSERT(* array != nullptr); ArrayHeader* header = array_get_header(* array); allocator_free(header->Allocator, header); Type** Data = (Type**)array; *Data = nullptr; } template FORCEINLINE ArrayHeader* array_get_header(Array array) { GEN_ASSERT(array != nullptr); Type* Data = array; using NonConstType = TRemoveConst; return rcast(ArrayHeader*, const_cast(Data)) - 1; } template FORCEINLINE bool array_grow(Array* array, usize min_capacity) { GEN_ASSERT( array != nullptr); GEN_ASSERT(* array != nullptr); GEN_ASSERT( min_capacity > 0 ); ArrayHeader* header = array_get_header(* array); usize new_capacity = array_grow_formula(header->Capacity); if (new_capacity < min_capacity) new_capacity = min_capacity; return array_set_capacity(array, new_capacity); } template FORCEINLINE usize array_num(Array array) { GEN_ASSERT(array != nullptr); return array_get_header(array)->Num; } template FORCEINLINE void array_pop(Array array) { GEN_ASSERT(array != nullptr); ArrayHeader* header = array_get_header(array); GEN_ASSERT(header->Num > 0); header->Num--; } template inline void array_remove_at(Array array, usize idx) { GEN_ASSERT(array != nullptr); ArrayHeader* header = array_get_header(array); GEN_ASSERT(idx < header->Num); mem_move(array + idx, array + idx + 1, sizeof(Type) * (header->Num - idx - 1)); header->Num--; } template inline bool array_reserve(Array* array, usize new_capacity) { GEN_ASSERT( array != nullptr); GEN_ASSERT(* array != nullptr); ArrayHeader* header = array_get_header(array); if (header->Capacity < new_capacity) return set_capacity(array, new_capacity); return true; } template inline bool array_resize(Array* array, usize num) { GEN_ASSERT( array != nullptr); GEN_ASSERT(* array != nullptr); ArrayHeader* header = array_get_header(* array); if (header->Capacity < num) { if (! array_grow( array, num)) return false; header = array_get_header(* array); } header->Num = num; return true; } template inline bool array_set_capacity(Array* array, usize new_capacity) { GEN_ASSERT( array != nullptr); GEN_ASSERT(* array != nullptr); ArrayHeader* header = array_get_header(* array); if (new_capacity == header->Capacity) return true; if (new_capacity < header->Num) { header->Num = new_capacity; return true; } ssize size = sizeof(ArrayHeader) + sizeof(Type) * new_capacity; ArrayHeader* new_header = rcast(ArrayHeader*, alloc(header->Allocator, size)); if (new_header == nullptr) return false; mem_move(new_header, header, sizeof(ArrayHeader) + sizeof(Type) * header->Num); new_header->Capacity = new_capacity; allocator_free(header->Allocator, header); Type** Data = (Type**)array; * Data = rcast(Type*, new_header + 1); return true; } // These are intended for use in the base library of gencpp and the C-variant of the library // It provides a interoperability between the C++ and C implementation of arrays. (not letting these do any crazy substiution though) // They are undefined in gen.hpp and gen.cpp at the end of the files. // We cpp library expects the user to use the regular calls as they can resolve the type fine. #define array_init(type, allocator) array_init (allocator ) #define array_init_reserve(type, allocator, cap) array_init_reserve (allocator, cap) #define array_append_array(array, other) array_append_array < get_array_underlying_type(array) > (& array, other ) #define array_append(array, value) array_append < get_array_underlying_type(array) > (& array, value ) #define array_append_items(array, items, item_num) array_append_items < get_array_underlying_type(array) > (& array, items, item_num ) #define array_append_at(array, item, idx ) array_append_at < get_array_underlying_type(array) > (& array, item, idx ) #define array_append_at_items(array, items, item_num, idx) array_append_at_items< get_array_underlying_type(array) > (& items, item_num, idx ) #define array_back(array) array_back < get_array_underlying_type(array) > (array ) #define array_clear(array) array_clear < get_array_underlying_type(array) > (array ) #define array_fill(array, begin, end, value) array_fill < get_array_underlying_type(array) > (array, begin, end, value ) #define array_free(array) array_free < get_array_underlying_type(array) > (& array ) #define arary_grow(array, min_capacity) arary_grow < get_array_underlying_type(array) > (& array, min_capacity) #define array_num(array) array_num < get_array_underlying_type(array) > (array ) #define arary_pop(array) arary_pop < get_array_underlying_type(array) > (array ) #define arary_remove_at(array, idx) arary_remove_at < get_array_underlying_type(array) > (idx) #define arary_reserve(array, new_capacity) arary_reserve < get_array_underlying_type(array) > (& array, new_capacity ) #define arary_resize(array, num) arary_resize < get_array_underlying_type(array) > (& array, num) #define arary_set_capacity(new_capacity) arary_set_capacity < get_array_underlying_type(array) > (& array, new_capacity ) #define arary_get_header(array) arary_get_header < get_array_underlying_type(array) > (array ) #pragma endregion Array #pragma region HashTable #define HashTable(Type) HashTable template struct HashTable; #ifndef get_hashtable_underlying_type #define get_hashtable_underlying_type(table) typename TRemovePtr:: DataType #endif struct HashTableFindResult { ssize HashIndex; ssize PrevIndex; ssize EntryIndex; }; template struct HashTableEntry { u64 Key; ssize Next; Type Value; }; #define HashTableEntry(Type) HashTableEntry template HashTable hashtable_init (AllocatorInfo allocator); template HashTable hashtable_init_reserve(AllocatorInfo allocator, usize num); template void hashtable_clear (HashTable table); template void hashtable_destroy (HashTable* table); template Type* hashtable_get (HashTable table, u64 key); template void hashtable_grow (HashTable* table); template void hashtable_rehash (HashTable* table, ssize new_num); template void hashtable_rehash_fast (HashTable table); template void hashtable_remove (HashTable table, u64 key); template void hashtable_remove_entry(HashTable table, ssize idx); template void hashtable_set (HashTable* table, u64 key, Type value); template ssize hashtable_slot (HashTable table, u64 key); template void hashtable_map (HashTable table, void (*map_proc)(u64 key, Type value)); template void hashtable_map_mut (HashTable table, void (*map_proc)(u64 key, Type* value)); template ssize hashtable__add_entry (HashTable* table, u64 key); template HashTableFindResult hashtable__find (HashTable table, u64 key); template bool hashtable__full (HashTable table); static constexpr f32 HashTable_CriticalLoadScale = 0.7f; template struct HashTable { Array Hashes; Array> Entries; #if ! GEN_C_LIKE_CPP #pragma region Member Mapping FORCEINLINE static HashTable init(AllocatorInfo allocator) { return hashtable_init(allocator); } FORCEINLINE static HashTable init_reserve(AllocatorInfo allocator, usize num) { return hashtable_init_reserve(allocator, num); } FORCEINLINE void clear() { clear(*this); } FORCEINLINE void destroy() { destroy(*this); } FORCEINLINE Type* get(u64 key) { return get(*this, key); } FORCEINLINE void grow() { grow(*this); } FORCEINLINE void rehash(ssize new_num) { rehash(*this, new_num); } FORCEINLINE void rehash_fast() { rehash_fast(*this); } FORCEINLINE void remove(u64 key) { remove(*this, key); } FORCEINLINE void remove_entry(ssize idx) { remove_entry(*this, idx); } FORCEINLINE void set(u64 key, Type value) { set(*this, key, value); } FORCEINLINE ssize slot(u64 key) { return slot(*this, key); } FORCEINLINE void map(void (*proc)(u64, Type)) { map(*this, proc); } FORCEINLINE void map_mut(void (*proc)(u64, Type*)) { map_mut(*this, proc); } #pragma endregion Member Mapping #endif using DataType = Type; }; #if GEN_SUPPORT_CPP_REFERENCES template void destroy (HashTable& table) { destroy(& table); } template void grow (HashTable& table) { grow(& table); } template void rehash (HashTable& table, ssize new_num) { rehash(& table, new_num); } template void set (HashTable& table, u64 key, Type value) { set(& table, key, value); } template ssize add_entry(HashTable& table, u64 key) { add_entry(& table, key); } #endif template inline HashTable hashtable_init(AllocatorInfo allocator) { HashTable result = hashtable_init_reserve(allocator, 8); return result; } template inline HashTable hashtable_init_reserve(AllocatorInfo allocator, usize num) { HashTable result = { { nullptr }, { nullptr } }; result.Hashes = array_init_reserve(allocator, num); array_get_header(result.Hashes)->Num = num; array_resize(& result.Hashes, num); array_fill(result.Hashes, 0, num, (ssize)-1); result.Entries = array_init_reserve>(allocator, num); return result; } template FORCEINLINE void hashtable_clear(HashTable table) { GEN_ASSERT_NOT_NULL(table.Hashes); GEN_ASSERT_NOT_NULL(table.Entries); array_clear(table.Entries); array_fill(table.Hashes, 0, array_num(table.Hashes), (ssize)-1); } template FORCEINLINE void hashtable_destroy(HashTable* table) { GEN_ASSERT_NOT_NULL(table->Hashes); GEN_ASSERT_NOT_NULL(table->Entries); if (table->Hashes && array_get_header(table->Hashes)->Capacity) { array_free(table->Hashes); array_free(table->Entries); } } template FORCEINLINE Type* hashtable_get(HashTable table, u64 key) { GEN_ASSERT_NOT_NULL(table.Hashes); GEN_ASSERT_NOT_NULL(table.Entries); ssize idx = hashtable__find(table, key).EntryIndex; if (idx >= 0) return & table.Entries[idx].Value; return nullptr; } template FORCEINLINE void hashtable_map(HashTable table, void (*map_proc)(u64 key, Type value)) { GEN_ASSERT_NOT_NULL(table.Hashes); GEN_ASSERT_NOT_NULL(table.Entries); GEN_ASSERT_NOT_NULL(map_proc); for (ssize idx = 0; idx < ssize(num(table.Entries)); ++idx) { map_proc(table.Entries[idx].Key, table.Entries[idx].Value); } } template FORCEINLINE void hashtable_map_mut(HashTable table, void (*map_proc)(u64 key, Type* value)) { GEN_ASSERT_NOT_NULL(table.Hashes); GEN_ASSERT_NOT_NULL(table.Entries); GEN_ASSERT_NOT_NULL(map_proc); for (ssize idx = 0; idx < ssize(num(table.Entries)); ++idx) { map_proc(table.Entries[idx].Key, & table.Entries[idx].Value); } } template FORCEINLINE void hashtable_grow(HashTable* table) { GEN_ASSERT_NOT_NULL(table); GEN_ASSERT_NOT_NULL(table->Hashes); GEN_ASSERT_NOT_NULL(table->Entries); ssize new_num = array_grow_formula( array_num(table->Entries)); hashtable_rehash(table, new_num); } template inline void hashtable_rehash(HashTable* table, ssize new_num) { GEN_ASSERT_NOT_NULL(table); GEN_ASSERT_NOT_NULL(table->Hashes); GEN_ASSERT_NOT_NULL(table->Entries); ssize last_added_index; HashTable new_ht = hashtable_init_reserve( array_get_header(table->Hashes)->Allocator, new_num); for (ssize idx = 0; idx < ssize( array_num(table->Entries)); ++idx) { HashTableFindResult find_result; HashTableEntry& entry = table->Entries[idx]; find_result = hashtable__find(new_ht, entry.Key); last_added_index = hashtable__add_entry(& new_ht, entry.Key); if (find_result.PrevIndex < 0) new_ht.Hashes[find_result.HashIndex] = last_added_index; else new_ht.Entries[find_result.PrevIndex].Next = last_added_index; new_ht.Entries[last_added_index].Next = find_result.EntryIndex; new_ht.Entries[last_added_index].Value = entry.Value; } hashtable_destroy(table); * table = new_ht; } template inline void hashtable_rehash_fast(HashTable table) { GEN_ASSERT_NOT_NULL(table.Hashes); GEN_ASSERT_NOT_NULL(table.Entries); ssize idx; for (idx = 0; idx < ssize(num(table.Entries)); idx++) table.Entries[idx].Next = -1; for (idx = 0; idx < ssize(num(table.Hashes)); idx++) table.Hashes[idx] = -1; for (idx = 0; idx < ssize(num(table.Entries)); idx++) { HashTableEntry* entry; HashTableFindResult find_result; entry = &table.Entries[idx]; find_result = find(table, entry->Key); if (find_result.PrevIndex < 0) table.Hashes[find_result.HashIndex] = idx; else table.Entries[find_result.PrevIndex].Next = idx; } } template FORCEINLINE void hashtable_remove(HashTable table, u64 key) { GEN_ASSERT_NOT_NULL(table.Hashes); GEN_ASSERT_NOT_NULL(table.Entries); HashTableFindResult find_result = find(table, key); if (find_result.EntryIndex >= 0) { remove_at(table.Entries, find_result.EntryIndex); rehash_fast(table); } } template FORCEINLINE void hashtable_remove_entry(HashTable table, ssize idx) { GEN_ASSERT_NOT_NULL(table.Hashes); GEN_ASSERT_NOT_NULL(table.Entries); remove_at(table.Entries, idx); } template inline void hashtable_set(HashTable* table, u64 key, Type value) { GEN_ASSERT_NOT_NULL(table); GEN_ASSERT_NOT_NULL(table->Hashes); GEN_ASSERT_NOT_NULL(table->Entries); ssize idx; HashTableFindResult find_result; if (hashtable_full(* table)) hashtable_grow(table); find_result = hashtable__find(* table, key); if (find_result.EntryIndex >= 0) { idx = find_result.EntryIndex; } else { idx = hashtable__add_entry(table, key); if (find_result.PrevIndex >= 0) { table->Entries[find_result.PrevIndex].Next = idx; } else { table->Hashes[find_result.HashIndex] = idx; } } table->Entries[idx].Value = value; if (hashtable_full(* table)) hashtable_grow(table); } template FORCEINLINE ssize hashtable_slot(HashTable table, u64 key) { GEN_ASSERT_NOT_NULL(table.Hashes); GEN_ASSERT_NOT_NULL(table.Entries); for (ssize idx = 0; idx < ssize(num(table.Hashes)); ++idx) if (table.Hashes[idx] == key) return idx; return -1; } template FORCEINLINE ssize hashtable__add_entry(HashTable* table, u64 key) { GEN_ASSERT_NOT_NULL(table); GEN_ASSERT_NOT_NULL(table->Hashes); GEN_ASSERT_NOT_NULL(table->Entries); ssize idx; HashTableEntry entry = { key, -1 }; idx = array_num(table->Entries); array_append( table->Entries, entry); return idx; } template inline HashTableFindResult hashtable__find(HashTable table, u64 key) { GEN_ASSERT_NOT_NULL(table.Hashes); GEN_ASSERT_NOT_NULL(table.Entries); HashTableFindResult result = { -1, -1, -1 }; if (array_num(table.Hashes) > 0) { result.HashIndex = key % array_num(table.Hashes); result.EntryIndex = table.Hashes[result.HashIndex]; while (result.EntryIndex >= 0) { if (table.Entries[result.EntryIndex].Key == key) break; result.PrevIndex = result.EntryIndex; result.EntryIndex = table.Entries[result.EntryIndex].Next; } } return result; } template FORCEINLINE b32 hashtable_full(HashTable table) { GEN_ASSERT_NOT_NULL(table.Hashes); GEN_ASSERT_NOT_NULL(table.Entries); usize critical_load = usize(HashTable_CriticalLoadScale * f32(array_num(table.Hashes))); b32 result = array_num(table.Entries) > critical_load; return result; } #define hashtable_init(type, allocator) hashtable_init (allocator) #define hashtable_init_reserve(type, allocator, num) hashtable_init_reserve(allocator, num) #define hashtable_clear(table) hashtable_clear < get_hashtable_underlying_type(table) >(table) #define hashtable_destroy(table) hashtable_destroy < get_hashtable_underlying_type(table) >(& table) #define hashtable_get(table, key) hashtable_get < get_hashtable_underlying_type(table) >(table, key) #define hashtable_grow(table) hashtable_grow < get_hashtable_underlying_type(table) >(& table) #define hashtable_rehash(table, new_num) hashtable_rehash < get_hashtable_underlying_type(table) >(& table, new_num) #define hashtable_rehash_fast(table) hashtable_rehash_fast < get_hashtable_underlying_type(table) >(table) #define hashtable_remove(table, key) hashtable_remove < get_hashtable_underlying_type(table) >(table, key) #define hashtable_remove_entry(table, idx) hashtable_remove_entry< get_hashtable_underlying_type(table) >(table, idx) #define hashtable_set(table, key, value) hashtable_set < get_hashtable_underlying_type(table) >(& table, key, value) #define hashtable_slot(table, key) hashtable_slot < get_hashtable_underlying_type(table) >(table, key) #define hashtable_map(table, map_proc) hashtable_map < get_hashtable_underlying_type(table) >(table, map_proc) #define hashtable_map_mut(table, map_proc) hashtable_map_mut < get_hashtable_underlying_type(table) >(table, map_proc) //#define hashtable_add_entry(table, key) hashtable_add_entry < get_hashtable_underlying_type(table) >(& table, key) //#define hashtable_find(table, key) hashtable_find < get_hashtable_underlying_type(table) >(table, key) //#define hashtable_full(table) hashtable_full < get_hashtable_underlying_type(table) >(table) #pragma endregion HashTable #pragma endregion Containers #pragma region Hashing u32 crc32( void const* data, ssize len ); u64 crc64( void const* data, ssize len ); #pragma endregion Hashing #pragma region Strings struct Str; Str to_str_from_c_str (char const* bad_string); bool str_are_equal (Str lhs, Str rhs); char const* str_back (Str str); bool str_contains (Str str, Str substring); Str str_duplicate (Str str, AllocatorInfo allocator); b32 str_starts_with (Str str, Str substring); Str str_visualize_whitespace(Str str, AllocatorInfo allocator); // Constant string with length. struct Str { char const* Ptr; ssize Len; #if GEN_COMPILER_CPP FORCEINLINE operator char const* () const { return Ptr; } FORCEINLINE char const& operator[]( ssize index ) const { return Ptr[index]; } #if ! GEN_C_LIKE_CPP FORCEINLINE bool is_equal (Str rhs) const { return str_are_equal(* this, rhs); } FORCEINLINE char const* back () const { return str_back(* this); } FORCEINLINE bool contains (Str substring) const { return str_contains(* this, substring); } FORCEINLINE Str duplicate (AllocatorInfo allocator) const { return str_duplicate(* this, allocator); } FORCEINLINE b32 starts_with (Str substring) const { return str_starts_with(* this, substring); } FORCEINLINE Str visualize_whitespace(AllocatorInfo allocator) const { return str_visualize_whitespace(* this, allocator); } #endif #endif }; #define cast_to_str( str ) * rcast( Str*, (str) - sizeof(ssize) ) #ifndef txt # if GEN_COMPILER_CPP # define txt( text ) GEN_NS Str { ( text ), sizeof( text ) - 1 } # else # define txt( text ) (GEN_NS Str){ ( text ), sizeof( text ) - 1 } # endif #endif GEN_API_C_BEGIN FORCEINLINE char const* str_begin(Str str) { return str.Ptr; } FORCEINLINE char const* str_end (Str str) { return str.Ptr + str.Len; } FORCEINLINE char const* str_next (Str str, char const* iter) { return iter + 1; } GEN_API_C_END #if GEN_COMPILER_CPP FORCEINLINE char const* begin(Str str) { return str.Ptr; } FORCEINLINE char const* end (Str str) { return str.Ptr + str.Len; } FORCEINLINE char const* next (Str str, char const* iter) { return iter + 1; } #endif inline bool str_are_equal(Str lhs, Str rhs) { if (lhs.Len != rhs.Len) return false; for (ssize idx = 0; idx < lhs.Len; ++idx) if (lhs.Ptr[idx] != rhs.Ptr[idx]) return false; return true; } inline char const* str_back(Str str) { return & str.Ptr[str.Len - 1]; } inline bool str_contains(Str str, Str substring) { if (substring.Len > str.Len) return false; ssize main_len = str.Len; ssize sub_len = substring.Len; for (ssize idx = 0; idx <= main_len - sub_len; ++idx) { if (c_str_compare_len(str.Ptr + idx, substring.Ptr, sub_len) == 0) return true; } return false; } inline b32 str_starts_with(Str str, Str substring) { if (substring.Len > str.Len) return false; b32 result = c_str_compare_len(str.Ptr, substring.Ptr, substring.Len) == 0; return result; } inline Str to_str_from_c_str( char const* bad_str ) { Str result = { bad_str, c_str_len( bad_str ) }; return result; } // Dynamic StrBuilder // This is directly based off the ZPL string api. // They used a header pattern // I kept it for simplicty of porting but its not necessary to keep it that way. #pragma region StrBuilder struct StrBuilderHeader; #if GEN_COMPILER_C typedef char* StrBuilder; #else struct StrBuilder; #endif FORCEINLINE usize strbuilder_grow_formula(usize value); StrBuilder strbuilder_make_c_str (AllocatorInfo allocator, char const* str); StrBuilder strbuilder_make_str (AllocatorInfo allocator, Str str); StrBuilder strbuilder_make_reserve (AllocatorInfo allocator, ssize capacity); StrBuilder strbuilder_make_length (AllocatorInfo allocator, char const* str, ssize length); StrBuilder strbuilder_fmt (AllocatorInfo allocator, char* buf, ssize buf_size, char const* fmt, ...); StrBuilder strbuilder_fmt_buf (AllocatorInfo allocator, char const* fmt, ...); StrBuilder strbuilder_join (AllocatorInfo allocator, char const** parts, ssize num_parts, char const* glue); bool strbuilder_are_equal (StrBuilder const lhs, StrBuilder const rhs); bool strbuilder_are_equal_str (StrBuilder const lhs, Str rhs); bool strbuilder_make_space_for (StrBuilder* str, char const* to_append, ssize add_len); bool strbuilder_append_char (StrBuilder* str, char c); bool strbuilder_append_c_str (StrBuilder* str, char const* c_str_to_append); bool strbuilder_append_c_str_len (StrBuilder* str, char const* c_str_to_append, ssize length); bool strbuilder_append_str (StrBuilder* str, Str c_str_to_append); bool strbuilder_append_string (StrBuilder* str, StrBuilder const other); bool strbuilder_append_fmt (StrBuilder* str, char const* fmt, ...); ssize strbuilder_avail_space (StrBuilder const str); char* strbuilder_back (StrBuilder str); bool strbuilder_contains_str (StrBuilder const str, Str substring); bool strbuilder_contains_string (StrBuilder const str, StrBuilder const substring); ssize strbuilder_capacity (StrBuilder const str); void strbuilder_clear (StrBuilder str); StrBuilder strbuilder_duplicate (StrBuilder const str, AllocatorInfo allocator); void strbuilder_free (StrBuilder* str); StrBuilderHeader* strbuilder_get_header (StrBuilder str); ssize strbuilder_length (StrBuilder const str); b32 strbuilder_starts_with_str (StrBuilder const str, Str substring); b32 strbuilder_starts_with_string (StrBuilder const str, StrBuilder substring); void strbuilder_skip_line (StrBuilder str); void strbuilder_strip_space (StrBuilder str); Str strbuilder_to_str (StrBuilder str); void strbuilder_trim (StrBuilder str, char const* cut_set); void strbuilder_trim_space (StrBuilder str); StrBuilder strbuilder_visualize_whitespace(StrBuilder const str); struct StrBuilderHeader { AllocatorInfo Allocator; ssize Capacity; ssize Length; }; #if GEN_COMPILER_CPP struct StrBuilder { char* Data; FORCEINLINE operator char*() { return Data; } FORCEINLINE operator char const*() const { return Data; } FORCEINLINE operator Str() const { return { Data, strbuilder_length(* this) }; } StrBuilder const& operator=(StrBuilder const& other) const { if (this == &other) return *this; StrBuilder* this_ = ccast(StrBuilder*, this); this_->Data = other.Data; return *this; } FORCEINLINE char& operator[](ssize index) { return Data[index]; } FORCEINLINE char const& operator[](ssize index) const { return Data[index]; } FORCEINLINE bool operator==(std::nullptr_t) const { return Data == nullptr; } FORCEINLINE bool operator!=(std::nullptr_t) const { return Data != nullptr; } friend FORCEINLINE bool operator==(std::nullptr_t, const StrBuilder str) { return str.Data == nullptr; } friend FORCEINLINE bool operator!=(std::nullptr_t, const StrBuilder str) { return str.Data != nullptr; } #if ! GEN_C_LIKE_CPP FORCEINLINE char* begin() const { return Data; } FORCEINLINE char* end() const { return Data + strbuilder_length(* this); } #pragma region Member Mapping FORCEINLINE static StrBuilder make(AllocatorInfo allocator, char const* str) { return strbuilder_make_c_str(allocator, str); } FORCEINLINE static StrBuilder make(AllocatorInfo allocator, Str str) { return strbuilder_make_str(allocator, str); } FORCEINLINE static StrBuilder make_reserve(AllocatorInfo allocator, ssize cap) { return strbuilder_make_reserve(allocator, cap); } FORCEINLINE static StrBuilder make_length(AllocatorInfo a, char const* s, ssize l) { return strbuilder_make_length(a, s, l); } FORCEINLINE static StrBuilder join(AllocatorInfo a, char const** p, ssize n, char const* g) { return strbuilder_join(a, p, n, g); } FORCEINLINE static usize grow_formula(usize value) { return strbuilder_grow_formula(value); } static StrBuilder fmt(AllocatorInfo allocator, char* buf, ssize buf_size, char const* fmt, ...) { va_list va; va_start(va, fmt); ssize res = c_str_fmt_va(buf, buf_size, fmt, va) - 1; va_end(va); return strbuilder_make_length(allocator, buf, res); } static StrBuilder fmt_buf(AllocatorInfo allocator, char const* fmt, ...) { local_persist thread_local char buf[GEN_PRINTF_MAXLEN] = { 0 }; va_list va; va_start(va, fmt); ssize res = c_str_fmt_va(buf, GEN_PRINTF_MAXLEN, fmt, va) - 1; va_end(va); return strbuilder_make_length(allocator, buf, res); } FORCEINLINE bool make_space_for(char const* str, ssize add_len) { return strbuilder_make_space_for(this, str, add_len); } FORCEINLINE bool append(char c) { return strbuilder_append_char(this, c); } FORCEINLINE bool append(char const* str) { return strbuilder_append_c_str(this, str); } FORCEINLINE bool append(char const* str, ssize length) { return strbuilder_append_c_str_len(this, str, length); } FORCEINLINE bool append(Str str) { return strbuilder_append_str(this, str); } FORCEINLINE bool append(const StrBuilder other) { return strbuilder_append_string(this, other); } FORCEINLINE ssize avail_space() const { return strbuilder_avail_space(* this); } FORCEINLINE char* back() { return strbuilder_back(* this); } FORCEINLINE bool contains(Str substring) const { return strbuilder_contains_str(* this, substring); } FORCEINLINE bool contains(StrBuilder const& substring) const { return strbuilder_contains_string(* this, substring); } FORCEINLINE ssize capacity() const { return strbuilder_capacity(* this); } FORCEINLINE void clear() { strbuilder_clear(* this); } FORCEINLINE StrBuilder duplicate(AllocatorInfo allocator) const { return strbuilder_duplicate(* this, allocator); } FORCEINLINE void free() { strbuilder_free(this); } FORCEINLINE bool is_equal(StrBuilder const& other) const { return strbuilder_are_equal(* this, other); } FORCEINLINE bool is_equal(Str other) const { return strbuilder_are_equal_str(* this, other); } FORCEINLINE ssize length() const { return strbuilder_length(* this); } FORCEINLINE b32 starts_with(Str substring) const { return strbuilder_starts_with_str(* this, substring); } FORCEINLINE b32 starts_with(StrBuilder substring) const { return strbuilder_starts_with_string(* this, substring); } FORCEINLINE void skip_line() { strbuilder_skip_line(* this); } FORCEINLINE void strip_space() { strbuilder_strip_space(* this); } FORCEINLINE Str to_str() { return { Data, strbuilder_length(*this) }; } FORCEINLINE void trim(char const* cut_set) { strbuilder_trim(* this, cut_set); } FORCEINLINE void trim_space() { strbuilder_trim_space(* this); } FORCEINLINE StrBuilder visualize_whitespace() const { return strbuilder_visualize_whitespace(* this); } FORCEINLINE StrBuilderHeader& get_header() { return * strbuilder_get_header(* this); } bool append_fmt(char const* fmt, ...) { ssize res; char buf[GEN_PRINTF_MAXLEN] = { 0 }; va_list va; va_start(va, fmt); res = c_str_fmt_va(buf, count_of(buf) - 1, fmt, va) - 1; va_end(va); return strbuilder_append_c_str_len(this, buf, res); } #pragma endregion Member Mapping #endif }; #endif FORCEINLINE char* strbuilder_begin(StrBuilder str) { return ((char*) str); } FORCEINLINE char* strbuilder_end (StrBuilder str) { return ((char*) str + strbuilder_length(str)); } FORCEINLINE char* strbuilder_next (StrBuilder str, char const* iter) { return ((char*) iter + 1); } #if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP FORCEINLINE char* begin(StrBuilder str) { return ((char*) str); } FORCEINLINE char* end (StrBuilder str) { return ((char*) str + strbuilder_length(str)); } FORCEINLINE char* next (StrBuilder str, char* iter) { return ((char*) iter + 1); } #endif #if GEN_COMPILER_CPP && ! GEN_C_LIKE_CPP FORCEINLINE bool make_space_for(StrBuilder& str, char const* to_append, ssize add_len); FORCEINLINE bool append(StrBuilder& str, char c); FORCEINLINE bool append(StrBuilder& str, char const* c_str_to_append); FORCEINLINE bool append(StrBuilder& str, char const* c_str_to_append, ssize length); FORCEINLINE bool append(StrBuilder& str, Str c_str_to_append); FORCEINLINE bool append(StrBuilder& str, const StrBuilder other); FORCEINLINE bool append_fmt(StrBuilder& str, char const* fmt, ...); FORCEINLINE char& back(StrBuilder& str); FORCEINLINE void clear(StrBuilder& str); FORCEINLINE void free(StrBuilder& str); #endif FORCEINLINE usize strbuilder_grow_formula(usize value) { // Using a very aggressive growth formula to reduce time mem_copying with recursive calls to append in this library. return 4 * value + 8; } FORCEINLINE StrBuilder strbuilder_make_c_str(AllocatorInfo allocator, char const* str) { ssize length = str ? c_str_len(str) : 0; return strbuilder_make_length(allocator, str, length); } FORCEINLINE StrBuilder strbuilder_make_str(AllocatorInfo allocator, Str str) { return strbuilder_make_length(allocator, str.Ptr, str.Len); } inline StrBuilder strbuilder_fmt(AllocatorInfo allocator, char* buf, ssize buf_size, char const* fmt, ...) { va_list va; va_start(va, fmt); ssize res = c_str_fmt_va(buf, buf_size, fmt, va) - 1; va_end(va); return strbuilder_make_length(allocator, buf, res); } inline StrBuilder strbuilder_fmt_buf(AllocatorInfo allocator, char const* fmt, ...) { local_persist thread_local PrintF_Buffer buf = struct_init(PrintF_Buffer, {0}); va_list va; va_start(va, fmt); ssize res = c_str_fmt_va(buf, GEN_PRINTF_MAXLEN, fmt, va) -1; va_end(va); return strbuilder_make_length(allocator, buf, res); } inline StrBuilder strbuilder_join(AllocatorInfo allocator, char const** parts, ssize num_parts, char const* glue) { StrBuilder result = strbuilder_make_c_str(allocator, ""); for (ssize idx = 0; idx < num_parts; ++idx) { strbuilder_append_c_str(& result, parts[idx]); if (idx < num_parts - 1) strbuilder_append_c_str(& result, glue); } return result; } FORCEINLINE bool strbuilder_append_char(StrBuilder* str, char c) { GEN_ASSERT(str != nullptr); return strbuilder_append_c_str_len( str, (char const*)& c, (ssize)1); } FORCEINLINE bool strbuilder_append_c_str(StrBuilder* str, char const* c_str_to_append) { GEN_ASSERT(str != nullptr); return strbuilder_append_c_str_len(str, c_str_to_append, c_str_len(c_str_to_append)); } inline bool strbuilder_append_c_str_len(StrBuilder* str, char const* c_str_to_append, ssize append_length) { GEN_ASSERT(str != nullptr); if ( rcast(sptr, c_str_to_append) > 0) { ssize curr_len = strbuilder_length(* str); if ( ! strbuilder_make_space_for(str, c_str_to_append, append_length)) return false; StrBuilderHeader* header = strbuilder_get_header(* str); char* Data = * str; mem_copy( Data + curr_len, c_str_to_append, append_length); Data[curr_len + append_length] = '\0'; header->Length = curr_len + append_length; } return c_str_to_append != nullptr; } FORCEINLINE bool strbuilder_append_str(StrBuilder* str, Str c_str_to_append) { GEN_ASSERT(str != nullptr); return strbuilder_append_c_str_len(str, c_str_to_append.Ptr, c_str_to_append.Len); } FORCEINLINE bool strbuilder_append_string(StrBuilder* str, StrBuilder const other) { GEN_ASSERT(str != nullptr); return strbuilder_append_c_str_len(str, (char const*)other, strbuilder_length(other)); } inline bool strbuilder_append_fmt(StrBuilder* str, char const* fmt, ...) { GEN_ASSERT(str != nullptr); ssize res; char buf[GEN_PRINTF_MAXLEN] = { 0 }; va_list va; va_start(va, fmt); res = c_str_fmt_va(buf, count_of(buf) - 1, fmt, va) - 1; va_end(va); return strbuilder_append_c_str_len(str, (char const*)buf, res); } inline bool strbuilder_are_equal_string(StrBuilder const lhs, StrBuilder const rhs) { if (strbuilder_length(lhs) != strbuilder_length(rhs)) return false; for (ssize idx = 0; idx < strbuilder_length(lhs); ++idx) if (lhs[idx] != rhs[idx]) return false; return true; } inline bool strbuilder_are_equal_str(StrBuilder const lhs, Str rhs) { if (strbuilder_length(lhs) != (rhs.Len)) return false; for (ssize idx = 0; idx < strbuilder_length(lhs); ++idx) if (lhs[idx] != rhs.Ptr[idx]) return false; return true; } FORCEINLINE ssize strbuilder_avail_space(StrBuilder const str) { StrBuilderHeader const* header = rcast(StrBuilderHeader const*, scast(char const*, str) - sizeof(StrBuilderHeader)); return header->Capacity - header->Length; } FORCEINLINE char* strbuilder_back(StrBuilder str) { return & (str)[strbuilder_length(str) - 1]; } inline bool strbuilder_contains_StrC(StrBuilder const str, Str substring) { StrBuilderHeader const* header = rcast(StrBuilderHeader const*, scast(char const*, str) - sizeof(StrBuilderHeader)); if (substring.Len > header->Length) return false; ssize main_len = header->Length; ssize sub_len = substring.Len; for (ssize idx = 0; idx <= main_len - sub_len; ++idx) { if (c_str_compare_len(str + idx, substring.Ptr, sub_len) == 0) return true; } return false; } inline bool strbuilder_contains_string(StrBuilder const str, StrBuilder const substring) { StrBuilderHeader const* header = rcast(StrBuilderHeader const*, scast(char const*, str) - sizeof(StrBuilderHeader)); if (strbuilder_length(substring) > header->Length) return false; ssize main_len = header->Length; ssize sub_len = strbuilder_length(substring); for (ssize idx = 0; idx <= main_len - sub_len; ++idx) { if (c_str_compare_len(str + idx, substring, sub_len) == 0) return true; } return false; } FORCEINLINE ssize strbuilder_capacity(StrBuilder const str) { StrBuilderHeader const* header = rcast(StrBuilderHeader const*, scast(char const*, str) - sizeof(StrBuilderHeader)); return header->Capacity; } FORCEINLINE void strbuilder_clear(StrBuilder str) { strbuilder_get_header(str)->Length = 0; } FORCEINLINE StrBuilder strbuilder_duplicate(StrBuilder const str, AllocatorInfo allocator) { return strbuilder_make_length(allocator, str, strbuilder_length(str)); } FORCEINLINE void strbuilder_free(StrBuilder* str) { GEN_ASSERT(str != nullptr); if (! (* str)) return; StrBuilderHeader* header = strbuilder_get_header(* str); allocator_free(header->Allocator, header); } FORCEINLINE StrBuilderHeader* strbuilder_get_header(StrBuilder str) { return (StrBuilderHeader*)(scast(char*, str) - sizeof(StrBuilderHeader)); } FORCEINLINE ssize strbuilder_length(StrBuilder const str) { StrBuilderHeader const* header = rcast(StrBuilderHeader const*, scast(char const*, str) - sizeof(StrBuilderHeader)); return header->Length; } inline bool strbuilder_make_space_for(StrBuilder* str, char const* to_append, ssize add_len) { ssize available = strbuilder_avail_space(* str); if (available >= add_len) { return true; } else { ssize new_len, old_size, new_size; void* ptr; void* new_ptr; AllocatorInfo allocator = strbuilder_get_header(* str)->Allocator; StrBuilderHeader* header = nullptr; new_len = strbuilder_grow_formula(strbuilder_length(* str) + add_len); ptr = strbuilder_get_header(* str); old_size = size_of(StrBuilderHeader) + strbuilder_length(* str) + 1; new_size = size_of(StrBuilderHeader) + new_len + 1; new_ptr = resize(allocator, ptr, old_size, new_size); if (new_ptr == nullptr) return false; header = rcast(StrBuilderHeader*, new_ptr); header->Allocator = allocator; header->Capacity = new_len; char** Data = rcast(char**, str); * Data = rcast(char*, header + 1); return true; } } FORCEINLINE b32 strbuilder_starts_with_str(StrBuilder const str, Str substring) { if (substring.Len > strbuilder_length(str)) return false; b32 result = c_str_compare_len(str, substring.Ptr, substring.Len) == 0; return result; } FORCEINLINE b32 strbuilder_starts_with_string(StrBuilder const str, StrBuilder substring) { if (strbuilder_length(substring) > strbuilder_length(str)) return false; b32 result = c_str_compare_len(str, substring, strbuilder_length(substring) - 1) == 0; return result; } inline void strbuilder_skip_line(StrBuilder str) { #define current (*scanner) char* scanner = str; while (current != '\r' && current != '\n') { ++scanner; } s32 new_length = scanner - str; if (current == '\r') { new_length += 1; } mem_move((char*)str, scanner, new_length); StrBuilderHeader* header = strbuilder_get_header(str); header->Length = new_length; #undef current } inline void strbuilder_strip_space(StrBuilder str) { char* write_pos = str; char* read_pos = str; while (* read_pos) { if (! char_is_space(* read_pos)) { * write_pos = * read_pos; write_pos++; } read_pos++; } write_pos[0] = '\0'; // Null-terminate the modified string // Update the length if needed strbuilder_get_header(str)->Length = write_pos - str; } FORCEINLINE Str strbuilder_to_str(StrBuilder str) { Str result = { (char const*)str, strbuilder_length(str) }; return result; } inline void strbuilder_trim(StrBuilder str, char const* cut_set) { ssize len = 0; char* start_pos = str; char* end_pos = scast(char*, str) + strbuilder_length(str) - 1; while (start_pos <= end_pos && char_first_occurence(cut_set, *start_pos)) start_pos++; while (end_pos > start_pos && char_first_occurence(cut_set, *end_pos)) end_pos--; len = scast(ssize, (start_pos > end_pos) ? 0 : ((end_pos - start_pos) + 1)); if (str != start_pos) mem_move(str, start_pos, len); str[len] = '\0'; strbuilder_get_header(str)->Length = len; } FORCEINLINE void strbuilder_trim_space(StrBuilder str) { strbuilder_trim(str, " \t\r\n\v\f"); } inline StrBuilder strbuilder_visualize_whitespace(StrBuilder const str) { StrBuilderHeader* header = (StrBuilderHeader*)(scast(char const*, str) - sizeof(StrBuilderHeader)); StrBuilder result = strbuilder_make_reserve(header->Allocator, strbuilder_length(str) * 2); // Assume worst case for space requirements. for (char const* c = strbuilder_begin(str); c != strbuilder_end(str); c = strbuilder_next(str, c)) switch ( * c ) { case ' ': strbuilder_append_str(& result, txt("·")); break; case '\t': strbuilder_append_str(& result, txt("→")); break; case '\n': strbuilder_append_str(& result, txt("↵")); break; case '\r': strbuilder_append_str(& result, txt("⏎")); break; case '\v': strbuilder_append_str(& result, txt("⇕")); break; case '\f': strbuilder_append_str(& result, txt("⌂")); break; default: strbuilder_append_char(& result, * c); break; } return result; } #pragma endregion StrBuilder #if GEN_COMPILER_CPP struct StrBuilder_POD { char* Data; }; static_assert( sizeof( StrBuilder_POD ) == sizeof( StrBuilder ), "StrBuilder is not a POD" ); #endif FORCEINLINE Str str_duplicate(Str str, AllocatorInfo allocator) { Str result = strbuilder_to_str( strbuilder_make_length(allocator, str.Ptr, str.Len)); return result; } inline Str str_visualize_whitespace(Str str, AllocatorInfo allocator) { StrBuilder result = strbuilder_make_reserve(allocator, str.Len * 2); // Assume worst case for space requirements. for (char const* c = str_begin(str); c != str_end(str); c = str_next(str, c)) switch ( * c ) { case ' ': strbuilder_append_str(& result, txt("·")); break; case '\t': strbuilder_append_str(& result, txt("→")); break; case '\n': strbuilder_append_str(& result, txt("↵")); break; case '\r': strbuilder_append_str(& result, txt("⏎")); break; case '\v': strbuilder_append_str(& result, txt("⇕")); break; case '\f': strbuilder_append_str(& result, txt("⌂")); break; default: strbuilder_append_char(& result, * c); break; } return strbuilder_to_str(result); } // Represents strings cached with the string table. // Should never be modified, if changed string is desired, cache_string( str ) another. typedef Str StrCached; // Implements basic string interning. Data structure is based off the ZPL Hashtable. typedef HashTable(StrCached) StringTable; #pragma endregion Strings #pragma region File Handling enum FileModeFlag { EFileMode_READ = bit( 0 ), EFileMode_WRITE = bit( 1 ), EFileMode_APPEND = bit( 2 ), EFileMode_RW = bit( 3 ), GEN_FILE_MODES = EFileMode_READ | EFileMode_WRITE | EFileMode_APPEND | EFileMode_RW, }; // NOTE: Only used internally and for the file operations enum SeekWhenceType { ESeekWhence_BEGIN = 0, ESeekWhence_CURRENT = 1, ESeekWhence_END = 2, }; enum FileError { EFileError_NONE, EFileError_INVALID, EFileError_INVALID_FILENAME, EFileError_EXISTS, EFileError_NOT_EXISTS, EFileError_PERMISSION, EFileError_TRUNCATION_FAILURE, EFileError_NOT_EMPTY, EFileError_NAME_TOO_LONG, EFileError_UNKNOWN, }; union FileDescriptor { void* p; sptr i; uptr u; }; typedef u32 FileMode; typedef struct FileOperations FileOperations; #define GEN_FILE_OPEN_PROC( name ) FileError name( FileDescriptor* fd, FileOperations* ops, FileMode mode, char const* filename ) #define GEN_FILE_READ_AT_PROC( name ) b32 name( FileDescriptor fd, void* buffer, ssize size, s64 offset, ssize* bytes_read, b32 stop_at_newline ) #define GEN_FILE_WRITE_AT_PROC( name ) b32 name( FileDescriptor fd, mem_ptr_const buffer, ssize size, s64 offset, ssize* bytes_written ) #define GEN_FILE_SEEK_PROC( name ) b32 name( FileDescriptor fd, s64 offset, SeekWhenceType whence, s64* new_offset ) #define GEN_FILE_CLOSE_PROC( name ) void name( FileDescriptor fd ) typedef GEN_FILE_OPEN_PROC( file_open_proc ); typedef GEN_FILE_READ_AT_PROC( FileReadProc ); typedef GEN_FILE_WRITE_AT_PROC( FileWriteProc ); typedef GEN_FILE_SEEK_PROC( FileSeekProc ); typedef GEN_FILE_CLOSE_PROC( FileCloseProc ); struct FileOperations { FileReadProc* read_at; FileWriteProc* write_at; FileSeekProc* seek; FileCloseProc* close; }; extern FileOperations const default_file_operations; typedef u64 FileTime; enum DirType { GEN_DIR_TYPE_FILE, GEN_DIR_TYPE_FOLDER, GEN_DIR_TYPE_UNKNOWN, }; struct DirInfo; struct DirEntry { char const* filename; DirInfo* dir_info; u8 type; }; struct DirInfo { char const* fullpath; DirEntry* entries; // zpl_array // Internals char** filenames; // zpl_array StrBuilder buf; }; struct FileInfo { FileOperations ops; FileDescriptor fd; b32 is_temp; char const* filename; FileTime last_write_time; DirEntry* dir; }; enum FileStandardType { EFileStandard_INPUT, EFileStandard_OUTPUT, EFileStandard_ERROR, EFileStandard_COUNT, }; /** * Get standard file I/O. * @param std Check zpl_file_standard_type * @return File handle to standard I/O */ FileInfo* file_get_standard( FileStandardType std ); /** * Closes the file * @param file */ FileError file_close( FileInfo* file ); /** * Returns the currently opened file's name * @param file */ inline char const* file_name( FileInfo* file ) { return file->filename ? file->filename : ""; } /** * Opens a file * @param file * @param filename */ FileError file_open( FileInfo* file, char const* filename ); /** * Opens a file using a specified mode * @param file * @param mode Access mode to use * @param filename */ FileError file_open_mode( FileInfo* file, FileMode mode, char const* filename ); /** * Reads from a file * @param file * @param buffer Buffer to read to * @param size Size to read */ b32 file_read( FileInfo* file, void* buffer, ssize size ); /** * Reads file at a specific offset * @param file * @param buffer Buffer to read to * @param size Size to read * @param offset Offset to read from * @param bytes_read How much data we've actually read */ b32 file_read_at( FileInfo* file, void* buffer, ssize size, s64 offset ); /** * Reads file safely * @param file * @param buffer Buffer to read to * @param size Size to read * @param offset Offset to read from * @param bytes_read How much data we've actually read */ b32 file_read_at_check( FileInfo* file, void* buffer, ssize size, s64 offset, ssize* bytes_read ); typedef struct FileContents FileContents; struct FileContents { AllocatorInfo allocator; void* data; ssize size; }; constexpr b32 file_zero_terminate = true; constexpr b32 file_no_zero_terminate = false; /** * Reads the whole file contents * @param a Allocator to use * @param zero_terminate End the read data with null terminator * @param filepath Path to the file * @return File contents data */ FileContents file_read_contents( AllocatorInfo a, b32 zero_terminate, char const* filepath ); /** * Returns a size of the file * @param file * @return File size */ s64 file_size( FileInfo* file ); /** * Seeks the file cursor from the beginning of file to a specific position * @param file * @param offset Offset to seek to */ s64 file_seek( FileInfo* file, s64 offset ); /** * Seeks the file cursor to the end of the file * @param file */ s64 file_seek_to_end( FileInfo* file ); /** * Returns the length from the beginning of the file we've read so far * @param file * @return Our current position in file */ s64 file_tell( FileInfo* file ); /** * Writes to a file * @param file * @param buffer Buffer to read from * @param size Size to read */ b32 file_write( FileInfo* file, void const* buffer, ssize size ); /** * Writes to file at a specific offset * @param file * @param buffer Buffer to read from * @param size Size to write * @param offset Offset to write to * @param bytes_written How much data we've actually written */ b32 file_write_at( FileInfo* file, void const* buffer, ssize size, s64 offset ); /** * Writes to file safely * @param file * @param buffer Buffer to read from * @param size Size to write * @param offset Offset to write to * @param bytes_written How much data we've actually written */ b32 file_write_at_check( FileInfo* file, void const* buffer, ssize size, s64 offset, ssize* bytes_written ); enum FileStreamFlags : u32 { /* Allows us to write to the buffer directly. Beware: you can not append a new data! */ EFileStream_WRITABLE = bit( 0 ), /* Clones the input buffer so you can write (zpl_file_write*) data into it. */ /* Since we work with a clone, the buffer size can dynamically grow as well. */ EFileStream_CLONE_WRITABLE = bit( 1 ), EFileStream_UNDERLYING = GEN_U32_MAX, }; /** * Opens a new memory stream * @param file * @param allocator */ b8 file_stream_new( FileInfo* file, AllocatorInfo allocator ); /** * Opens a memory stream over an existing buffer * @param file * @param allocator * @param buffer Memory to create stream from * @param size Buffer's size * @param flags */ b8 file_stream_open( FileInfo* file, AllocatorInfo allocator, u8* buffer, ssize size, FileStreamFlags flags ); /** * Retrieves the stream's underlying buffer and buffer size. * @param file memory stream * @param size (Optional) buffer size */ u8* file_stream_buf( FileInfo* file, ssize* size ); extern FileOperations const memory_file_operations; inline s64 file_seek( FileInfo* f, s64 offset ) { s64 new_offset = 0; if ( ! f->ops.read_at ) f->ops = default_file_operations; f->ops.seek( f->fd, offset, ESeekWhence_BEGIN, &new_offset ); return new_offset; } inline s64 file_seek_to_end( FileInfo* f ) { s64 new_offset = 0; if ( ! f->ops.read_at ) f->ops = default_file_operations; f->ops.seek( f->fd, 0, ESeekWhence_END, &new_offset ); return new_offset; } inline s64 file_tell( FileInfo* f ) { s64 new_offset = 0; if ( ! f->ops.read_at ) f->ops = default_file_operations; f->ops.seek( f->fd, 0, ESeekWhence_CURRENT, &new_offset ); return new_offset; } inline b32 file_read( FileInfo* f, void* buffer, ssize size ) { s64 cur_offset = file_tell( f ); b32 result = file_read_at( f, buffer, size, file_tell( f ) ); file_seek( f, cur_offset + size ); return result; } inline b32 file_read_at( FileInfo* f, void* buffer, ssize size, s64 offset ) { return file_read_at_check( f, buffer, size, offset, NULL ); } inline b32 file_read_at_check( FileInfo* f, void* buffer, ssize size, s64 offset, ssize* bytes_read ) { if ( ! f->ops.read_at ) f->ops = default_file_operations; return f->ops.read_at( f->fd, buffer, size, offset, bytes_read, false ); } inline b32 file_write( FileInfo* f, void const* buffer, ssize size ) { s64 cur_offset = file_tell( f ); b32 result = file_write_at( f, buffer, size, file_tell( f ) ); file_seek( f, cur_offset + size ); return result; } inline b32 file_write_at( FileInfo* f, void const* buffer, ssize size, s64 offset ) { return file_write_at_check( f, buffer, size, offset, NULL ); } inline b32 file_write_at_check( FileInfo* f, void const* buffer, ssize size, s64 offset, ssize* bytes_written ) { if ( ! f->ops.read_at ) f->ops = default_file_operations; return f->ops.write_at( f->fd, buffer, size, offset, bytes_written ); } #pragma endregion File Handling #pragma region Timing #ifdef GEN_BENCHMARK //! Return CPU timestamp. u64 read_cpu_time_stamp_counter( void ); //! Return relative time (in seconds) since the application start. f64 time_rel( void ); //! Return relative time since the application start. u64 time_rel_ms( void ); #endif #pragma endregion Timing #pragma region ADT enum ADT_Type : u32 { EADT_TYPE_UNINITIALISED, /* node was not initialised, this is a programming error! */ EADT_TYPE_ARRAY, EADT_TYPE_OBJECT, EADT_TYPE_STRING, EADT_TYPE_MULTISTRING, EADT_TYPE_INTEGER, EADT_TYPE_REAL, }; enum ADT_Props : u32 { EADT_PROPS_NONE, EADT_PROPS_NAN, EADT_PROPS_NAN_NEG, EADT_PROPS_INFINITY, EADT_PROPS_INFINITY_NEG, EADT_PROPS_FALSE, EADT_PROPS_TRUE, EADT_PROPS_NULL, EADT_PROPS_IS_EXP, EADT_PROPS_IS_HEX, // Used internally so that people can fill in real numbers they plan to write. EADT_PROPS_IS_PARSED_REAL, }; enum ADT_NamingStyle : u32 { EADT_NAME_STYLE_DOUBLE_QUOTE, EADT_NAME_STYLE_SINGLE_QUOTE, EADT_NAME_STYLE_NO_QUOTES, }; enum ADT_AssignStyle : u32 { EADT_ASSIGN_STYLE_COLON, EADT_ASSIGN_STYLE_EQUALS, EADT_ASSIGN_STYLE_LINE, }; enum ADT_DelimStyle : u32 { EADT_DELIM_STYLE_COMMA, EADT_DELIM_STYLE_LINE, EADT_DELIM_STYLE_NEWLINE, }; enum ADT_Error : u32 { EADT_ERROR_NONE, EADT_ERROR_INTERNAL, EADT_ERROR_ALREADY_CONVERTED, EADT_ERROR_INVALID_TYPE, EADT_ERROR_OUT_OF_MEMORY, }; struct ADT_Node { char const* name; struct ADT_Node* parent; /* properties */ ADT_Type type : 4; u8 props : 4; #ifndef GEN_PARSER_DISABLE_ANALYSIS u8 cfg_mode : 1; u8 name_style : 2; u8 assign_style : 2; u8 delim_style : 2; u8 delim_line_width : 4; u8 assign_line_width : 4; #endif /* adt data */ union { char const* string; Array(ADT_Node) nodes; ///< zpl_array struct { union { f64 real; s64 integer; }; #ifndef GEN_PARSER_DISABLE_ANALYSIS /* number analysis */ s32 base; s32 base2; u8 base2_offset : 4; s8 exp : 4; u8 neg_zero : 1; u8 lead_digit : 1; #endif }; }; }; /* ADT NODE LIMITS * delimiter and assignment segment width is limited to 128 whitespace symbols each. * real number limits decimal position to 128 places. * real number exponent is limited to 64 digits. */ /** * @brief Initialise an ADT object or array * * @param node * @param backing Memory allocator used for descendants * @param name Node's name * @param is_array * @return error code */ u8 adt_make_branch( ADT_Node* node, AllocatorInfo backing, char const* name, b32 is_array ); /** * @brief Destroy an ADT branch and its descendants * * @param node * @return error code */ u8 adt_destroy_branch( ADT_Node* node ); /** * @brief Initialise an ADT leaf * * @param node * @param name Node's name * @param type Node's type (use zpl_adt_make_branch for container nodes) * @return error code */ u8 adt_make_leaf( ADT_Node* node, char const* name, ADT_Type type ); /** * @brief Fetch a node using provided URI string. * * This method uses a basic syntax to fetch a node from the ADT. The following features are available * to retrieve the data: * * - "a/b/c" navigates through objects "a" and "b" to get to "c" * - "arr/[foo=123]/bar" iterates over "arr" to find any object with param "foo" that matches the value "123", then gets its field called "bar" * - "arr/3" retrieves the 4th element in "arr" * - "arr/[apple]" retrieves the first element of value "apple" in "arr" * * @param node ADT node * @param uri Locator string as described above * @return zpl_adt_node* * * @see code/apps/examples/json_get.c */ ADT_Node* adt_query( ADT_Node* node, char const* uri ); /** * @brief Find a field node within an object by the given name. * * @param node * @param name * @param deep_search Perform search recursively * @return zpl_adt_node * node */ ADT_Node* adt_find( ADT_Node* node, char const* name, b32 deep_search ); /** * @brief Allocate an unitialised node within a container at a specified index. * * @param parent * @param index * @return zpl_adt_node * node */ ADT_Node* adt_alloc_at( ADT_Node* parent, ssize index ); /** * @brief Allocate an unitialised node within a container. * * @param parent * @return zpl_adt_node * node */ ADT_Node* adt_alloc( ADT_Node* parent ); /** * @brief Move an existing node to a new container at a specified index. * * @param node * @param new_parent * @param index * @return zpl_adt_node * node */ ADT_Node* adt_move_node_at( ADT_Node* node, ADT_Node* new_parent, ssize index ); /** * @brief Move an existing node to a new container. * * @param node * @param new_parent * @return zpl_adt_node * node */ ADT_Node* adt_move_node( ADT_Node* node, ADT_Node* new_parent ); /** * @brief Swap two nodes. * * @param node * @param other_node * @return */ void adt_swap_nodes( ADT_Node* node, ADT_Node* other_node ); /** * @brief Remove node from container. * * @param node * @return */ void adt_remove_node( ADT_Node* node ); /** * @brief Initialise a node as an object * * @param obj * @param name * @param backing * @return */ b8 adt_set_obj( ADT_Node* obj, char const* name, AllocatorInfo backing ); /** * @brief Initialise a node as an array * * @param obj * @param name * @param backing * @return */ b8 adt_set_arr( ADT_Node* obj, char const* name, AllocatorInfo backing ); /** * @brief Initialise a node as a string * * @param obj * @param name * @param value * @return */ b8 adt_set_str( ADT_Node* obj, char const* name, char const* value ); /** * @brief Initialise a node as a float * * @param obj * @param name * @param value * @return */ b8 adt_set_flt( ADT_Node* obj, char const* name, f64 value ); /** * @brief Initialise a node as a signed integer * * @param obj * @param name * @param value * @return */ b8 adt_set_int( ADT_Node* obj, char const* name, s64 value ); /** * @brief Append a new node to a container as an object * * @param parent * @param name * @return* */ ADT_Node* adt_append_obj( ADT_Node* parent, char const* name ); /** * @brief Append a new node to a container as an array * * @param parent * @param name * @return* */ ADT_Node* adt_append_arr( ADT_Node* parent, char const* name ); /** * @brief Append a new node to a container as a string * * @param parent * @param name * @param value * @return* */ ADT_Node* adt_append_str( ADT_Node* parent, char const* name, char const* value ); /** * @brief Append a new node to a container as a float * * @param parent * @param name * @param value * @return* */ ADT_Node* adt_append_flt( ADT_Node* parent, char const* name, f64 value ); /** * @brief Append a new node to a container as a signed integer * * @param parent * @param name * @param value * @return* */ ADT_Node* adt_append_int( ADT_Node* parent, char const* name, s64 value ); /* parser helpers */ /** * @brief Parses a text and stores the result into an unitialised node. * * @param node * @param base * @return* */ char* adt_parse_number( ADT_Node* node, char* base ); /** * @brief Parses a text and stores the result into an unitialised node. * This function expects the entire input to be a number. * * @param node * @param base * @return* */ char* adt_parse_number_strict( ADT_Node* node, char* base_str ); /** * @brief Parses and converts an existing string node into a number. * * @param node * @return */ ADT_Error adt_c_str_to_number( ADT_Node* node ); /** * @brief Parses and converts an existing string node into a number. * This function expects the entire input to be a number. * * @param node * @return */ ADT_Error adt_c_str_to_number_strict( ADT_Node* node ); /** * @brief Prints a number into a file stream. * * The provided file handle can also be a memory mapped stream. * * @see zpl_file_stream_new * @param file * @param node * @return */ ADT_Error adt_print_number( FileInfo* file, ADT_Node* node ); /** * @brief Prints a string into a file stream. * * The provided file handle can also be a memory mapped stream. * * @see zpl_file_stream_new * @param file * @param node * @param escaped_chars * @param escape_symbol * @return */ ADT_Error adt_print_string( FileInfo* file, ADT_Node* node, char const* escaped_chars, char const* escape_symbol ); #pragma endregion ADT #pragma region CSV enum CSV_Error : u32 { ECSV_Error__NONE, ECSV_Error__INTERNAL, ECSV_Error__UNEXPECTED_END_OF_INPUT, ECSV_Error__MISMATCHED_ROWS, }; typedef ADT_Node CSV_Object; u8 csv_parse( CSV_Object* root, char* text, AllocatorInfo allocator, b32 has_header ); u8 csv_parse_delimiter( CSV_Object* root, char* text, AllocatorInfo allocator, b32 has_header, char delim ); void csv_free( CSV_Object* obj ); void csv_write( FileInfo* file, CSV_Object* obj ); StrBuilder csv_write_string( AllocatorInfo a, CSV_Object* obj ); void csv_write_delimiter( FileInfo* file, CSV_Object* obj, char delim ); StrBuilder csv_write_strbuilder_delimiter( AllocatorInfo a, CSV_Object* obj, char delim ); /* inline */ inline u8 csv_parse( CSV_Object* root, char* text, AllocatorInfo allocator, b32 has_header ) { return csv_parse_delimiter( root, text, allocator, has_header, ',' ); } inline void csv_write( FileInfo* file, CSV_Object* obj ) { csv_write_delimiter( file, obj, ',' ); } inline StrBuilder csv_write_string( AllocatorInfo a, CSV_Object* obj ) { return csv_write_strbuilder_delimiter( a, obj, ',' ); } #pragma endregion CSV GEN_NS_END #ifdef __clang__ # pragma clang diagnostic pop #endif #ifdef __GNUC__ # pragma GCC diagnostic pop #endif